
FAST MODEL INFERENCE AND TRAINING ON-BOARD OF SATELLITES
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ABSTRACT

Artificial intelligence onboard satellites has the potential
to reduce data transmission requirements, enable real-time
decision-making and collaboration within constellations.
This study deploys a lightweight foundational model called
RaVAEn on D-Orbit’s ION SCV004 satellite. RaVAEn is
a variational auto-encoder (VAE) that generates compressed
latent vectors from small image tiles, enabling several down-
stream tasks. In this work we demonstrate the reliable use
of RaVAEn onboard a satellite, achieving an encoding time
of 0.110s for tiles of a 4.8x4.8 km² area. In addition, we
showcase fast few-shot training onboard a satellite using the
latent representation of data. We compare the deployment of
the model on the on-board CPU and on the available Myriad
vision processing unit (VPU) accelerator. To our knowledge,
this work shows for the first time the deployment of a multi-
task model on-board a CubeSat and the on-board training of
a machine learning model.

Index Terms— Training on-board, AI on satellites, effi-
cient neural network models

1. INTRODUCTION

Onboard data processing plays a crucial role in maximizing
the potential of Earth-observation (EO) satellites. With the
significant increase in EO data volume, it is essential to have
efficient and intelligent processing capabilities directly on-
board the satellites [1]. By leveraging onboard data process-
ing, satellites can perform advanced analysis and make criti-
cal decisions on the acquired data in real-time. Several appli-
cations have already been tested in demonstration missions,
such as prioritizing imaging targets [2], discarding non-usable
images [3], identifying events of interest [4, 5, 6] or compress-
ing the output to rapidly transmit relevant information to the
ground [7, 8].

Correspondence to: vit.ruzicka@cs.ox.ac.uk
This work has been funded by ESA Cognitive Cloud Computing in

Space initiative. G.M.-G. has been partially supported by the Spanish Min-
istry of Science and Innovation (project PID2019-109026RB-I00 funded by
MCIN/AEI/10.13039/501100011033) and the European Social Fund.

E

x input

fully connected NN

on-board training

change score given
by the cosine distance
between zt1 and zt2

xt1

z latent

D

x' reconstruction

1.) Pre-training to encode (Variational Autoencoder)

2.) Usage for Change Detection

E

Ext2

zt1

xi E zi

zt2

3.) Usage for Few-Shot Training

yi

Fig. 1: Illustration of the different uses of the variational au-
toencoder model RaVAEn. Pre-training (1.) conducted in
prior work [2]. In this paper, we measure the inference time
of the encoder network (denoted as E and marked with blue
colour as with frozen weights) for the task of unsupervised
change detection (2.), and time needed for on-board training
(3.) of a small fully-connected neural network classification
model.

In this work we go one step further and deploy a lightweight
foundational model called RaVAEn on-board of D-Orbit’s
ION SCV004 satellite demonstration mission. RaVAEn is a
variational auto-encoder (VAE) model that generates latent
vectors from small tiles of the original image. These latents
can be used for several other tasks, such as change detec-
tion, as shown in our previous publication in the context of
disaster response [2], or as features extracted to train other
downstream models.

We show that this model can be reliably used with the
compute available directly on-board of the D-Orbit’s ION-
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SCV 004 satellite. In addition, we also demonstrate to the
best of our knowledge the world’s first fast and efficient few-
shot training on-board of a satellite using the latent represen-
tation of the data. To this end, we use the learned encoder
of the VAE model to represent tiles of 32 × 32 pixels with
4 bands as 128-dimensional latent vectors. We then train a
lightweight classification model using these latent vectors as
inputs in a few-shot learning manner. Good representation of
the Sentinel-2 data is required for training with only limited
number of samples. As a demonstration task, we select cloud
detection: in this context the decision if a tile contains clouds
or not. This task is relevant for on-board data processing as it
has been previously used to select which image acquisitions
are downlinked to the ground station and which are to be ig-
nored [9, 3].

To summarise, our contributions are:

• Measuring the inference time of the RaVAEn model
encoder on three different compute regimes available:
Myriad VPU, or CPU with Pytorch, or OpenVino li-
braries.

• Demonstrating few-shot training directly on-board of a
satellite for a task of cloud detection, as a motivation
for future on-board auto-calibration tasks. To the best
of our knowledge, this is the world’s first case of on-
board few-shot training on-board of a satellite.

