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ABSTRACT
The optimization of Kernel-Target Alignment (TA) has been
recently proposed as a way to reduce the number of hardware
resources in quantum classifiers. It allows to exchange highly
expressive and costly circuits to moderate size, task oriented
ones. In this work we propose a simple toy model to study
the optimization landscape of the Kernel-Target Alignment.
We find that for underparameterized circuits the optimization
landscape possess either many local extrema or becomes flat
with narrow global extremum. We find the dependence of the
width of the global extremum peak on the amount of data in-
troduced to the model. The experimental study was performed
using multispectral satellite data, and we targeted the cloud
detection task, being one of the most fundamental and impor-
tant image analysis tasks in remote sensing.

1. INTRODUCTION

The highly expressive quantum and hybrid classical-quantum
machine learning algorithms are known for being notorio-
usly hard to train. The simulation of optimization in quantum
Hilbert space is a computationally intensive task, frequently
demanding access to high-performance computing resources.
Additionally, we encounter problems in which the scaling of
computational complexity technically wastes the possibility
of obtaining satisfactory results. Quantum neural networks
(QNNs) are known to suffer from Barren Plateau phenome-
non [1], while kernel-based methods, like hybrid support vec-
tor machines (SVMs) [2, 3], experience value concentration
in kernel entries [4]. To avoid the aforementioned problems,
researchers tend not to over-parameterize when designing qu-
antum circuits. This can be done either by focusing solely on
the highly symmetric problems or by introducing additional
hyperparameters of the circuits, which are then adjusted ac-
cording to some measure of quality of the resulting quantum
map. As real-life data rarely does possess explicit symmetries,
we are usually compelled to optimize circuit designs. In the

kernel-based classification algorithms, the measure to assess
the quality of the quantum map is the Kernel-Target Align-
ment (TA) [5, 6]. In this paper, we propose a simple, exactly
solvable toy-model for the TA landscape examination for mo-
dels of low expressivity. We show that the TA landscape beco-
mes harder to optimize not only with the growing complexity
of the structure in the training data, but also with the amount
of training data itself. The landscape becomes flat, the width
of global extremum and the TA expected value decrease. Fi-
nally, we confront the toy-model’s predictions with the sce-
nario based on real-life multispectral satellite data. Here, we
exploit the Landsat-8 38-Cloud dataset [7, 8] of multispectral
images, and target the binary problem of cloud detection in
such imagery. This task is the “hello, world” in satellite ima-
ge data analysis, and may be considered a smart data com-
pression and selection step in the processing chain to prune
cloudy, hence useless images from further processing. Our
experimental study showed that, for the underparameterized
circuits, the TA optimization becomes harder as we uncover
the underlying structure of the available training data.

2. TOY MODEL

We propose a toy model for the study of Kernel-Target ali-
gnment landscape. It consists of the two-class labeled dataset
and a parameterized feature map. Although being simple, the
toy model is not trivial and captures some of the important
challenges of the TA optimization. Even though the model
utilizes one qubit and one feature map parameter, it can be
seen as a basic building block for all non-entangling, hence
separable, n-qubit feature maps. Therefore the optimization
issues found in this work can be found representative in a wi-
de class of quantum, kernelized problems. On the other hand
the simplicity of the model allows for obtaining analytical re-
sults and clear, visual inspection of its features.

Let us consider a synthetic set consisting ofN equidistant
data points on the interval [0, 1], xi = i−1

N−1 , i = 1, . . . , N .

ar
X

iv
:2

30
6.

14
51

5v
1 

 [
cs

.C
V

] 
 2

6 
Ju

n 
20

23



Fig. 1: The feature map proposed for a toy model. First, it transforms the initial |0⟩ to the |+⟩ state which resides on the Bloch spheres’
equator. Then the parameterized rotation is applied is order to move the state around the equator. The last Hadamard gate transforms us back
to the measurement basis. For the specific data set used in the toy model, the rotation with parameter γ = π · (N − 1) sends the states of
opposite classes to |+⟩ and |−⟩ states. After the final Hadamard, the points are encoded on north and south pole of the Bloch sphere.

