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Abstract

This paper introduces TACOSS a text-image alignment approach that allows
explainable land cover semantic segmentation by directly integrating semantic
concepts encoded from texts. TACOSS combines convolutional neural networks
for visual feature extraction with semantic embeddings provided by a language
model. By leveraging contrastive learning approaches, we learn an alignment
between the visual and the (fixed) textual representations. In addition to pro-
ducing standard semantic segmentation outputs, our model enables interactive
queries with RS images using natural language prompts. The experimental
results obtained on 50cm resolution aerial data from Switzerland show that
TACOSS performs similarly to a standard semantic segmentation model while
allowing the flexible usage of in- and out-of-vocabulary terms for the interactions
with the image.

1 Introduction

Traditional methods for semantic segmentation associate a learned set of spec-
tral and spatial characteristics with a target class. Classes are usually learned
as exclusive, ignoring the thematic similarities between them: models penal-
ize similarly a naive mistake e.g. classifying a river as a lake, as an aberrant
prediction e.g. classifying the river as a road. A way to enforce this kind of
semantic awareness is to use contextual information about the classes. If the
remote sensing literature has widely explored class co-occurrence in space [1],
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Figure 1: Overview of TACOSS: the visual features are extracted by the vi-
sual encoder and projected to a high-dimensional vector. A contrastive loss
pushes the visual representation of each pixel close to their true label embeddings
(extracted by language model), in this example representing the word ‘Lake’,
whereas the embeddings of a large set of negative labels (‘Forest’, ‘ Building’,
etc.) are used as negative representations.
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new advances in vision-language models open opportunities for the exploration
of class similarities in the semantics of their definitions. Approaches that em-
ploy word embeddings learned from large text corpora can capture the thematic
relationships between words, such that similar concepts are mapped to nearby
points in the latent space and thus reduce the risk of aberrant mistakes. Several
works [2, 3, 4, 5] have demonstrated the potential of incorporating thematic
information from complex text captions. Diversified labels force the model to
learn fine-grained differences between input images and also account for the
sometimes fuzzy boundaries between classes. These frameworks lead to more
robust predictions, i.e. more reasonable mistakes, and demonstrated impressive
performances for adapting to new tasks through zero-shot or few-shot learning.

In this work, we re-frame the semantic segmentation problem for a multi-
modal setting between images and texts and define it as an alignment problem
between the respective representations. We design a semantic segmentation net-
work where pixels are represented by interpretable embeddings and learned by
taking into account both traditional semantic segmentation targets and vision-
language alignment objectives. Specifically, we use a contrastive objective that



forces the model to respect the thematic similarity between classes by pushing
away different concepts and bringing together similar ones, as they are repre-
sented in the word embedding space. To present a richer vocabulary and to have
a more diffuse latent representation, text labels are augmented using words with
similar meanings in the embedding space. As a result, in addition to the stan-
dard image segmentation results, our method enables pixel-level interactions
between text and images, enabling the mapping of words beyond the vocabu-
lary used for learning the land cover categories. This opens opportunities for the
exploration of new thematic classes (out-of-domain mapping), logical reasoning
and simple transfer from one map nomenclature to the other.

2 Related work

Convolutional neural networks, and more recently vision transformers are con-
sidered state-of-the-art classifiers for land cover segmentation [6, 7]. Several
works have explored the integration of semantic relationships between classes,
enabling the model to learn patterns from different classes and enhance the
general classification performance [1]. An explicit semantic similarity between
classes can be introduced by using label embedding methods [2]. These ap-
proaches embed the target labels into a high-dimensional latent space, as op-
posed to using the one-hot encoding of the classes. Another way to embed
semantic information is to use text as source of information. For instance,
GloVe [8] captures the semantic and syntactic relationships between words, such
that semantically similar concepts are mapped to nearby points in the latent
space. More recently, new models emerged combining natural language process-
ing and computer vision to enable users to engage with images using textual
input. For instance, CLIP [3] is trained with a contrastive learning strategy on a
large-scale dataset of image-text pairs. It learns to align various image captions
with visual features at the image level. Similarly, several models worked such as
DenseCLIP [4], GroupViT [5] or VLT [9] focused to align features at the pixel
level for dense prediction tasks through a contrastive learning approach. How-
ever, models trained on natural images tend to have limited transfer capacity
to RS images [3, 10].

