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ABSTRACT

This paper is concerned with the change detection issue in remote
sensing images. This problem is not trivial since the notion of
change depends on the application. Moreover, classical supervised
deep learning methods have to deal with the limited amount of la-
belled data available. Based on existing deep learning techniques
that exploit unsupervised clustering to assign labels to entire images,
we adapt them to the change detection problem by using siamese
backbones and extracting pixel-wise results. As fully unsupervised
experiments lead to unstable results, we suggest “low supervision”
strategy composed of a warm-up stage with few labeled data able to
drive the following unsupervised learning through reliable solutions.
Preliminary experiments show reliable change maps.

Index Terms— Change Detection, Semi-supervised Learning,
Unsupervised Learning, Clustering, Multitemporal images, Deep
learning.

1. INTRODUCTION

The availability of advanced remote sensing (RS) imagery has paved
the way for a new era of environmental studies [1] and Earth Obser-
vation (EO) studies. In addition to satellite images [2], researchers
now have access to unmanned aerial vehicle (UAV) or aerial surveys
[3], as well as historical archives [4]. These resources offer valuable
opportunities for investigating the dynamics of various areas, such as
land resource planning, disaster monitoring, and urban expansion, by
analyzing dense time series data. A critical aspect in these studies is
Change Detection (CD) [5], which involves understanding the pro-
gression of events over time, specifically the analysis of bi-temporal
images, to output change maps that identify, and eventually classify,
change areas.

Historically, CD has been tackled as an unsupervised problem
based on the analysis of differences between the two input images,
as in the well-known CVA method [6, 7]. These methods, how-
ever, are often based on a pixel-wise comparison of images. As
RS imagery embed high spatial correlation, such approaches may
limit their capability to obtain further information on the nature of
the change. More recently, deep learning, specifically Convolutional
Neural Networks (CNNs), have captured researchers’ interest in de-
veloping novel CD methods thanks to their capacity to capture spa-
tial context. However, CD via CNNs remains challenging when
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dealing with high-resolution remote sensing data. One of the pri-
mary difficulties is the limited availability of labelled data necessary
for training. Historical aerial image archives exemplify this issue:
although they provide rich time series data with high spatial res-
olutions (sub-meter) and diverse spectral channels (RGB, infrared,
panchromatic, etc.), these parameters vary throughout the time se-
ries. Consequently, this heterogeneity results in a notable scarcity
of labelled data, necessitating larger-than-usual resources for the la-
belling process.

To cope this difficulty, unsupervised deep learning approaches
have been recently developed with remarkable results (for examples
see [8, 9, 10]). Nevertheless, depending on applications, these meth-
ods are often limited with respect to the diversity and complexity of
data. Examples of open problems [11] can be related to multisensor
data, multiscale changes, classification or finally the inherent prob-
lem of defining what the change is (e.g. a change in the canopy of
vegetation or the construction/destruction of a building).

Recent years have seen the development of datasets oriented to-
wards CD, like LEVIR-CD [12], HRSCD [13] or SECOND [14],
creating a common basis for benchmarking methods but also pro-
viding data availability that can be exploited for pre-training mod-
els. This also enabled the development of novel insights from semi-
supervised or supervised learning on the issue [15, 13, 16].

Given all these elements, we propose in this paper the first steps
for a novel approach for pixel-wise CD, called "low supervision”
strategy, that can be a middle-ground between supervised and unsu-
pervised learning. The approach exploits a few labelled training data
to bootstrap unsupervised training with a more significant number of
unlabelled training samples. To do so, we took inspiration from sim-
ilar works in the field of visual feature clustering, primarily Deep-
Cluster [17, 18], in which an unsupervised clustering method is used
to generate pseudo-labels from features extracted via a CNN; these
pseudo-labels are then used to optimize the whole network. The
method presented, entitled CDCluster (see Figure 1), can be seen as
an extension of the latter idea to CD: as in classic siamese networks
[19, 20], two encoders generate features per date that are subtracted,
followed by a decoder and convolutional layers; such features are
then clustered and used as pseudo-labels.

2. MATERIALS AND METHODS

In this section, the overall pipeline of our CDCluster is given (Figure
1. Then, a detailed description of the training and validation strategy
is provided.



Ground truth

L 4
‘”'

Pseudolabel

CBAM
= Attention = H
block
00\.
Q&
S et
Cé\% O
P

Fig. 1. Schematic representation of CDCluster model.

