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ABSTRACT

In recent years, deep neural networks (DNNs) have been
found very successful for multi-label classification (MLC)
of remote sensing (RS) images. Self-supervised pre-training
combined with fine-tuning on a randomly selected small
training set has become a popular approach to minimize
annotation efforts of data-demanding DNNs. However, fine-
tuning on a small and biased training set may limit model
performance. To address this issue, we investigate the ef-
fectiveness of the joint use of self-supervised pre-training
with active learning (AL). The considered AL strategy aims
at guiding the MLC fine-tuning of a self-supervised model
by selecting informative training samples to annotate in an
iterative manner. Experimental results show the effectiveness
of applying AL-guided fine-tuning (particularly for the case
where strong class-imbalance is present in MLC problems)
compared to the application of fine-tuning using a randomly
constructed small training set.

Index Terms— Multi-label image classification, deep
learning, active learning, self-supervised learning, remote
sensing.

1. INTRODUCTION

Automatically assigning multiple land-use land-cover class
labels (i.e., multi-labels) to image scenes from an archive of
remote sensing (RS) images has become an important task in
RS. Therefore, developing accurate multi-label image scene
classification (MLC) methods is a growing research interest
in RS. Deep learning (DL) based methods have recently seen
a rise in popularity in the context of MLC problems, as they
can learn rich features to describe the complex spectral and
spatial content of RS images [1,2]. For example, in [3] a con-
volutional neural network is trained using an MLC-adjusted
data-augmentation pipeline. To train DL models in a super-
vised setting a large number of images (i.e., samples) that
are annotated with high-quality multi-labels is needed. How-
ever, collecting multi-labels is time-consuming, complex and
costly in operational scenarios [4]. To address this issue self-
supervised learning (SSL) methods can be used in the context
of learning general image features from unlabeled data with-

out using any human-annotated labels by considering auxil-
iary learning objectives. For example, in [5] image represen-
tations are learned by forcing the cross-correlation matrix of
the outputs of a siamese-style architecture, which is fed with
augmented views of the same image, to be close to the identity
matrix. After self-supervised training of a model, the learned
parameters serve as a pre-trained model and can be transferred
to the MLC task by fine-tuning on a smaller set of samples an-
notated with multi-labels [6]. These samples for fine-tuning
are usually obtained by annotating a random subset of the
available unlabeled data, where the amount of selected sam-
ples depends on the annotation budget (i.e. the number of
images that can be afforded to label) and the desired perfor-
mance (a higher annotation budget typically results in better
performance). However, randomly selecting samples to be la-
beled may result in a biased set for fine-tuning, and therefore
may reduce performance of the classification model. In MLC
scenarios, where class occurrences often follow long-tail dis-
tributions, this issue is highly critical.

Active learning (AL) on the other hand has been found
successful for finding highly informative samples from a set
of unlabeled samples that, when annotated and added to the
training set, can improve model performance significantly [7].
Generally, the informativeness of a sample is assessed by
jointly evaluating two criteria: i) uncertainty and ii) diver-
sity. The uncertainty criterion measures the confidence of the
model to correctly assign label to a given sample, whereas
the diversity criterion ensures that the selected samples are
diverse to each other. For example, in [8] uncertainty and
diversity are jointly assessed by sampling loss gradient ap-
proximations that are as distant as possible to each other
based on a greedy strategy. During each AL iteration, the
most informative samples are selected and annotated by a
human expert and added to the labeled training set. The pro-
cess is terminated when either performance converges or the
budget limit for labeling is reached. While AL is successfully
employed for enriching the training set, it does not make use
of available unlabeled data for the training.

In this paper, we investigate the effectiveness of joint use
of self-supervised pre-training and AL in MLC problems. To
this end, we enhance a self-supervised model through AL-
guided fine-tuning. The benefits of combining SSL methods
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for pre-training with AL-guided fine-tuning are: i) learning
parameters for initialising the model from unlabeled data, ii)
obtaining an optimized set of labeled samples that are highly
informative for fine-tuning the model, while avoiding labeling
non-informative samples; and iii) achieving stronger implicit
robustness to class imbalances in the archive.

2. METHODOLOGY

Let X = {X1, ...,XN} be an archive that contains N RS im-
ages, where Xi is the i-th image. We assume that a small and
biased set of labeled images T 1 = {(Xl

1,y1), ..., (X
l
M ,yM )}

is available. For an image Xl
i the multi-label vector yi =

[y
(i)
1 , ..., y

(i)
C ] ∈ {0, 1}C indicates the presence or absence

of each of C unique classes. Typically T 1 is much smaller
than the archive X (i.e. N ≫ M ) and might be biased. We
aim to learn the parameters for a multi-label classification
model F under a labeling budget B. To this end, we follow
an approach that consists of two steps: i) self-supervised
pre-training on the archive set X for model initialisation; and
ii) AL-guided fine-tuning of the classification model on an
iteratively enriched labeled training set.