We release the used code in a GitHub repository at
previtus/RaVAEn-unibap-dorbit

2. METHODOLOGY

The RaVAEn uses a VAE model [10] trained on Sentinel-2
L1C data from the WorldFloods dataset [11]. The VAE model
consists of an encoder network that reduces the dimensional-
ity of the input data into a latent vector, and of a decoder net-
work that has to reconstruct the original data from this com-
pressed representation. The learned encoding space has to
learn an informative representation of the data. This can be
leveraged for unsupervised change detection, where, instead
comparing changes in the pixel space (which can be noisy
due to a wide array of effects), we compare the data repre-
sentations in the latent space. This approach was evaluated
on an annotated dataset of disaster events containing samples
with landslides, floods, hurricanes and fires in [2]. In this
follow-up paper, we are interested in the inference time on
real satellites and in exploring new tasks that this architecture
allows us to do directly on-board. Namely, we are interested
in the inference time required to process Sentinel-2 data by
the encoder network of the RaVAEn model. We note, that
the original architecture was designed with a requirements for
fast inference in mind, and the fastest model was chosen from
several variants.

Additionally, we explore training the mdoel on-board
satellites, but instead of using the full dimensionality of the
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Fig. 2: Timed measuments model inference, using the
RaVAEn encoder network with different devices available
available on the satellite.

input data, we leverage the general pre-trained encoder of
the RaVAEn model. We train a tiny classification model on
the encoded latent vectors directly on-board of the satellite.
The general VAE encoder is capable of efficient data rep-
resentation, which we can use for few-shot learning. The
suitability of few-shot learning has been highlighted by [12].
Importantly, the resulting training process is faster and re-
quires fewer labels than would be required when training the
VAE model from scratch. From the dataset of Sentinel-2 L1C
images, we select 1305 tiles (cloudy and not-cloudy) for the
training dataset and use the non-overlapping remainder of
the data for evaluation. We note that other approaches frame
cloud detection as semantic segmentation task, however as a
demo task, per tile classification is sufficient and can still pro-
vide us with a rough estimation of the percentage of clouds
in a scene.

Hardware The ION-SCV 004 satellite has the following
relevant specifications: a quad-core x86 64-bit CPU proces-
sor, Intel Movidius Myriad X VPU and 2GB RAM. Similar
configuration was used in the work of [7]. We note, that for
smaller CubeSats, model training can be offloaded to these
satellites.

3. RESULTS

Model inference with RaVAEn We measure the time re-
quired to load, encode and compare all the tiles from a se-
quential dataset of Sentinel-2 images. In Figure 2 we show
the average inference time of encoding one file (consisting of
225 tiles) with a batch size of 64 tiles, using the RGB+NIR
bands. We observe that the deployment of the model on the
Myriad VPU with OpenVino offers the fastest encoding time.
Furthermore, when inspecting the individual encoding times
per batch of each file in Figure 3b, we see that the Myriad
VPU is also more robust to slowdowns, which occur when
using the CPU with PyTorch (Fig. 3a). The relatively slow
loading and tiling of the images can be speed up if we process
data with delay and parallelisation (as shown in [13]).

https://github.com/previtus/RaVAEn-unibap-dorbit
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Fig. 3: Detailed view into the individual batches used in the
RaVAEn encoder, showing delays in the CPU regime.

Training models on-board of satellites We measure
training times and also the performance on the downstream
task. On the demonstration task of cloud detection, we get an
AUPRC score of 0.979. With a confidence threshold of 0.5,
we get recall of 0.946, precision of 0.967 and a F1 score of
0.956. We note that this task serves only as a demo, as we are
mostly interested in the timing of the entire training process.

On Figure 4, we see the average time measurements for
each epoch when using different batch sizes, and when train-
ing a tiny one-layer binary classification model with 129
trainable parameters. With the batch size of 256, one epoch
takes on average only 0.091s to train.

4. DISCUSSION AND CONCLUSION

The domain of AI on-board of satellites is unique in compar-
ison with the rest of computer vision research, as the remote
sensing data usually undergoes heavy post-processing steps
after it has been down streamed to the ground station. On-
board processing and training has to, on the other hand, deal
with the near-raw data capture, which poses unique opportu-
nities such as re-training existing models with newly observed
data - a challenge identified by [14].

In this work, we demonstrate the possibilities of training
directly on-board of the satellite, which is of interest for future
self-calibration tasks. Training on-board is feasible in sce-
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Fig. 4: Training a classification model on top of the encoder
network, timing while changing the used batch size.

narios where we obtain both raw measurements of the scene
and a reliable annotation. This can occur in cases, where the
instrument carries samples with known ground truth labels
[15], in cases when we are orbiting around a known location
with known state of the observed data, or in cases where an-
other satellite provides us with labels due to having access
to more powerful or more reliable instruments (as can be the
case when working with a mixture of multispectral and hy-
perspectral as hypothesized in [6]).

In comparison with [14], which suggests uplinking up-
dated versions of model weights from the ground stations,
we propose training on-board as a new approach for adapt-
ing AI models in the space. This may be more beneficial for
security reasons, and in communication constrained environ-
ments, where collection possibilities of new data outweights
the transmission limitations. We consider these scenarios as
exciting new opportunities to explore for increasing auton-
omy of satellites deployed around the Earth and in deep space.
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