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ABSTRACT

In the work a random forest model has been implemented as
an interpretable machine learning tool in the effort to estimate
the burned areas caused by fire outbreaks in India, Pakistan,
and Myanmar in April and May 2022. The proposed model
combines environmental and atmospheric (including upper
tropospheric) factors suggested to drive patterns of burned
arcas, and determines the weight of each factor on the
propagation of fires. Results demonstrate that the model
mimics the actual bumed area by considering a combination
of vegetation, atmosphere, and human-related variables and
improves accuracy by approximately 7% after adding jet
stream features. This approach could lead to implement a
semi-operational forecast system that may be tested mn
multiple demonstration sites.

Index Terms— Random forest, burned area. passive
microwave sensing, jet stream, soil moisture, vegetation
optical depth.

1. INTRODUCTION

Wildfires affect the preservation of ecosystems and
ultimately result in ecological harm and human casualties [1].
Early wildfire forecasting and detection can significantly
reduce the destructive effects of fires by contributing to the
establishment of early warning systems. However, wildfire
propagation is a complex, non-linear process that includes the
interactions of many variables and circumstances, and is
challenging to forecast.

Therefore, understanding the environmental factors that
drive patterns of burned areas and fire severity 1s critical. The
impact of climate change on the water content of soils and
vegetation may influence when and where large fires occur.
In addition, persistent tropospheric ridging in jet streams has
been found to be responsible for temperature extremes [2]
that have led to wildfire activity. The combmation of land,

vegetation, and atmospheric (including upper tropospheric)
driving effects must be understood to analyse the fire fuel
conditions and resulting potential propagation of fires.

Machine learning (ML) and advanced simulation
methods have been explored to assist in forecasting wildfires
by using several remote sensing and meteorological variables
[3] This study focuses on the complementary integration of
soll, vegetation, atmosphere, and human-related variables
with a comparison of results to those from other ML
algorithms.

2. METHODOLOGY

Table 1. Summary of variables used in this study, including
Soil Moisture {SM), Vegetation Optical Depth (VOD), Vapor
Pressure Deficit (VPD), Land Surface Temperature (LST),
300-hPa wind component (uspq and wspp), 500-hPa
Geopotential Height Anomalies (AZcy,), Elevation, Land
Use, Distance to Road. and Burned Area.

Source Parameter Resolution
BEC SMOS1.3 SM ~25 km
VOD ~25 km
ERAS ECMWE VPD ~25 km
LST ~25km
NCEP-DCE I Uzp0 and vagp ~210 km
AZs00 ~210 km
SRTM Elevation 90 m
GLC2000-JRC Land use 1 km
Open Street Map Distance to road -
MODIS Bumed Area 1 km

Table 1 summarizes the data used in this study. In addition,
anomalies are also computed for SM, VOD, VPD and LST
with the following approach. First, a climatology is obtained
by smoothing over an average year with a centered moving
window of 61 days. Second, nine-day anomalies are defined



as the differences between the raw data and the climatology
from the day of a fire outbreak backwards to the beginning of
the window.

2.1. Spatiotemporal composites for upper-tropospheric
features

The meridional circulation index (MCI) 1s a measure of the
jet stream’s North-South (meridional) meandering and 1t 1s
calculated as [2]:

where are u and v are the meridional and zonal components
of the wind, respectively. An MCI of 0 indicates the wind is
purely zonal, whereas an MCI of 1 (or -1) indicates the flow
1s from the south (or north).

The spatio-temporal composites are also considered of
the 300-hPa Meridional Circulation Index (MClzon) and 500-
hPa geopotential height anomalies (AZ5q), which average the
time-varying climatic fields F(x,t) related to the location x
and time t of N events E(x;,t;), i < N. The relevant clumatic
field is restricted to a box of latitude and longitude of 100°
and 60°, respectively, for each event, and the variable N of
such cases 13 averaged to produce the final composite field
For this study, lead-lag composites have been built by
combining fields from 20 days prior to each event to 20 days
after (1.e., 41 daily composites) [2]

2.2. Model construction

The burned area sample collected in the study area spans
India, Pakistan, and Myanmar and was selected to review the
causes of the extraordinary fire outbreaks that struck these
areas from April to May 2022 [4]. For this event, the sample
consists of 13,777 wildfire point locations regionally
distributed, as seen n Fig. 1.
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Fig. 1. Bumed areas during the fire outbreaks in India and
surrounding regions from April to May 2022.

Excessive noise and extraneous vanability were
removed by binning the data based on the MODIS fire pixel
resolution (1 km) and assigning a value of average predictors
to each pixel. As a result, the final sample contains 915
burned areas with average predictors based on the burned
area bin resolution. The dataset is also randomly separated
into traming (80%), and testing (20%) subsets. The model
prediction is designed to output a decimal logarithm of the
burned area.

