
SCRIBBLE-SUPERVISED TARGET EXTRACTION METHOD BASED ON INNER 
STRUCTURE-CONSTRAINT FOR REMOTE SENSING IMAGES 

 
Yitong Li1, Chang Liu1, Jie Ma1* 

 
1Beijing Foreign Studies University 

 
ABSTRACT 

 
Weakly supervised learning based on scribble annotations in 
target extraction of remote sensing images has drawn much 
interest due to scribbles’ flexibility in denoting winding 
objects and low cost of manually labeling. However, 
scribbles are too sparse to identify object structure and 
detailed information, bringing great challenges in target 
localization and boundary description. To alleviate these 
problems, in this paper, we construct two inner structure-
constraints, a deformation consistency loss and a trainable 
active contour loss, together with a scribble-constraint to 
supervise the optimization of the encoder-decoder network 
without introducing any auxiliary module or extra operation 
based on prior cues. Comprehensive experiments 
demonstrate our method’s superiority over five state-of-the-
art algorithms in this field. Source code is available at 
https://github.com/yitongli123/ISC-TE. 
 

Index Terms— target extraction, scribble annotation, 
remote sensing images, weakly supervised 
 

1. INTRODUCTION 
 
Target extraction [1, 2] in the field of remote sensing aims at 
segmenting the target regions in a remote sensing image 
(RSI) through generating a binary pixel-wise mask. 
Recently, weakly-supervised target extraction methods 
based on deep learning [2] have been widely explored in 
academic community owning to the advantage of saving 
labor and time consumption in labeling. Weak annotations 
include image-level tags, bounding-box labels and scribbles, 
where scribbles are made up of three kinds of pixels with 
different grey values to signify target region, background 
and unknown area respectively. Among them, scribble 
annotation has drawn much interest for its flexibility in 
denoting winding objects and low cost of manually labeling.  

However, scribbles are too sparse to identify object 
structure and detailed information, causing inferior 
performance in boundary localization and background 
suppression compared with fully-supervised methods. To 
seek for competitive results, previous works came up with 
various skills. Scribble2Label [3] combined pseudo-labeling 
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Fig 1. Extraction masks of five scribble-supervised SOTAs. 

and label filtering to carry iterative annotation expansion 
and improve scribble credibility. ScribbleSaliency [4] 
employed a well-trained external algorithm in the additional 
edge detection network to introduce prior supervision 
information, and exploited a scribble boosting scheme that 
relies on external segmentation approach DenseCRF [5]. 
RD-DN [2] designed a dense network combing residual skip 
connection with hybrid dilated convolution and a 
progressive label updating strategy using morphological 
dilation operation. On the basis of the auto-encoder structure, 
SCWSSOD [6] proposed a local coherence loss for scribble 
propagation, a saliency structure consistency loss for 
ensuring consistent results with multi-sized same image as 
input and an aggregation module for integrating multi-level 
features. Apart from a main boundary-aware saliency 
prediction network using auto-encoder and dense 
aggregation, SBA-Net [7] designed a boundary label 
generation module (BLG) working by making class 
activation prediction close to the image-level tags for 
generating high-confidence boundary labels to supervise 
boundary-aware module (BAM) to learn credible boundary 
semantics from low-level features and input image. 

With reference to above analysis, previous methods 
mostly construct complicated network or add external 
algorithms to increase supervision data or empirical 
information, which brings numerous parameters and time-
consuming training. Meanwhile, RSI-oriented target 
extraction faces greater challenges considering RSIs’ 
inconsistency inside the target regions and disordered 
distribution outside. As a result, they fail to strike the trade-
off between visual performance and computing efficiency, 
which can be embodied in two aspects: poor boundary 
localization and unideal background suppression. As shown 
in Fig 1, we carry target extraction with airplane as target 
using five state-of-art scribble-supervised models. The 
airplanes’ boundaries in these masks are too coarse to be 
consistent with the actual edges in remote sensing images. 
Moreover, they will easily make errors under the 
disturbance of object shadow, boarding bridge and so on.



Fig 2. The overview of our network structure and constraint construction. 

In this paper, we propose a novel scribble-supervised 
method of target extraction based on inner structure-
constraint for RSIs. Exploiting a simple end-to-end network 
of encoder-decoder structure, we construct two inner 
structure-constraints to distill input image’s intrinsic 
features and generate extraction masks with accurate 
boundaries and clear background, without introducing any 
auxiliary module or extra operation based on prior cues. As 
shown in Fig 2, on the one hand, to discriminate target 
regions with integral object structure and detailed edge, we 
design a deformation consistency loss according to the idea 
that the order of extraction operator and deformation 
operator can be exchanged. On the other hand, to reach 
better performance under challenging scenarios where many 
deceptive factors exist in background, the Eulerian energy 
function in active contour model (ACM) [8] is served as an 
active contour loss, rather than the postprocessing operation, 
to automatically capture target boundaries with fine-grained 
details and high accuracy. Comprehensive experiments 
show that our method has achieved a better performance 
than five state-of-art scribble-supervised algorithms. 
 