2.1. Feature extractor

As mentioned, one of the main inspirations behind CDCluster is
the capacity of siamese networks[19, 20] to extract a set of features
adapted to CD. First, the RGB images are treated with a Sobel filter,
and the input vector is formed among these four channels. The idea
is to guide the network with realistic solutions. Secondly, the dimen-
sionality of the input vectors (256x256x4) is reduced through two
encoders, composed of three blocks, to arrive at two feature spaces
of 64x64x64 that are subtracted. Each block consists of a convo-
lution layer, followed by batch normalization, a second convolution
layer and a max pooling. A decoder is used to upscale these features
up to 256x256x16, the size at which the features are clustered. How-
ever, in the unsupervised/’low supervised” settings, there is no guar-
antee that the extracted features actually contain the right amount of
information about the differences between the two inputs to be able
to generate pseudo-labels. For this reason at each encoding block,
after normalization, features are extracted from each channel and
subtracted from each other. Three skip connections, with CBAM at-
tention [21], are used between the encoder’s features differences and
the decoder. On top of this architecture, two dense layers forming an
MLP (Multi-Layer Perceptron), extract the change detection maps.
The number of outputs, corresponding to the number of clusters (k),
is treated as a hyperparameter (see the following section). During all
training, categorical cross-entropy was used as loss and learning rate
of 0.001.

2.2. Feature clustering and pseudo-label generator

The second core idea of CDCluster is to assign pseudo-labels via
clustering the 256x256x16 extracted features. In this work, we fo-
cused on the k-Means implementation present in the FAISS package
(that allows fast search on GPU devices). As suggested by Caron
et al. [17] and Mustapha et al. [22], it is not the specific choice of
clustering algorithm that is crucial, but rather the number of clusters,
k, and the “clustering halt”, that is the frequency of epochs at which
the centroids are calculated. Concerning the number of clusters, it
has been shown on similar tasks that k£ needs to be larger than the
number of desired classes to ensure the stability of the model. For

this reason, we explored a set of k ranging from 2 up to 500 in pre-
liminary studies. A final value of k& = 20 has been set. Concerning
the clustering halt, no influence has been found after a value of 5
epochs. In order to extract binary change maps from the 20 clusters,
the per-pixel maximum value has been taken and binarized. Simi-
larly than DeepCluster, CDCluster is also prone to trivial solutions.
Therefore, while training, whenever the population of a cluster drops
below a given threshold, the data points assigned to a random above-
threshold cluster are split and reassigned to the below-threshold one.
At each epoch of clustering, only 75% of the dataset was used, cho-
sen randomly, in order to limit GPU memory.

2.3. Dataset and training strategy

For this work, we decided to use a well-established dataset for CD,
namely the LEVIR-CD dataset [12], in order to be able to validate
and test the results with standard evaluation metrics.

In an unsupervised setting, in order for CDCluster to be able
to discriminate the change zones between the two images, it is nec-
essary that the features generated by the convolutional filters in the
first epochs of the training are consistent with regard to the CD issue.
Preliminary tests in this setting did not lead to satisfactory results. A
first possible solution, not explored here, might be to encode more
efficiently the differences between the images, as suggested in [23].
Alternatively, it can be assumed that a small amount of ground truths
exists and they can be used to bootstrap the initial signal. For this
reason, we divided the training into two phases: a ”warm-up phase”
and an “unsupervised phase”. The former consists in a supervised
phase in which only 30% of the dataset is used for training. Since
the quantity of True Negative data is not negligible in the dataset,
a data sampling based on a minimum quantity (3%) of True Pos-
itive pixels has been used, except where noted. Subsequently, in
the “unsupervised phase”, the model is free to explore the whole
LEVIR-CD dataset and the pseudo-labels generated from clustering
are used. The term low supervision” used in this paper, therefore,
indicates the sum of the two phases, in which the initial signal given
by the random values of the convolutional filters is augmented with
the help of a small part of labelled data.

2.4. Metrics and validation strategy

Standard metrics such as Accuracy, F1-score, Mean Squared Error
(MSE), Cohen’s kappa (x), Specificity and Confusion Matrix have
been used to evaluate the results on the test set. Apart from this, we
aimed also to explore and understand under which conditions CD-
Cluster works. It has been pointed out that the quality of the random
filters at the beginning of the training must play a fundamental role,
and they can be used as a proxy for the final performances of the
training [22]. In order to assess this factor for CD, we also used the
Initial Alignment (IA) metric, introduced by Mustapha et al.[22],
defined as:

TA(k,0) = NMI,q4.(L, P) (@)
where k is the number of clusters, 6 is the random filters generated
for a given seed at the beginning of the training, L is the set of ground
truth labels, P is the set of pseudo-labels generated from the starting
0 random filters and N M I,4;. is the Adjusted Normalized Mutual
Information.

3. RESULTS AND DISCUSSION

As a first evaluation, we explored the performances of CDCluster
on the test set (Table 1). Remarkably, a high level of Accuracy and
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Fig. 2. Examples of predictions: couple of images A and B are
shown, along with the predicted Change Map and the ground truth
(used only for the calculation of metrics during testing). Several
cases are reported as example: a True Positive change maps (a),
False Positive (b) and False Negative (c).

