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ABSTRACT

Sea ice is a crucial component of the Earth’s climate system
and is highly sensitive to changes in temperature and atmo-
spheric conditions. Accurate and timely measurement of sea
ice parameters is important for understanding and predicting
the impacts of climate change. Nevertheless, the amount of
satellite data acquired over ice areas is huge, making the sub-
jective measurements ineffective. Therefore, automated algo-
rithms must be used in order to fully exploit the continuous
data feeds coming from satellites. In this paper, we present a
novel approach for sea ice segmentation based on SAR satel-
lite imagery using hybrid convolutional transformer (ConvTr)
networks. We show that our approach outperforms classical
convolutional networks, while being considerably more effi-
cient than pure transformer models. ConvTr obtained a mean
intersection over union (mIoU) of 63.68% on the AI4Arctic
data set, assuming an inference time of 120ms for a 400×400
km2 product.

Index Terms— transformers, remote sensing, SAR, deep
learning, semantic segmentation.

1. INTRODUCTION

Sea ice retreat, particularly in the Arctic, has been one of the
most significant responses to global climate change. There-
fore, sea ice cover and sea ice concentration are vital param-
eters for conducting climate change research and navigation
in polar regions. To support the logistics for the transport in-
dustry, there is a high demand for local-scale high-resolution
information on Arctic marine conditions. Such information is
critical for operations planning, shipping routes and sustain-
able development of the North [1]. To this end, the research
infrastructure in the ice covered areas have grown signifi-
cantly in the last decades. Satellite based synthetic aperture
radar (SAR) systems have been employed to monitor the vast
regions of the Arctic (e.g., RADARSAT-2, RADARSAT Con-
stellation Mission, Sentinel-1A and -1B). These systems have
a high spatial resolution and have regional coverage (e.g., up
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to 500 km by 500 km), making them ideal for monitoring
large regions. Nevertheless, even if the satellite infrastruc-
ture assures a high amount of data, this needs to be processed
and interpreted to extract key information. Considering the
amount of data, manual processing is barely possible, there-
fore automated algorithms are needed.

Recently, deep learning models have been widely adopted
for the geoscience field [2–7]. Those models have the poten-
tial to greatly improve the efficiency and accuracy of sea ice
analysis, as well as to enable the analysis of large amounts of
data that would be impractical to process manually. In [4] the
authors propose a U-Net architecture for sea ice segmenta-
tion on data acquired from Santinel-1 and manually labelled.
The authors observed that even if the network was trained
with a limited amount of products, the network is still able to
learn the patterns and obtain high segmentation scores. Gao et
al. [5] employed a dense neural architecture to detect changes
over time in the sea ice areas. They adopted a transfer learn-
ing strategy to increase the network performance. Closer to
our work, in [6] the authors proposed a semi-supervised al-
gorithm based on graph convolutional networks for sea ice
segmentation. They obtained superior results compared with
a ResNet based architecture in the limited data scenario.

Lately, inspired by the success of self-attention layers and
transformer architectures in the computer vision field [8, 9],
there have been employed transformer architectures in the
geoscience field [10–14] with remarkable results. For exam-
ple, in [10] the authors use a SwinTransformer architecture,
originally employed for computer vision tasks, to detect the
melt ponds on Arctic sea ice. They developed a cross-channel
attention into the decoder block, which boosts the model’s
performance.

Distinct from all mentioned methods, we propose a hybrid
convolutional transformer (ConvTr) model, which combines
the benefits of convolutional networks (e.g., efficiency) and
transformer blocks (e.g., global attention). The architecture
has a transformer core, designed to compute attention based
features in a smaller latent space. Moreover, our approach
uses a large scale SAR data set, AI4Arctic [15], enabling the
network to learn general patterns from diverse scenes, instead
of overfitting the training on a limited number of products.

In summary, our contribution is twofold:
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• We propose a hybrid convolutional transformer archi-
tecture for sea ice segmentation, obtaining the best
time-accuracy trade-off.

• We train our model on a large scale data set, showing
the generalisation capacity of our network.

2. METHOD

2.1. Data preprocessing

Considering that the products from the AI4Arctic [15] data
set have a high dimensional size, being impractical to train
neural networks on the entire dimension, we crop fix length
windows of size P × P , where P ∈ N from the product.
The cropping is performed such that, in each window there is
more than a single label from all considered (sea, ice, land).
A training sample of size 2 × P × P contains both HH and
HV polarizations. Finally, each sample is normalised before
being ready to be fed into the network.