More generally, our work is related to recent efforts in the usage of language
to interact with remote sensing (RS) images [11]. For instance, researchers
have explored the use of text-based queries for image captioning [3], image
retrieval [12], or question-answering [13]. While these works tend to interact
with the visual features at the image level, others learn representations at the
pixel level. For instance, by leveraging the Segment-Anything Model [7], the
recent Text2Seg [10] model is able to do instance segmentation on RS images
based on textual prompts. We aim to go further in that direction by developing a
method that allows direct interactions with RS images at the pixel level through
any text prompt, to achieve a model that can be queried on demand with new
concepts represented as text embeddings.



3 Methodology

Our Text-As-supervision-for-COntrastive-Semantic-Segmentation (TACOSS) net-
work is shown in Figure 1. It is a semantic segmentation pipeline where the
model learns to align visual features to a semantic vector embedding produced
by a pre-trained language model. Thanks to this alignment, TACOSS predicts
for each pixel a vector close to the word embedding of the corresponding land
cover label. Since language models are trained to respect semantic similarities
between concepts, we can technically use any text prompt in natural language
and calculate its similarity to the visual embedding, therefore assessing how
much new concepts ‘react’ to the visual information from the RS image.

Semantic features. We generate semantic features from the class names
using two word-embeddings :

e GloVe [8] maps (groups of ) words into a 300 dimensional space accounting
for semantic similarity found in textual corpora. GloVe not only captures
the syntactic relationships between words but also semantic and analogic
relationships, i.e. words with similar meanings or used in similar contexts
tend to have similar vector representations in the embedding space.

e We also use the pre-trained CLIP text encoder [3] to embed the land
cover labels. This transformer-based text encoder was trained with a
contrastive learning strategy on a large-scale dataset of image-text pairs.
For each class, a 512 dimensional vector is returned which is the average
hidden state of the words defining the land cover category.

Since the embeddings are limited to a small number of classes (see next
section), we enlarged the number of target classes using a set of synonym words
close to the class names. This has the double role of avoiding the solution
to collapse to a single point per class and also to add diversity in the label
embeddings. We used both hypernyms, i.e. words that encompass a broader
category (house—buildings), or hyponyms, i.e. words that are more specific
(forest—oak tree). The words used to describe a class are not exclusive, i.e. a
word used to describe a class can also be present in a different but related class.

Visual features. The visual features are extracted from very high-resolution
images using a DeepLabv3 model [14] with a ResNet-50 [15] backbone. In addi-
tion to the original network classifier, a second classifier is added to project the
Atrous Spatial Pyramid Pooling (ASPP) outputs to a high-dimensional vector
for each pixel.

Loss. Drawing inspiration from contrastive learning, we aim here to align
the visual features with the semantic features. We do so by maximizing the
similarity between positive pairs of features (pixel and text refer to the same
class) and minimizing the similarity between negative pairs (a pixel is compared
to the embedding of the name of another class). Only the text embeddings of
the original 16 classes are considered as positive representations, whereas the
set of all synonyms are considered as negative representations. Since contrastive
frameworks are known to benefit from abundant and diverse negative samples,



20 synonym words are searched for each class label. Following [16], we randomly
sample k£ = 2048 pixels per batch and compute the contrastive loss as the
InfoNCE loss [17]:

Lo = Z log exp (cos(zi, 2p)/T) )
eyt ZaeA(i) exp (cos(zi, 24)/T)

with cos the cosine similarity between two vectors, z; the network representation

learned for pixel i, z, is the positive semantic embedding of its ground truth

class label p. z, is the negative semantic embedding from the set containing all

the negative land cover labels A(7).

