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ABSTRACT 

 

Recent advances in Synthetic Aperture Radar (SAR) sensors 

have enabled the acquisition of very high-resolution images 

with wide swaths, large bandwidth and in multiple 

polarization channels. As a result of the significant increase 

of SAR data size, an effective compression of the acquired 

data is of paramount importance. However, conventional data 

compression methods demonstrate limited effectiveness 

when applied to SAR data. In order to tackle this problem, in 

this study, a Complex-Valued (CV) end-to-end deep 

learning-based architecture based on convolutional 

autoencoders is proposed to compress Single Look Complex 

(SLC) SAR data. By relying on dual polarization SAR data, 

one of the polarization channels of the data is used as the side 

information to assist the reconstruction of the compressed 

channel with lower data loss. The obtained results 

demonstrate the remarkable potential and capability of CV 

deep learning-based methods for SAR data compression. 

 

Index Terms— Complex-valued networks, Data 

compression, Deep learning, Synthetic Aperture Radar 

(SAR) 

 

1. INTRODUCTION 

 

Innovative advanced SAR imagery techniques have enabled 

SAR systems to acquire very high resolution images with 

wide swaths, large bandwidth and in multiple polarization 

channels [1]. The improvements of the SAR system 

capabilities also imply a significant increase of SAR data 

acquisition rates, such that efficient and effective 

compression methods become necessary. However, 

conventional compression methods do not satisfy the 

requirements for the effective SAR Single Look Complex 

(SLC) data compression for several reasons: 

• SLC SAR data is in the complex domain by nature, 

whereas most of the conventional compression 

methods do not support complex-valued signals. 

• The physical model of the SAR data has to be 

preserved during the compression procedure. 

• Phase component of SAR data is important in many 

applications, especially Interferometric SAR 

(InSAR). Phase information of the complex-valued 

SAR data has to be maintained. 

The abovementioned reasons and the other peculiarities of 

SAR data, such as large dynamic range, inherent speckle 

effects, and the spatial correlation, require the development 

of novel compression methods for compressing complex-

valued SAR data, considering its unique characteristics. 

Several studies have applied different methods for SAR 

data compression, mostly only considering SAR amplitude 

images, for instance, optical compression standard methods 

such as JPEG2000 and SPIHT, wavelet transform-based 

methods [2]–[4], as well as machine learning and dictionary 

learning-based methods such as entropy-constrained 

dictionary learning algorithm (ECDLA) [5], [6]. Deep 

learning techniques have achieved remarkable results in 

many different fields and are gradually attracting interest for 

visual data compression. In this context, autoencoders are 

widely used for lossy image compression, mostly based on 

quantization and reducing the bitrate of the image data, 

including detected SAR images [7]–[9]. Furthermore, 

Distributed Source Coding (DSC) in Information Theory is 

used for reducing the data loss in image compression of 

computer vision applications [10]. In DSC, side information 

is often used to assist the network to reconstruct the 

compressed data. 

One of the main drawbacks of the deep learning-based 

compression methods is that SLC SAR data is in complex 

domain by nature, whereas most of the developed deep 

learning models are in real domain [11]. Applying the real-

valued deep models to the complex-valued SAR data, 

disregards the phase information and only exploits the 

amplitude of the SAR data [11], [12]. In order to tackle this 

problem and to exploit the amplitude and phase components 

of the Complex-Valued (CV) SAR data, CV deep 

architectures have been developed in a number of studies 

[11]–[15]. 

In this paper, a complex-valued end-to-end deep 

architecture is developed, based on the convolutional 

autoencoders (CV-CAE), to compress the SLC SAR data. 



DSC in Information Theory is used for reducing the data loss 

in image compression of computer vision applications [10].  

 

2. METHODOLOGY 

 

In this section, the theoretical methodology of the proposed 

model is discussed. First, a brief introduction to the complex-

valued deep networks is provided. Later, the proposed 

method and the network architecture for SAR data 

compression are introduced. 

 

2.1. Complex-valued deep networks 

 

The real and imaginary components of the SLC SAR data are 

statistically correlated. The CV model should maintain this 

correlation to properly preserve and extract the physical 

information from CV-SAR data [11], [16]. Moreover, the 

complex correlation coefficient (coherence) of the CV-SAR 

data conveys important physical properties of the target and 

SAR system, and should be preserved in the complex model 

[12]. As a result, a fully CV network with coherence 

preservation is used in this study [11]. 

The conversion of the necessary operators for deep 

networks from real domain to the complex domain are 

provided in previous literature and the coherence 

preservation of these networks are evaluated [11], [12]. These 

CV operators are used in this study for the deep architecture.  

In order to train the CV network, backpropagation method, 

based on Stochastic Gradient Descent (SGD), is converted to 

the complex domain. Wirtinger calculus [17] has defined the 

partial derivative of the complex function 𝑓(𝑧) with respect 

to 𝑧 and 𝑧̅, while 𝑧 = 𝑥 + 𝑗𝑦 ∈ ℂ, (𝑥, 𝑦) ∈ ℝ2, as (1) 
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Using this definition, the CV backpropagation can be 

defined to train the CV deep network. Further explanations 

on the CV operators and CV backpropagation can be found 

in [11]. 

 

2.2. Network Architecture 

 

Fig. 1 illustrates the architecture of the proposed method. We 

assume a multi-polarization channel SAR sensor, where the 

original SAR image for one of the channels (e.g., HH) is used 

as the side information for better reconstruction of the other 

compressed polarization channels (e.g., HV). In this 

architecture, an encoder maps the input HV polarization 

channel of the SAR image patch into the embedded latent 

features, which is then quantized. Since the derivative of the 

quantization function is zero (almost everywhere), the 

quantization is replaced by uniform noise during the training. 