A random forest (RF) method 1s selected in this study to
analyse and forecast the wildfires because this model can
represent individual tree decisions [5] providing clear
explanations of the importance of the variables used to derive
the predictions. The normalisation of the data is not required
because this approach is based on splitting data to generate
predictions. Additional details on calculating the importance
of the variables employing RF can be found in [6].

3. RESULTS

3.1. Development of burned area predictions based on the
multisource Earth Observation Dataset

The RF-based variable importance that impacts wildfire
propagation is shown i Fig. 2,
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Fig. 2. Variable mportance for forecasting burned areas,
before mcorporating jet stream features.

The results in Fig. 2 show that land use is the most
important factor in determinng the bumed area value,
according to the model, which is reasonable because most
fires during this event occurred in croplands in India. As a
validation test, the model's precision is significantly impacted
when the land use category is interchanged or altered. VPD
(1.e., atmospheric dryness) 1s identified as the second most
important variable for predicting bumed areas according to
the model, which aligns with previous research [7]. The
distance to roads is also a relevant metric (the third in
importance), which 1s expected because fire 1gmitions are
more frequent in areas surrounding roads and human
settlements. The anomaly of SM is listed as the sixth variable
in importance, which agrees with research from other regions
that shows the important role of these variations in explaining
fire outbreaks [8].
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Fig. 3. (Left) Composite of the 300-hPa meridional circulation mdex (MCls) for all large fire spread events, with individual
composites ranging from 20 days before each fire spread event (lag = -20) to 20 days after each fire spread event (lag = +20).
MCls00 is composited relative to longitude and latitude for each large fire spread event. (Right) Similarly, the 500-hPa
geopotential height anomalies (AZsu) features a selected box that indicates the commencement of the ridge that begins in the
centre of the event for MClsgn (B1 and B2) and AZ 500 (B3), then adding these to the model as jet stream features. The 1llustration
of the ridge (high area) appears on the left panels (C) with the timing of the ridge pattern such that the onset of the ridge starts
to occur around at least t = -10 (strongly occurred at t = -6) and decays gradually after t = 4.

3.1. Adding jet stream features and ML model
com parisons

A composite analysis is conducted for the AZsy and
MCTa (see Fig. 3) to better understand the pattern between
the jet stream and large wildfires (= 5000 ha). Insight from
a similar analysis and plotting mechanism can be found in
[2]. The figures are centered on the locations of each large
fire incident between 20 days before and after each event.
To investigate the impact of the jet stream on the wildfire
forecast, we add a box that indicates the beginning of when
the ridge begins. The highest AZson positive value and the
evident South (or North) MClm pattern strongly occur in

the centre during the previous six days (t = -6) before the
fire, which corresponds to the development of an upper-
tropospheric ridge in the middle.

In addition, other ML algorithms, including
supervised vector regressor (SVR), XGBoost, gradient
boosting regressor (GBR), and a neural network (NN),
were run and compared to the proposed RF model to
determine their advantages. As presented in Fig. 4a, the RF
model 1s evaluated by the coefficient of determination (R?),
root mean squared error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE). and
mean squared error (MSE). As it is seen by these mefrics
(Fig. 4a), the accuracy of the RF models improves by
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Fig. 4. (a) Accuracy of the RF models with and without the
jet stream parameters. (b) Comparison of the evaluation
metrics between multiple ML algorithms after adding the
jet stream features.

approximately 7% (scores from (.59 to 0.66) after adding
the jet stream features (MClyy and AZsy). Comparing
multiple ML models, as shown in Fig. 4b, the RF model
performs the best for forecasting burned areas.
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Fig. 5. Decimal logarithm of burmned area estimation
(originally in hectares) of the best RF model

Figure 5 shows the estimated burned areas based on the RF
as the best model using the combination of land and
atmospheric feature (including the jet stream features)
during tramning and testing. As suggested by this figure, the
moadel closely follows the actual burned area during most
events except for several peak conditions. Future work will
extend the period and optimise the ML techniques to better
capture the pattern of the fires, specifically the large fires.

4. CONCLUSIONS

A random forest model leveraging a combination of land
and atmospheric features (among others) is suggested to
forecast the burned areas, as tested on a extraordinary fire
season in southern Asia. These findings highlight the
complexities of the process and the importance of
accounting for key features, such as VPD, SM, upper-
tropospheric, and human-related variables. When the upper
tropospheric variable was included, the performance of the
model improved by about 7%, suggesting some relevance

of the jet stream variables. Future work will focus on
improving the model performance in large fire scenarios.
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