2.1. Self-supervised pre-training for model initialisation

In the first step, we pre-train the model in self-supervised
manner on the archive set X . Let the model F = g ◦ f be
composed of a convolutional backbone f followed by a clas-
sification head g. To find initial parameters for the convo-
lutional backbone f , we make use of the BYOL [9] frame-
work. In this framework, f is embedded as an encoder into
an asymmetric two-branch architecture consisting of an on-
line network and a target network. Both the online and the
target network consist of an encoder followed by a projector.
The online network additionally employs a predictor q on top
of its projector. For two distributions of image augmentations
A and A′, and given an image Xi, online network and target
network receive two different augmented views of the image
a(Xi) and a′(Xi) as inputs, where a ∼ A and a′ ∼ A′. The
online network is trained to predict the output of the target
network by minimizing the norm-adjusted mean squared er-
ror (MSE) loss defined as follows:

LMSE(Xi) =

∥∥∥∥∥ q(z
(i)
on)

∥q(z(i)on)∥2
− z

(i)
tar

∥z(i)tar∥2

∥∥∥∥∥
2

2

(1)

where z(i)on and z
(i)
tar are the outputs of the projectors for image

Xi of the online network and the target network, respectively.
The target network is not trained, but instead it is updated as
the exponential moving average of the online network param-
eters.

For a more detailed description about the self-supervised
training pipeline and information about the distributions of
image augmentations A and A′, the reader is referred to [9].

2.2. AL-guided fine-tuning

In the second step, we iteratively fine-tune the model F on
the labeled set that is enriched using an AL strategy. At each
iteration t, starting from t = 1, we fine-tune F on T t using
binary cross-entropy loss defined as:

LBCE(Xi,yi)=− 1

C

C∑
j=1

y
(i)
j log(p

(i)
j )+(1−y

(i)
j ) log(1−p

(i)
j )

(2)
where p

(i)
j is the probability for the j-th class being present

in image Xi. After fine-tuning the model F on the labeled
samples, we aim to find the b (which corresponds to the label-
ing budget per iteration) most informative samples from the
unlabeled set U t = X \ T t to enrich the training set.

To select the most informative samples we make use of
Measuring Magnitude of Approximated Gradient Embed-
dings + Clustering (MGE+Clustering) [7] query function. It
assesses uncertainty based on magnitude of approximated
gradient embeddings (MGE) and achieves sample diversity
using a clustering approach.

In MGE, the uncertainty of a sample is estimated by the
means of loss gradients. The magnitude of the gradient de-
termines the extend to which the network parameters change.
Therefore, samples with a large gradient can be seen as more
uncertain and to have more impact to improve model perfor-
mance during training, since they result in larger changes of
model parameters. Since the loss gradients cannot be com-
puted for an unlabeled sample directly (knowledge of the
multi-label would be required), a gradient approximation is
used to estimate the uncertainty of a sample. The gradient
approximations are computed with respect to the weights of
the penultimate layer based on the pseudo-labels. Let ŷi be
the pseudo-labels for an image Xi obtained by using a 0.5
threshold on probabilities predicted by the model. The ap-
proximation of the gradient embeddings with respect to the
weights W of the last layer of F for the loss LBCE is given
by

gŷX = ∇WLBCE(Xi, ŷi). (3)

For each unlabeled sample the gradient approximation is ini-
tially computed and then its magnitude ∥gŷX∥2 is determined
to assess the uncertainty of the sample (and thus estimate its
impact for training the classification model).

After measuring the uncertainty of the unlabeled samples
from U t, MGE+Clustering [7] ensures the diversity of se-
lected samples using a clustering approach. Clustering has
been found effective in ensuring diversity, since samples from
different clusters are implicitly sparse in the feature space.
The learned features of the m > b most uncertain samples
(i.e. the samples with the largest gradient approximations)
are clustered into b different clusters using Kmeans++ [10]
algorithm. Then, from each cluster the most uncertain sample
is selected for labeling, resulting in b selected samples. Due



to the selection of one sample from each cluster, the diversity
of samples at each AL iteration is achieved.

Once the b most informative samples are selected, they
are labeled by a human expert and the newly labeled sam-
ples are added to T t to form the new training set T t+1. The
AL iterations are repeated until the total labeling budget B is
spent. Note that during the iterative AL-guided fine-tuning, at
each iteration the model is re-initialized with the parameters
learned in the fine-tuning step of the previous iteration.