. Text prompt
(2) RGB | (b) Prediction (c) Roads  (d) Agric. and lake (e) Swimming (f) Squirrel
Figure 2: Ilustration of the input images (a), semantic segmentation outputs (b)

and interactions with different text prompts from the TACOSS-GloVe model:

(c) ‘Roads’, (d) Agriculture and lake’, (e)‘Swimming’ (f)‘Squirrel’. The interac-

tion outputs are normalized on a scale from 0 to 1, with dark blue color for low

value and light green for higher values. Labels for semantic segmentation maps

(among 16 classes): M river, W agricultural areas, B buildings, B forest, m lake,
roads, W vineyards

4 Data and experimental set-up

Setup. The experiments below compare a baseline model trained with a cross-
entropy loss, to our proposed TACOSS method with the two word embedding
methods. The TACOSS visual backbone is trained for 300 epochs with a stan-
dard cross-entropy approach on one-hot encoded labels with the Adam [18]
optimizer and a learning rate of 5 * 10~*with polynomial scheduling. Then the
contrastive classifier is added and the model is further trained for 300 epochs
with the contrastive objective. All models are trained with a batch of size 16
on input images of size 500 x 500, with colour augmentation, vertical and hor-
izontal flips and random crops of size 200. The temperature parameter for the
contrastive loss 7 is empirically fixed to 0.03. The best hyper-parameters are
fine-tuned independently on the validation set. To obtain the predicted labels



Table 1: Quantitative comparison of semantic segmentation performance be-
tween the baseline approach using a cross-entropy loss and our proposed
TACOSS method with both CLIP and GloVe encoder.

OA mloU mF1
Baseline 57.04  25.28 35.78
TACOSS-GloVe 57.18 25.85 36.46
TACOSS-CLIP 55.61 24.82 35.81

from the model output, we compute a dot product between the model outputs
and the semantic vectors representing the categories. Each pixel is attributed
to the land cover category with the highest similarity.

Data. The model is trained on a real-world dataset provided by the Swiss
Federal Office of Topography (swisstopo) on a study area located in Southwest
Switzerland. The aerial images with RGB bands cover 63km? with 50cm resolu-
tion. The pixel-level labels were produced by swisstopo annotators for the Swiss
topographic landscape model (TLM) and span 16 different land cover classes
including alpine, agricultural and urban land cover categories.

5 Results

As we can see in Table 1, the TACOSS pipeline using GloVe embeddings per-
forms better on mean intersection over union (mloU), macro Fl-score (mF1)
and overall accuracy (OA). A similar approach using CLIP embeddings remains
close to the baseline results but does not outperform it, except for the mF1. We
hypothesize that this is due to the larger number of dimensions that need to be
aligned for CLIP embeddings (512) than for GloVe (300).

Figure 2 (b) illustrates the semantic segmentation maps generated by our

model. The models identify correctly the main land cover classes such as wa-
ter areas, buildings, forest and agricultural lands. However, the limits between
categories tend to be blurry.
Figure 2 (c-f) presents some illustrations of interactions between TACOSS out-
puts with some natural language text prompts. The interaction map is obtained
by computing the dot product between the output of TACOSS and the word
embeddings of the text prompt. TACOSS is able to accurately segment new text
prompts that correspond to land cover labels (in-vocabulary prompts, see 2 (c-
d): these could be, for instance, alternative map nomenclatures used by other
mapping agencies. But more interestingly, our method is able to go beyond the
fixed set of labels and combine two land cover classes in the interaction map
(see 2 (e)), or interact with words that are out-of-vocabulary (see 2 (f-h) and not
related to land cover. The observed similarities between visual features and text
prompt can be attributed to the semantic similarity with the words employed
for training, i.e. the ’squirrel’ prompt highlights pixels most similar to forest,
which is encoded through the usage of word embeddings.



6 Conclusion and Future work

In this paper, we propose TACOSS, a method to align visual features with
semantic concepts at the pixel level for very high-resolution remote sensing im-
ages. TACOSS performs on par with a standard semantic segmentation model,
while allowing interactions at the pixel level with any text prompt. Our pre-
liminary results suggest that GloVe embeddings rather than CLIP ones allow a
better semantic encoding between the visual and semantic features. This study
has provided valuable insights for future research. One possible direction is the
incorporation of a larger and more diverse vocabulary for the set of labels to be
able to recognise land cover features with increased precision.
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