2. METHODOLOGY 
 
In our proposed network, we utilize U-Net [9] with ResNet-
50 [10] encoder as our framework. Besides, for the purpose 
of discriminately integrating spatial information in different 
channels, we apply the spatial and channel Squeeze & 
Excitation (scSE) attention mechanism [11] in decoder to 
stimulate human perception. The decoder output is a two-
channel possibility prediction for target and background 
with values in range of 0 to 1. As for inner structure-
constraints, detailed descriptions are presented as follows. 
 
2.1. Deformation Consistency Constraint 
 
For scribble-supervised methods, the main problem lies in 
that scribbles provide scanty information for object structure 
and boundary details. To alleviate it, we choose to intensify 
the training objective with a constraint based on visual tasks. 
For an ideal target extraction model, the order of extracting 

operation and deforming operation should be exchangeable. 
In other words, illustrated in Fig 2, the model prediction (c) 
for a deformed input image (b) should be consistent with the 
result (e) of deforming the model prediction (d) for the input 
image’s undeformed version (a), where two deforming 
operations share the same hyper-parameters and procedures. 
Applying L1 penalty on residual map of the two masks (c 
and e) to encourage them to be similar, our deformation 
consistency constraint is defined as: 
      
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where I  is the input image,  ;F   denotes our proposed 
model with trainable network parameters   ,  ; ,D    
denotes the deforming operation with two hyper-parameters 
  and   . It is worth noting that the deformation operator 
can be directly conducted without training. 

Fig 3. Procedures of the deforming operation. 

As shown in Fig 3, the deformation here consists of 
three steps: selecting controlling points (CP), CP coordinate 
transformation and thin-plate splines (TPS) [12]. 
Introducing the hyper-parameter as coordinate interval for 
CP, we decide n n  controlling points in the grided image 
ranging [ 1,1] [ 1,1]    with uniform spacing, where 

2 /n     .Then we get a CP coordinate matrix 2NC   : 
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For CP coordinate transformation, we introduce the 
hyper-parameter   to generate coordinate variation matrix 

2NV   which adjusts twisting degree. Every value in V  is 
randomly sampled in the uniform distribution of  ,  . 
Thus, the CP coordinate matrix after deformation can be 
computed by C C V   . 

To produce the final deformed image, we apply the 
interpolation method of TPS [12] on other pixels except the 
controlling points for obtaining their coordinates after 
deformation. Given C  , C  and input image, TPS [12] can 



find the optimal mapping matrix under the condition of 
minimum energy, thereby creating a new deformed image. 
 
2.2. Trainable Active Contour Constraint 
 
Considering that some high-frequency data including edge, 
fine structure and other regions with drastic changes are 
prone to be lost after repeated down-sampling in 
convolutional neural network (CNN), we exploit the 
traditional ACM [8] algorithm’s advantage of curve 
evolution and edge positioning in CNN to help our model 
overcome information loss. Based on the rule of minimizing 
Eulerian energy function in ACM [8], we design a trainable 
active contour constraint for better background suppression 
and boundary description, which consists of two constraint 
items: boundary curve length and image coherence. 
 ,ac icL Length L    (3) 

where the first item calculates the arc-length of boundary for 
finding the most fitting one which can encircle all of pixels 
in target region with the shortest curve,   is a hyper-
parameter controlling the two items’ constraining proportion.  

Specifically, we compute the arc-length on the 
predicted extraction mask. Defining u  as prediction value 
ranging in [0,1], , ( { , })d

i ju d x y   indicates the partial 
differentiation at pixel  ,i j  of the mask on x


 or y


 

direction. It is worth noting that although U  refers to the 
entire region of the mask, pixels in target region and 
background have zero differentiation. Thus, only pixels on 
the boundary are counted in. To avoid calculating the square 
root of zero, we set 81 e    . 
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For image coherence, the second item measures internal 
dispersion degree of two subregion distributions. The two 
subregions refer to predicted target region and predicted 
background, which are separated by predicted boundary 
curve. By minimizing this item, we can guarantee the data 
stability and coherence both inside and outside the predicted 
target region, which accords with the common sense that 
edges locate at places with high-frequency changes while 
non-edge region is relatively smoother. 
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where ip  is the pixel value with position index i  in input 
image, T  and B  denote the position index collections of 
pixels in predicted target region and background 
respectively, t  and b  are the mean values calculated in 
predicted target region and background respectively. 
 
