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ABSTRACT

Support vector machines (SVMs) are a well-established clas-
sifier effectively deployed in an array of pattern recognition
and classification tasks. In this work, we consider extending
classic SVMs with quantum kernels and applying them to sa-
tellite data analysis. The design and implementation of SVMs
with quantum kernels (hybrid SVMs) is presented. It consists
of the Quantum Kernel Estimation (QKE) procedure combi-
ned with a classic SVM training routine. The pixel data are
mapped to the Hilbert space using ZZ-feature maps acting
on the parameterized ansatz state. The parameters are opti-
mized to maximize the kernel target alignment. We approach
the problem of cloud detection in satellite image data, which
is one of the pivotal steps in both on-the-ground and on-board
satellite image analysis processing chains. The experiments
performed over the benchmark Landsat-8 multispectral da-
taset revealed that the simulated hybrid SVM successfully
classifies satellite images with accuracy on par with classic
SVMs.

1. INTRODUCTION

Satellite imaging plays an increasingly important role in va-
rious aspects of human activity. The spectrum of applications
ranges from cartographic purposes [1, 2] through meteorolo-
gy [3], ecology, and agronomy [4] to security and urban moni-
toring [5]. Consequently, dozens of terabytes of raw imaging
data are generated daily from satellite constellations, such as
the one built within the European Copernicus Programme.
The large volume of multi- or hyperspectral images, which
capture the detailed characteristics of the scanned materials,
makes them difficult to transfer, store, and ultimately analy-
ze. Therefore, their reduction through the extraction of useful
information is a critical issue in real-world applications. An
important step in the data analysis chain of optical satellite
data is the identification of clouds. The interest is two-fold:

on the one hand, such cloudy regions can be removed from
further processing, as the objects of interest are likely to be
obscured. On the other hand, efficient detection of cloud co-
ver on the Earth surface is important in meteorological and
climate research [6].

Since the reduction is performed on a huge amount of raw
data, the efficiency of this process is a key factor in practi-
ce. Therefore, it is reasonable to search for new methods for
analyzing such huge datasets, improving image data classifi-
cation into cloudy and clear areas. In this paper, we investiga-
te the classification performance of classic SVMs exploiting
the radial basis function kernels, and those which benefit from
the quantum kernels (introduced in Section 2). There are the-
oretical arguments [7–9] that the proposed quantum kernels
are #P-hard to evaluate on a classical computer. Therefore, if
they provide an advantage in classification accuracy, this wo-
uld advocate a strong use case for quantum computers. Ad-
ditionally, to get a deeper understanding of quantum machine
learning mechanisms and show its usefulness in practice, it is
pivotal to focus on widely adopted image data corresponding
to real use cases. Thus, we tackle the cloud detection task in
satellite image data, which is one of the most important pro-
cessing steps for such imagery. Our experimental study per-
formed over the benchmark multispectral image data acquired
by the Landsat-8 satellite revealed that SVMs with quantum
kernels offer a classification accuracy at least comparable to
classic RBF kernel SVMs (Section 3).

2. MATERIALS AND METHODS

2.1. Data

We utilize satellite image data contained in the 38-Cloud data-
set [10]. The data consist of Landsat 8 scene images cropped
into 384× 384 pixel patches. Each pixel has five values asso-
ciated with it: intensity values in four spectral bands (blue:
450–515 nm, green: 520–600 nm, red: 630–680 nm, NIR:

ar
X

iv
:2

30
7.

07
28

1v
1 

 [
cs

.C
V

] 
 1

4 
Ju

l 2
02

3



845–885 nm) and a label corresponding to the fact whether a
pixel contains a cloud or not. Therefore, the dimension of the
data ism = 4. SVMs suffer from their high time and memory
training complexity, which depend on the size of the training
set. Since only a subset of all training vectors is annotated
as support vectors during SVM training, we can effectively
exploit only a subset of the most important examples [11]. To
find the best training data, two metrics for patches were intro-
duced: cloudiness C (the ratio of cloud pixels to all pixels in
the patch), fill F (the ratio of physical pixels in the patch, as
patches contain scene margins). Balanced training sets from
patches with properties F = 100%, 40% ¬ C ¬ 60% are
sampled by randomly selecting a fixed number of pixels.

2.2. Methods

In Fig. 1, we present a high-level flowchart of the proposed
hybrid SVM procedure. First, we encode the data with the pa-
rameterized feature map consisting of ZZ-feature map acting
on ansatz (see Fig. 2). Then we perform the Quantum Kernel
Estimation (QKE) and obtain a quantum kernel, which tar-
get alignment is maximized with a classic optimization me-
thod. When optimization is finished, the final quantum kernel
is passed to a classic SVM.

Fig. 1: Overview of the hybrid SVM design. The gray box indicates
the part of the algorithm which was calculated on the quantum com-
puter simulator.

2.2.1. Selected Feature Map

When considering the employment of quantum computation
methods, a principal question that quickly arises pertains to
the way in which classic input data will be loaded into the
quantum circuit. In general, our aim will be to construct a
unitary operator for each input datum x, such that applying it
to the initial quantum zero state will leave us with a specified
representation of x, |φ(x)⟩. This process is called quantum
embedding, while any such map x 7→ |φ(x)⟩ is known as a
quantum feature map.