3. EXPERIMENTAL RESULTS

Experiments were conducted on the UCMerced [11] dataset
with multi-labels obtained from [12]. It contains 2100 RGB
images of size 256 × 256 pixels with 30cm spatial resolu-
tion. In total, there are 17 unique classes and the number of
classes associated to a single image varies between 1 and 8.
Class occurrences range from 100 to 1331. We randomly di-
vided the images into a validation set of 525 samples, a test
set of 525 samples and a pool set containing 1050 samples.
We used DenseNet121 as the architecture for the classifica-
tion model. For self-supervised pre-training we set the batch
size to 100 and trained for 1000 epochs with a learning rate
of 0.001 using ADAM optimizer. For AL-guided fine-tuning,
we randomly chose 40 samples from the pool to form the ini-
tial labeled training set. At each iteration, we used a labeling
budget of b = 20. During fine-tuning, we set the batch size
to 10 and train for 100 epochs with a learning rate of 0.025
and SGD optimizer. After 80 epochs, we reduced the learning
rate by a factor of 0.1. The data augmentation methods that
we use for fine-tuning include random horizontal flipping and
random rotation of {0, 90, 180, 270} degrees. Results are re-
ported in terms of F1 scores and were averaged over five runs.

In the first experiment, we compare the performance of
AL-guided fine-tuning with that obtained by randomly select-
ing a set of samples for fine-tuning. Fig. 1 shows the perfor-
mance in terms of F1 scores versus the number of labeled
samples. From the figure one can see that using AL-guided
fine-tuning complementary to self-supervised pre-training re-
sults in better performance. For example, AL-guided fine-
tuning provides a micro F1 score of 81.74% and a macro
F1 score of 81.8% for 180 labeled samples, whereas random
sampling only achieves 80.39% and 79.8% in terms of micro
and macro F1 scores, respectively. To reach the same per-
formance random sampling needs more than 220 annotated
samples. This shows that samples selected through AL are
more informative for fine-tuning the model.

In the second experiment we analyse the influence of class
imbalance in the archive X on the performance of the clas-
sification model. To this end, we compare three different
scenarios associated to different degrees of class imbalance
of X . In the Scenario 1, we use the pool set as defined be-
fore. In Scenario 2 and Scenario 3, we randomly select three
minority classes and randomly remove samples that are as-

(a)

(b)

Fig. 1: (a) Micro and (b) Macro F1 scores versus the number
of labeled samples.

sociated to these classes. In the Scenario 2, we remove 20
samples from each of the three classes, while in Scenario 3
we remove 40 samples. By this way the class imbalance in-
creases from Scenario 1 to Scenario 3. As minority classes we
consider the following classes: Airplane, Chaparral, Court,
Dock, Field, Mobilehome, Sea, Ship and Tank. The classes
Dock and Ship have 98% co-occurence. Therefore, we made
sure that these classes are not selected together for sample
removal. Fig. 2 shows the performance of AL-guided fine-
tuning and fine-tuning on a randomly selected training set
for the three different scenarios in terms of macro F1 scores
averaged over 20 sampling iterations. From the figure, one
can see that in all three scenarios AL-guided fine-tuning per-
forms better than fine-tuning on a randomly selected training
set. For example, in Scenario 1, AL-guided fine-tuning yields
1.6% higher average performance in terms of macro F1 score
than fine-tuning applied using random sampling. In Scenario
3, AL-guided fine-tuning results in 4% higher performance in
terms of macro F1 score. The divergence of performance over
the different scenarios indicates that AL-guided fine-tuning is
more robust for the cases of stronger class imbalance. This is
due to the fact that the use of AL leads to selection of sam-
ples associated to under-represented classes, which is crucial
particularly in operational MLC scenarios.



Fig. 2: Mean Macro F1 scores averaged over 20 iterations in
the three different scenarios.

4. CONCLUSION

In this paper, we have investigated the effectiveness of the
joint use of SSL pre-training and AL for training an MLC
model under a labeling budget. To this end, we use AL to
guide the fine-tuning of an SSL pre-trained model for MLC.
As an AL method we exploit MGE+Clustering, while for SSL
pre-training we use the BYOL framework. The experimen-
tal results show that AL-guided fine-tuning results in higher
performance than randomly selecting samples for fine-tuning.
Furthermore, the results show that AL-guided fine-tuning is
more robust to class imbalances. As future works, we plan to
verify our results on larger datasets and to investigate contin-
ual learning scenarios, where data distributions can shift over
time.

5. ACKNOWLEDGEMENTS

This work is supported by the European Research Council
(ERC) through the ERC-2017-STG BigEarth Project under
Grant 759764 and by the European Space Agency through
the DA4DTE (Demonstrator precursor Digital Assistant inter-
face for Digital Twin Earth) project. The authors would like
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