The classes for the points are alternating yi = (−1)i−1. For
N even we always have a balanced dataset in the studied mo-
del. In order to encode the data on the Bloch sphere, we use
a simple feature map consisting of a Hadamard gate followed
by a parameterized Z-rotationRZ(γx) and another Hadamard
gate (Fig. 1). The circuit effectively moves the initial state to
the spheres’ equator, rotates the state by a parameterized an-
gle and transforms it back to the computational basis. One
can obtain a perfect separation of the data points, when +1
(−1) class occupies north (south) pole of the Bloch sphere
for γ = (N − 1) · π.

The feature map induces a fidelity kernel of the form:

Kij = |⟨xj |xi⟩|2 = cos2
[γ
2
(xi − xj)

]
. (1)

The kernel entries can be estimated by running a parameteri-
zed circuit on a quantum computer or simulated on the classi-
cal computer.

3. KERNEL-TARGET ALIGNMENT LANDSCAPE

The TA, being the measure which quantifies the separation of
data points belonging to different classes, is given as [5]:

T (K) = ⟨K, K̄⟩F√
⟨K,K⟩F ⟨K̄, K̄⟩F

, (2)

where K is a kernel matrix, K̄ij = yiyj is an ideal kernel
and ⟨A,B⟩F = Tr{ATB} is a Frobenius inner product. We
expect that with the greater value of TA, the classification ac-
curacy increases, as data points belonging to different classes
are well separated in the feature space. As the kernel func-
tion (Equation 1) is non-negative the maximum value of the
Kernel-Target Alignment is T (K∗) = 1√

2
, for K∗ consisting

of vanishing entries for points in different classes and unity
values for points in the same class. In general, one can center

the dataset [9], to rescale the T (K) to the interval [0, 1]. Ho-
wever this procedure would not impact the results of the work,
therefore we omit this step. Let us investigate the Kernel-
Target Alignment function for the proposed toy model. Fir-
stly, for a balanced dataset one can write an ideal kernel nor-
malization ⟨K̄, K̄⟩F = N2. Knowing that the even (odd) indi-
ces of data points xi, i = 2l (i = 2l−1), l ∈ {1, . . . , N2 } have
−1 (+1) label, one can obtain the following form of Kernel-
Target Alignment in the toy model:

T (K) = 1
N

⟨K, K̄⟩F√
⟨K,K⟩F

, (3)

where

⟨K, K̄⟩F = 2
∑
α∈{0,1}

N/2∑
k,l=1

(−)α cos2
[
γ(k − l + α/2)
N − 1

]
,

(4)
and

⟨K,K⟩2F = 2
∑
α∈{0,1}

N/2∑
k,l=1

cos4
[
γ(k − l + α/2)
N − 1

]
. (5)

From the above formulas one can infer that the T (K)
function is periodic in γ parameter with 2π ·(N−1) period. In
Fig. 2a we show one-period of Kernel-Target Alignment land-
scape for different values ofN . The peak centered at solution
solution γ = π · (N − 1) is visible in the middle.

One can immediately see that the width of the central peak
decreases with the increasing amount of points N . By expan-
ding the function (Equation 3) around the maximum to the
second order and fitting a Gaussian to it, one obtains:

Gγ(µ, σ) =
1√
2
e−

1
2 ( γ−µσ )

2

,

µ = π · (N − 1), σ = 2
√
3
N − 1√
N2 + 2

,

(6)



(a) (b) (c)

Fig. 2: Kernel-Target Alignment for the toy model and 38-Clouds data. a) An optimization landscape for the toy’s model TA. The γ parameter
governs the Z-rotation in the quantum map. The optimal value is γ̂ = (N − 1) · π. b) The average value of the Target-Kernel Alignment
landscape as a function of a data set size N . The dashed line represents a fit confirming the scaling obtained in gaussian approximation (6).
c) The expected value of TA as we introduce training data points in the toy model and points from the 38-Cloud dataset. For each model 10
simulations are presented on the plot.

with the width of the peak σ = 2
√
3 N−1√
N2+2

. This function

quickly converges to the constant value σ N→∞−−−−→ 2
√
3. When

looking at how much space the central peak, containing the
solution, occupies relative the single parameter interval we
see that it scales as σ

2π·(N−1) ∼
1
N .

