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1 Trillium Technologies, London, United Kingdom
2 University of Valencia, Valencia, Spain

3 University of Surrey, Guildford, United Kingdom
4 University of Oxford, Oxford, United Kingdom
5 European Space Agency Φ-Lab, Frascati, Italy

ABSTRACT

This paper introduces DTACSNet, a Convolutional Neural
Network (CNN) model specifically developed for efficient
onboard atmospheric correction and cloud detection in op-
tical Earth observation satellites. The model is developed
with Sentinel-2 data. Through a comparative analysis with
the operational Sen2Cor processor, DTACSNet demonstrates
a significantly better performance in cloud scene classifica-
tion (F2 score of 0.89 for DTACSNet compared to 0.51 for
Sen2Cor v2.8) and a surface reflectance estimation with aver-
age absolute error below 2% in reflectance units. Moreover,
we tested DTACSNet on hardware-constrained systems sim-
ilar to recent deployed missions and show that DTACSNet
is 11 times faster than Sen2Cor with a significantly lower
memory consumption footprint. These preliminary results
highlight the potential of DTACSNet to provide enhanced
efficiency, autonomy, and responsiveness in onboard data
processing for Earth observation satellite missions.

Index Terms— Sentinel-2, Sen2Cor, onboard processing,
atmospheric correction, cloud detection, deep learning, CNN

1. INTRODUCTION

Onboard data processing in Earth observation satellites offers
numerous benefits such as discarding cloud-contaminated im-
agery in real-time [1] or selectively identifying and prioritiz-
ing relevant targets to process, such as algae blooms, oil spills,
floating debris, crop damage, fires, flood events, or methane
leaks [2]. Furthermore, onboard processing allows for data
optimization, reducing the size of products that need to be
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Fig. 1. DTACSNet architecture: the top branch shows the
cloud scene classification (SC) network and the bottom one
the atmospheric correction (AC) network. Architectures were
chosen based on best trade-off between accuracy and infer-
ence speed.

downlinked to Earth [3] and enabling the prioritization of spe-
cific tiles for download [4]. These capabilities could enhance
the overall efficiency and effectiveness of Earth observation
missions, facilitating timely decision-making and resource al-
location.

Nevertheless, processing data onboard requires the integra-
tion and calibration of raw data before it is used by most appli-
cations. While this is normal practice on the ground, prepara-
tion of data to create Analysis Ready Data (ARD) products is
not straightforward since the processes running on the ground
are less constrained than those running onboard. For instance,
onboard hardware has lower memory and processing capabil-
ity, and the access to ancillary data of onboard processes is
very restrictive (if any).

One ubiquitous process to create Analysis Ready Data
(ARD) products for optical sensors is atmospheric correc-
tion. Atmospheric correction is a sophisticated procedure
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Absolute discrepancies (reflectance units)

Fig. 2. Samples from the test set of CloudSEN12. First column: Sentinel-2 TOA image (RGB channels). Second column:
image corrected with DTACSNet AC network. Third column: Sentinel-2 image corrected with Sen2Cor. Fourth column:
absolute differences between L1C TOA reflectance and DTACSNet output across all bands. Fifth column: absolute differences
between Sen2Cor and DTACSNet outputs across all bands. In the last two columns, clouds and shadows are masked out (black
pixels) using the output of the DTACSNet scene classification network.

involving two core steps. a) Cloud scene classification (SC):
identifying cloud contaminated pixels where the the signal
from the surface cannot be recovered (thick clouds). b) At-
mospheric correction (AC): removing the perturbations intro-
duced by the atmosphere in the observed at-sensor radiance,
i.e. conversion from Top-of-Atmosphere (TOA) reflectance
to Bottom-of-Atmosphere (BOA) surface reflectance. These

perturbations are caused by absorption and scattering of at-
mospheric constituents (thin clouds, aerosols, water vapor,
ozone ...) and by occlusions (cloud and terrain shadows).
In this work, we have developed an atmospheric correction
processor that can be run onboard with tight requirements
of memory and processing capabilities. For developing this
processor, that we call DTACSNet, we have taken Sentinel-2
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mission as a reference, taking advantage of its publicly avail-
able TOA and BOA data (level 1C and level 2A products,
respectively) [5].