Consider the unitary transformation

Uφ(x) = exp

i ∑
S⊆[n]

φS(x)
∏
i∈S
Pi

 , (1)

being a general quantum circuit Pauli expansion of an n-qubit
unitary transformation. The index S describes the connectivi-
ties between different qubits: S ∈ {

(
n
k

)
combinations, k ∈

{1, . . . , n}}, Pi are the basic Pauli gates that act on the ith

quantum register and the data mapping function is φ{i}(x) =
πxi, φ{i,j}(x) = π(1 − xi)(1 − xj). The number of qubits
used can be identified with the dimension of the data n = m.
Following [7], we restrict the above unitary to k = 2 connec-
tivities with single-qubit gates P{a} = Za, two-qubit gates
P{b,c} = ZbZc, a, b, c ∈ {0, . . . , n− 1}. This transformation
is called a ZZ feature map with one repetition. It is already
#P-hard to calculate classically [8], but shows no compu-
tational advantage over the classical kernel estimation, per-
formed by random sampling [9]. To increase the complexi-
ty of the classical simulation of the ZZ feature map, additio-
nal bases-changing layers are included by repeating the Ũφ(x)
transformation

Udφ(x) =
(
Ũφ(x)

)d
=
(
Uφ(x)H

⊗n)d , d ∈ N. (2)

The transformation Udφ(x) is called the ZZ feature map with d
repetitions.

2.2.2. Circuit Parameterization

Having defined the ZZ feature map, we turn our attention to
the possibility of introducing additional parameters into the
circuit to maximize the kernel target alignment of the data
in the feature space. We follow the approach of modifying
the initial state of the circuit [12] on which the feature map
acts. The initial state will be parameterized with continuous
variables θ (Fig. 2), with respect to which we will perform
kernel target alignment optimization.

2.2.3. Kernel Target Alignment

Considering a collection of quantum states obtained by means
of applying a quantum embedding |φ(x)⟩ = Uφ(xi) Vθ|0⟩⊗2
to different classic input data, it is straightforward to reason
about them in terms of kernel methods. The kernel K with
respect to any two embedded data xi, xj can be defined as the
fidelity between the resulting quantum states,

Kij = |⟨φ(xi)|φ(xj)⟩|2 = |⟨0|⊗n V †θ U
d †
φ(xj)
Udφ(xi) Vθ|0⟩

⊗n|2.
(3)

This kernel K is known as the quantum kernel. Consider a
kernel function given by

K̄ij =

{
+1 if xi and xj are in the same class
−1 if xi and xj are in different classes.



0

Fig. 2: The ansatz Vθ|0⟩⊗2 circuit, which prepares the initial state for the kernel estimation for classical data of dimensionm = 2.

It shows a clear distinction between classes of data points and
is called an ideal kernel. In general, in almost every situation,
one will not be able to find the exact feature map, which gi-
ves rise to the ideal kernel. Therefore, parametrized families
of feature maps are used to optimize the resulting kernel ma-
trix in such a way that it resembles the ideal kernel as closely
as possible. The function that indicates the similarity betwe-
en a specific and ideal kernel matrices is called kernel target
alignment [13]

T (K) = ⟨K, K̄⟩F√
⟨K,K⟩F ⟨K̄, K̄⟩F

, (4)

where ⟨A,B⟩F = Tr{ATB} is a Frobenius inner product.

3. EXPERIMENTAL RESULTS

The objective of our study is to compare hybrid SVMs with
their classic counterparts. The results, presented in Table 1,
are obtained by using the Qiskit Aer simulator, whereas
the optimization algorithm is the standard simultaneous per-
turbation stochastic approximation. The SVM score is obta-
ined from the sklearn support vector classification, with
the radial basis function (RBF) kernel with default γ = 1

mσ2

(wherem = 2 is the number of features and σ2 is the varian-
ce of the data) and C = 1, the latter being the regularization
parameter. For each simulation run, we randomly sample 800
pixels for the training set, and 200 pixels for the test set (the
training and test sets are non-overlapping). To keep the size
of the quantum circuit minimal, we decrease the number of
data features by running a principal component analysis be-
fore feeding it into the algorithm. The number of four spec-
tral bands is reduced to two features. The ZZ-feature map is
chosen to consist of d = 2 repetitions. The results of the Wil-
coxon matched-pairs signed rank test show that there is no
statistically significant difference between hybrid SVMs with
a quantum kernel and classic SVMs with an RBF kernel (at
p < 0.05). Therefore, it shows that the classification methods
with quantum kernels based on ZZ-feature map are, at least,
competitive with classical SVM models. With the further de-
velopment of quantum kernels, we expect hybrid methods to
be advantageous over classical classification methods.

4. CONCLUSIONS

We introduced the design and implementation of an SVM
with quantum kernels. The proposed algorithm was experi-
mentally verified on the cloud detection benchmark dataset.
The main takeaway from the work is that—at this stage—
SVMs with the quantum kernel have a classification accu-
racy on par with classic SVMs with RBF kernel. The expe-
riment was performed with a quantum computer simulator.
In [14] the use of underparametrized quantum circuits for si-
milar task was performed on the whole 38-Clouds data set.
Current results are consistent with this work. To estimate the
effect of noise and better understand the computational time,
more work should focus on running the algorithm on quantum
computers. We anticipate that further investigation of the qu-
antum feature maps—including using full dimension of the
dataset (m = 4), new data mapping functions or different
generators—will result in an additional improvement of the
classification performance. This would indicate a strong use
case for quantum computers in SVM models.
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