2.3. Overall Objective Function 
 
The overall objective function is composed of three parts. 
Besides of the above two structure-constraints, a scribble-
constraint is computed with scribble annotations using 
partial cross entropy loss: 
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where S  is the position index collection of annotated pixels 
in scribbles, iy  is the ground-truth value given by scribbles 
for position i  , p

iy  is the predicted value for position i  . 
Finally, our overall objective function can be written as: 

 .total dc ac pcL L L L     (7) 

3. EXPERIMENTS AND DISCUSSION 

3.1. Data Description and Implementation Details 
 
Data Description We evaluate the proposed framework on 
airport satellite images from Google with three channels and 
a resolution of 0.5m to 1m. The airplanes are selected as 
targets in our work. In the scribble annotations, target 
regions and background are labeled by straight lines with 
pixel values of 1 and 0 respectively. We adopt 394 raw 
images with size of 768 × 768 × 3 for training and 12 raw 
images with size of 768 × 768 × 3 for testing. In training 
phase, we first randomly crop input images with size of 256 
× 256 × 3 before feeding them into the model. 

Implementation Details We train our network on one 
NVIDIA RTX 3090 GPU with PyTorch framework. 
Inspired by Scribble2Label [3], we first train our network 
with the overall objective function for 500 epochs in 
warming-up stage, then a label-constraint computed on un-
scribbled pixels in the updating filtered pseudo-label is 
added with a weight as 0.5 to the whole loss function for the 
next 500 epochs. Both stages are trained with RAdam 
optimizer, where the initial learning rate is 43 e  and the 
learning rate decay is 55 e . As for hyper-parameters, 

0.3  , 0.7  , and the training batch size is 16. 
 
3.2. Comparisons with State-of-the-Art Methods 
 
As shown in Fig 4, we visually compare our model with five 
scribbled-supervised SOTAs in target extraction task, 
including Scribble2Label (2020) [3], ScribbleSaliency (2020) 
[4], RD-DN (2021) [2], SCWSSOD (2021) [6] and SBA-
Net (2022) [7]. Quantitatively, we compare these methods 
on the commonly used evaluation metrics Precision, Recall 
and F-measure in Table 1. 

It can be observed that targets detected by 
Scribble2Label [3] are incoherent and incomplete with 
coarse boundaries owning to the lack of structure-oriented 
component or loss function. Although ScribbleSaliency [4], 
SCWSSOD [6] and SBA-Net [7] are equipped with 
auxiliary module or constraint focusing on inner consistency 
and edge enhancement, they fail to extract integral targets 
and accurate boundaries, which is also evidenced by their 
low Recall and F-measure scores. RD-DN [2] can achieve 
the highest Recall, however, its Precision and F-measure 
scores reach the lowest, which can be explained by its large- 
scale target prediction with many erroneous pixels and poor



Fig 4. Qualitative comparison of the proposed model, five state-of-the-art methods and ablation study results.

Table 1. The Evaluation Metrics Result 

Method Precision Recall F-measure 
Scribble2Label 92.1% 51.5% 76.3% 

ScribbleSaliency 91.3% 39.9% 67.3% 
RD-DN 20.6% 98.7% 25.0% 

SCWSSOD 85.5% 49.6% 72.6% 
SBA-Net 82.6% 40.9% 64.8% 

Ours 92.2% 55.3% 77.6% 

resistance to the distraction of background factors since the 
ignorance of structure-aware supervision.  In contrast, our 
model attains superior performance by capturing targets 
with sharp boundaries, spatial smoothness and visual 
wholeness, as well as the highest Precision and F-measure. 
There is a flaw, though, it is slightly prone to be deceived by 
target-like background objects due to the ACM-based loss. 
 
3.3. Ablation Study 
 
W/O dcL  To evaluate the effectiveness of the deformation 
consistency constraint, we train the proposed network only 
with pcL  and acL  . Ambiguous outline and redundant areas 
of predicted targets can be seen in the 9th column of Fig 4, 
proving the precise boundary localization function of dcL  . 

W/O dc acL +L  In the 10th column of Fig 4, we demonstrate 
the results of training with pcL  alone. Comparing with the 
full model, there are problems of incoherent internal 
structure and many false positives, confirming the 
improvement in structure detection and target identification 
by adding the trainable active contour constraint. 
 

4. CONCLUSION 
 
In this paper, we propose a novel scribble-based weakly-
supervised method of target extraction based on inner 
structure-constraint for remote sensing images. To increase 
supervision information, we construct two inner structure-
constraints to distill input image’s intrinsic features and 
generate extraction masks with accurate boundaries and 
clear background. The deformation consistency constraint is 
designed according to the exchangeability between the two 
visual tasks of target extraction and deformation, while the 
active contour constraint is applied on the basis of the curve 
evolution algorithm ACM. Both qualitative comparison and 
quantitative evaluation metrics show the superiority of our 
method with sparse scribble annotations. 
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