The optimization landscape of Target-Kernel Alignment
is clearly non-convex, with many local extrema. It is to be
expected for the function obtained from composition of cosi-
nes. The landscape resembles an interference patter with con-
structive interference around the solution. Nevertheless, ma-
gnitude of local, non-central, maxima decreases with growing
N fast enough that the area under the T (K) function is quic-
kly dominated by the central peak. The flattening of the global
optimization landscape with the decreasing width of the solu-
tion extremum is typical in quantum machine learning. There
are numerous results on the existence of Barren Plateaus [1]
which lead exponentially fast to the similar untrainable land-
scape with increasing number of qubits. The domination of
the central peak in the area under the T (K) is numerically
confirmed by comparing the integral of single-peak, Gaus-
sian approximation G(x, µ, σ) (Equation 6) with the integral
of T (K). The integral 1

2π·(N−1)
∫
dγT (K) = ⟨T (K)⟩ can be

identified with the expected value of the Kernel-Target Align-
ment. In Fig. 2b we show an average value of TA as a function
of number of data points N . The fitted function confirms the
∼ 1/N scaling of the ⟨T (K)⟩ obtained in gaussian approxi-
mation. The fitted exponent is close to the expected−1 value,
the small deviation from it originates from small N values
where asymptotic 1/N behaviour is not expected.

4. NUMERICAL STUDY OF TARGET-KERNEL
ALIGNMENT EXPECTATION VALUE

It can be argued that increasing the number of data points N
in the model is changing the model itself and the effect of the
area under the T (K) comes purely from changing the model

while changingN . Therefore, in the numerical experiment we
fix the number of available for training data points N but the
points are introduced gradually. In order to always calculate
the Kernel-Target Alignment for balanced data, in every ite-
ration of the experiment we add to the training data set two
randomly selected points from each class. We start with 2 da-
ta points, draw at each iteration subsequent data points and
continue to analyse the average value of T (K).

In Fig. 2c, we render an average value of TA over the pa-
rameter space as we draw additional training points in the
toy model and the real-life dataset of multispectral images.
The real-life data is taken from the 38-Cloud dataset [7, 8],
which consists of multispectral satellite images (acquired by
the Landsat-8 satellite) capturing four spectral bands (R, G,
B, NIR). In order to compare the analysis with the toy model,
only the principal component of the sampled data point was
taken. The average value of TA decreases as we include more
points in the training dataset. The behaviour of the average
Target Kernel Alignment for the toy model and real-life da-
ta is virtually identical. It indicates that the effect of ∼ 1/N
decrease in T (K) value is independent of the data set used.

5. CONCLUSIONS

The optimization algorithms in quantum machine learning are
swamped with obstacles [10]. Highly expressive circuits ha-
ve problems with a flat optimization landscape, which renders
gradient based methods useless. We showed that also for cir-
cuits with low expressibility, the optimization landscape can
become troublesome and dependent on the amount of data
used. The Kernel-Target Alignment function possess either
many minima or a flat landscape around the vanishingly nar-
row solution in parameter space. Knowing that the Kernel-
Target Alignment value is defined on the interval [0, 1/

√
2]

the decrease of its average value indicates that the good opti-
mization solution quickly becomes hard to obtain. Therefo-



re, we recommend to adopt a strategy for the TA optimiza-
tion even in fairly simple circuits. The best known solution is
to exploit the symmetries present in the data [11]. However,
most real-life data sets do not exhibit obvious symmetries,
hence it is important to look for other approaches to simplify
the TA optimization. One possibility could be to design the
optimization phase in such a way that we can utilize pretra-
ining on significantly smaller training sets. On the other hand,
selecting the appropriate reduced training sets which are hi-
ghly representative in term of the data structure and its under-
lying characteristics has been widely researched for support
vector machines, and could be effectively deployed in quan-
tum machine learning as well [12]—this constitutes our cur-
rent research efforts.
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