We compare DTACSNet with the operational Sentinel-2 at-
mospheric correction processor: the Sen2Cor [5] software,
which is publicly available at the ESA web page1. Sen2Cor
produces accurate surface reflectance when compared with
ground truth data according to the recent ESA-NASA At-
mospheric Correction Intercomparison Exercise (ACIX) [6,
7]. However, its cloud detection is significantly worse than
other approaches [8, 9]. When we look at critical variables
for onboard processing (memory consumption and process-
ing time), we have found that the current implementation of
Sen2Cor (v2.11) is too demanding to be run onboard.

2. METHODOLOGY

The proposed DTACSNet model is based on convolutional
neural network (CNN) architectures that perform both the se-
mantic segmentation of Sentinel-2 Level-1C TOA images into
cloud classes and its atmospheric correction (Fig. 1). DTAC-
SNet is trained with data from the recently published Cloud-
SEN12 dataset [9], and it is intended to work on remote em-
bedded systems with limited hardware resources. The cloud
detection branch is trained using the high-quality manually
generated cloud mask included in CloudSEN12 as ground
truth reference. On the other hand, the atmospheric correc-
tion branch is trained using the Sentinel-2 level 2A surface re-
flectance product generated by the Sen2Cor processor as ref-
erence. Therefore, the atmospheric correction branch should
be considered as a deep learning emulator of the Sen2Cor pro-
cessor [10], since it is not possible to have access to the actual
surface reflectance values.

3. RESULTS

The developed DTACSNet model is validated in a large
dataset of independent geographic locations from Cloud-
SEN12 dataset (not used for training the models) and over
a year-long time series over the same locations used in the
ACIX experiment [6]. On the one hand, we found that our
cloud scene classification model is significantly more ac-
curate than Sen2Cor (F2 score of 0.89 for DTACSNet and
0.51 for Sen2Cor v2.8). On the other hand, the atmospheric
correction model has reflectance discrepancies in the same
order of magnitude as the errors of Sen2Cor in the ACIX
exercise (around 1.8%). Figure 2 shows some representa-
tive samples over the test dataset. Additionally, we show
that the atmospheric correction models work also with less
spectral bands, mimicking other existing and prospective
multispectral medium-size satellite missions. Finally, we

1Sen2Cor processor for Sentinel-2 level 2A product generation:
https://step.esa.int/main/snap-supported-plugins/sen2cor/

have compared DTACSNet and Sen2Cor on different hard-
ware configurations: an standard workstation with 30 Gb
of RAM, 8 CPUs and a NVIDIA T4 GPU and a UNIBAP
SpaceCloud flatsat with a low power CPU processor, 1.74Gb
of RAM an a Myriad-X vision processing unit. The flasat
configuration is very similar to the deployed at D-Orbit Wild
Ride mission [11]. In the workstation, we found improve-
ments in running time between ×4 to ×11. In the flatsat,
Sen2Cor was not able to run at 10m resolution due to the
low RAM memory available. At 20m resolution the running
time of Sen2Cor was over an hour whereas DTACSNet took
less than 7 minutes (running on a full Sentinel-2 product of
5490x5490 pixels). These results show that DTACSNet can
be used operationally in an onboard setting.

4. CONCLUSIONS

In this work, we presented some preliminary results of DTAC-
SNet: an efficient deep learning model for atmospheric cor-
rection and cloud detection in Sentinel-2 imagery. We show
that the model is able to produce accurate cloud detection and
surface reflectance estimation in computationally constrained
scenarios. In order to foster research in this field, we re-
lease some of our pre-trained models for research purposes
at https://github.com/spaceml-org/DTACSNet.
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