However, during compression (after training) actual 

quantization is used [7], [8]. 

The quantized latent features are discrete-valued, and can 

be losslessly compressed by an entropy coding technique 

(e.g., arithmetic coding) for storage [8]. Later, the arithmetic 

decoder reconstructs the latent features from the compressed 

code. The decoder of the network uses the recovered latent 

features to reconstruct the SAR image (i.e., decoded HV). 

This procedure introduces a certain compression error to 

the decoded HV polarization channel. As a result, in this 

study, the second autoencoder is used to exploit the 

correlation between the polarization channels of SAR data 

and enhance the reconstructed HV channel. For this purpose, 

the decoded HV and the original HH channels of the SAR 

patch are fed into the second autoencoder to reconstruct the 

HV channel with less compression error. 

Rate-distortion loss is used to train the network. The 

distortion is evaluated by the Mean Square Error (MSE) 

function. The rate is the expected bitrate of the compressed 

code which is estimated using the cross entropy of the 

quantized embedded features [8]. 

 

3. EXPERIMENTAL RESULTS 

 

3.1. Dataset 

 

Three StripMap (SM) SLC dual polarization (HH/HV) 

Sentinel-1 SAR scenes, acquired over Chicago and Huston, 

USA, and Sao Paulo, Brazil, are selected to consider different 

landcovers (e.g., various constructed areas, vegetation, 

agriculture, and water bodies) characterized by diverse data 

dynamic ranges [18]. No further preprocessing is applied on 

the SAR data. The selected scenes are divided into the 

patches of 256×256 pixels. 30,000 and 10,000 patches are 

randomly selected as the train and evaluation sets, 

respectively. 

 

3.2. Experimental Results and Discussion 

 

The phase component of SAR data is important in many 

applications, especially InSAR, and the compression method 

should preserve the phase information. Moreover, the 

complex coherence measures the similarity and correlation 

between two images and quantifies the level of noise in the 

interferogram. The phase error and coherence over a 5×5 

pixels window are computed as the performance evaluation 

metrices. Fig. 2 and 3 depict the phase error and the coherence 

between the original and the compressed SAR images with 

different compression rates. In these plots, the blue curve 

corresponds to the performance without adding the side 

information, while the orange curve shows the results after 

adding the side information. 

Furthermore, the SAR images are compressed using the 

Block Adaptive Quantization (BAQ) algorithm [1]. BAQ is a 

lossy data compression method, used mostly for raw SAR 

data. However, the statistics of the SLC and raw SAR data 

are similar and since BAQ can be applied to CV data (i.e., 



similar to the CV network in this study), it is hereby used for 

comparison. 

The CV autoencoder achieves remarkably better results 

than BAQ for all the considered compression rates. The CV 

autoencoder compresses the SAR data to about 0.67 bits per 

pixel (bpp) with only 8.04˚ phase error. The phase error is 

decreased to 2.7˚ with the 4.06 bpp compression. While BAQ 

with 4 bpp introduces 10.06˚ phase error to the data. 

However, adding the side information does not improve the 

results, evidently. Only a slight improvement can be noticed 

in the very low bitrate compressions. The phase error of the 

0.67 bpp compression is decreased to 7.9˚ (about 0.14˚ 

improvement) after adding the side information. 

Despite the negligible effect of the side information, the 

potential of the DSC for SAR data compression is evident. 

The inability of the side information to improve the results 

can lie in incompetency of the second autoencoder that have 

been used to incorporate the side information. The second 

autoencoder consists of only a few convolutional layers and 

apparently, the network does not have enough depth to allow 

the correlation between the polarization channels of SAR data 

to improve the reconstruction of the HV channel. A more 

advanced architecture could help to better exploit this 

correlation and improve the reconstruction of the compressed 

SAR channel. 

Fig. 4 shows the original, reconstructed, coherence, and 

phase error of a sample SAR patch over an industrial area. 

The dynamic ranges are limited for better visualization. 

 

 

 
Fig. 1. Architecture of the network. In this architecture, the encoder in the first autoencoder (first row) compresses the SAR 

image patch into the embedded feature map, which gets quantized and losslessly compressed by an arithmetic encoder. 

Later, arithmetic decoder recovers the compressed embedded features and the decoder and the second autoencoder (second 

row) reconstruct the SAR image patch from the decoded embedded features.  

 
Fig. 2. Phase error between the original and the 

reconstructed SAR images for different compression 

rates with CV-CAE and BAQ. 
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Fig. 3. The coherence between the original and the 

reconstructed SAR images for different compression 

rates with CV-CAE and BAQ. 
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4. CONCLUSION 

 

The capability of the CV deep architectures for SLC SAR 

data compression is evaluated in this study. The obtained 

results demonstrate the remarkable potential of the CV 

networks to compress CV-SAR data. The CV autoencoder 

compresses the amplitude and phase components of the CV-

SAR data together and demonstrates superior performance in 

comparison with the BAQ technique. 

However, adding the side information from the other 

polarization channel of the SAR data to enhance the 

reconstruction of the compressed polarization channel, does 

not decrease the compression error. Further experiments and 

utilizing more advanced architectures for incorporating the 

side information and exploiting the correlation between the 

polarization channels of SAR data are necessary in order to 

achieve practically applicable networks with higher 

compression rates and less data loss and should be pursued in 

the future studies. 
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Fig. 4. (a) original amplitude, (b) reconstructed amplitude 

without side information, (c) coherence, and (d) phase 

error maps of a sample patch over industrial area. The 

dynamic range of the images are limited for better 

visualization. 

 