Specificity was found. As suggested by the F1-score and the k, it
is expected, however the presence of False Negative detections. The
Confusion Matrix further confirms this. These results are in line with
the state of the art of the literature [12]. When looking at the graph-
ical results of the detection (Figure 2), it is evident that an absence
of constraints in the definition of the contours of the change maps
undermines the overall quality of the detection. This is rational,
considering that no element is currently provided in the backbone
to suggest the definition of more accurate contours. An initial analy-
sis found no correlation between building size and False Negatives.
As far as False Positive pixels are concerned, it should be noted that
their evaluation is not trivial: the LEVIR-CD dataset is focused on
the detection of buildings, and it cannot be excluded that these False
Positives are other types of change (e.g. vegetation) not included in
the ground truth.

Accuracy F1 MSE &k Specificity Confusion Matrix

0.99 0.30
0.01 0.70

Table 1. Metrics on the test set for CDCluster with & = 20 and 30%
of data in the "warm-up” phase.

098 0.75 0.02 0.74  0.99

In order to consolidate this approach, however, it is also neces-
sary to explore under which conditions these results are achievable.
As mentioned, k and IA can play a pivotal role in this kind of ap-
proach and these hyperparameters depend on the specific model and
the dataset. For assessing these factors, we calculated the IA for
eight seeds for a range of k from 2 to 500 (Figure 3). First of all, it
has to be noted that all values of IA are at least one order of magni-
tude lower than similar tasks [22], suggesting an explanation on the
reason why the “’low supervision” approach is necessary. Secondly,
after approximately k = 10, the average IA is independent of k, sup-
porting the choice of £ = 20 to balance accuracy and computational
costs. Finally, it should be noted that IA with different clusters, but

90
0.015
80
0.010{ 4. .. . 70 0
1A s 60 @
0.0051 §** °¢ ! Q
" 50
0.000 20
-0.005 1 , , , , , 30
0 100 200 300 400 500
Clusters

Fig. 3. Initial Alignment (IA) dependency on the number of clusters
(k) for different seeds. The blue line is the average of all seeds.

the same seed, trace a consistent trend with only minor differences.
While this suggests that, in our particular case, the choice of seed
is not crucial, it also support the idea that, given a seed and a k,
the value of IA with another & can be used as proxy for preliminary
explorations.

These results raise the question of the amount of data needed
in the "warm-up phase”, as it is desirable for this phase to be as
short as possible during the training but, above all, with as little data
as possible. For this reason, we tested different amounts of data in
the ”warm-up phase”, randomly sampled from the full LEVIR-CD
dataset. As shown in Table 2, no relevant results can be found up to
20% of the train set, corresponding to 1424 couples of images. On
the other hand, when applying a sampling only on data with at least
3% of True Positive pixels (as mentioned in Section 2.3), we were
able to recover most of the accuracy with only 6% of the dataset,
corresponding to 427 couple of images. Even if it requires further
experiments, this result consolidates the idea that a "low supervi-
sion” approach, i.e., using a minimal amount of labelled data at the
beginning of the training, can be explored as a viable idea to initialise
unsupervised learning.

Metric 1% 2% 5% 10% 20% 6% (sampled)
Accuracy 0.05 0.05 0.05 0.05 0.84 0.72
MAE 0.94 0.95 095 0.95 0.10 0.24

Table 2. Accuracy and MAE with the reduction of data in the
“warm-up”’ phase.

4. CONCLUSIONS

In this work, we explored a novel pathway to perform CD in a setting
that mixes supervised and unsupervised learning, which we called
”low supervision”: based on the presence of a modest portion of
ground truth, an initial supervised ("warm-up”’) phase gives clues to
the model as to what kind of changes are being sought, followed by
an unsupervised phase. In doing so, we also presented an extension
of DeepCluster to the CD, based on the idea of Siamese networks.
From this point of view, one of the fundamental questions of this
work can be reformulated as follows: under what conditions is it
possible to exploit visual features from a neural network to create



pseudo-labels by clustering? Of course, giving an unambiguous and
definitive answer is beyond the scope of this preliminary work, but
we can already state some elements. For example, it should be noted
that CDCluster shows encouraging results for £ = 20 and 30% of
the dataset (with 3% white pixels), indicating that it is indeed pos-
sible to obtain valuable information from change features. The low
values of IA corroborates the need of an initial bootstrapping. On the
other hand, these results lead to the question of which are the ideal
conditions for a backbone to effectively encoding change informa-
tion, question that is shared also in other fields, as 3D Point Clouds
CD [24]. In this sense, this paper aims to take a first step towards a
more systematic study of how to create architectures with higher IA.

Beyond these considerations, this study shows another interest-
ing possibility. The increase of public datasets for CD can become
a good starting point for developing strategy for transfer learning to
a specific dataset. Although in this work both training phases in-
volved the same dataset, the prospect to be explored in the future
is to perform the unsupervised phase on an unknown dataset (such
as the HRSCD dataset). In this regard, it remains to be determined
whether the current minimum amount of data to obtain results is suf-
ficient and evaluate the generalization possibilities for features cal-
culated on one dataset to be exported to another.
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