2.2. Convolutional Transformer architecture

In our work, we employed the ConvTr architecture com-
posed of a convolutional downsampling block, a convolu-
tional transformer block, and a deconvolutional upsampling
block, as illustrated in Fig. 1. We highlight that, without the
convolutional downsampling block and the replacement of
dense layers with convolutional layers inside the transformer
block [16], the transformer would not be able to learn to seg-
ment images larger than 128 × 128 pixels, due to memory
overflow (measured on a Nvidia GeForce RTX 3090 GPU
with 24GB of VRAM).
Downsampling block. The downsampling block starts with a
convolutional layer formed of 32 filters with a spatial support
of 7 × 7, which are applied using a padding of 3 pixels to
preserve the spatial dimension, while enriching the number
of feature maps to 32. Next, we apply three convolutional
layers composed of 32, 64 and 128 filters, respectively. All
convolutional filters have a spatial support of 3 × 3 and are
applied at a stride of 2, using a padding of 1. Each layer
is followed by batch-norm [17] and Rectified Linear Units
(ReLU) [18].
Transformer block. The downsampling block is followed
by the convolutional transformer block, which preserves the
spatial dimension between the input and output tensors. The
convolutional transformer block is inspired by the block pro-
posed in [2]. More precisely, the input tensor is interpreted
as a set of overlapping tokens (patches from the input ten-
sor). The sequence of tokens is projected onto a set of weight
matrices implemented as depth-wise separable convolution
operations. The convolutional projection is formed of three
nearly identical projection blocks, with separate parameters.
The output query, keys and values (Q, K, V) are passed to a
multi-head attention layer, with the goal of capturing the in-
teraction among all tokens by encoding each entity in terms

of the global contextual information. Next, the output passes
through a batch-norm and a pointwise convolution, with the
corresponding residual connections. The process is repeated
L times, which denotes the depth of the transformer block.
The block is visually described in Fig. 1.
Upsampling block. The last block of our ConvTr applies
upsampling operations, being designed to revert the transfor-
mation of the downsampling block. The upsampling block
is formed of three transposed convolutional layers compris-
ing 128, 64 and 32 filters, respectively. All kernels have a
spatial support of 3 × 3, being applied at a stride of 2, using
a padding of 1. Similar to the downsampling block, we ap-
ply batch-norm and ReLU activations after each transposed
convolutional layer. Finally, we employ a convolutional layer
with C ∈ N filters, each filter having a kernel dimension of
7 × 7 and a padding of 3, to reduce the number of channels
from 32 to C. In this manner, we obtained the same output
dimension as the input image, where each of the C channels
represents the probability that a certain pixel is part of the
corresponding class.

2.3. Loss function

Considering the imbalanced classes from the AI4Arctic [15]
data set, we optimised the model in accordance with the focal
loss function [19]. In this manner, the network converged
faster and was more robust at testing time to the minority
class. Formally, the loss is defined below.

L = α(1− pt)
γLCE , (1)

where α control the class weights, pt is the probability of pre-
dicting the ground truth class, γ controls the degree of down-
weighting of easy-to-classify pixels and LCE is the cross en-
tropy loss function.

3. EXPERIMENTS

3.1. Data set

The AI4Arctic [15] Sea Ice data set are produced for the
AI4EO sea ice competition initiated by the European Space
Agency. The data set contains Sentinel-1 active microwave
SAR data and corresponding passive MicroWave Radiometer
data from the AMSR2 satellite sensor. Each product has as-
sociated ice charts that have been produced by the Greenland
ice service at the Danish Meteorological Institute and the
Canadian Ice Service for the safety of navigation. The scenes
are from the time period from January 8 2018 to December
21 2021. The extra wide swath GRDM products cover a
region of 400× 400 km2, have a resolution of 90 meters and
a pixel spacing of 40 meters. The entire data set contains 513
annotated products. We split the data into a training set (400
products) and a test set (113 products).

3.2. Hyper-parameters tuning

ConvTr is optimised with Adam using the focal loss func-
tion [19]. We start with an initial learning rate of 10−4 and
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Fig. 1. ConvTr segmentation architecture. The model is composed by a downsampling block comprising convolutional layers,
a convolution transformer block comprising a multi-head self-attention mechanism, and an upsampling block comprising trans-
posed convolutions.

Table 1. Segmentation and inference time results on the
AI4Arctic [15] test set. ConvTr is compared against two base-
line methods (ResNet AE, UNet [20]). We included for ab-
lation the ConvTr only with convolutional blocks (AE) and
only with transformer block (Transformer).

Method mIoU (%) Inference time (ms)
ResNet AE 53.04 87
UNet [4] 56.43 92
AutoEncoder 49.75 65
Transformer 63.81 473
ConvTr (ours) 63.68 120

use a decay factor of 0.5 after every 10 epochs. We train each
model for 50 epochs on mini-batches of 16 samples. We set
the number of blocks to L = 5 and each block has 5 atten-
tion heads. Regarding the training patch size, we found the
optimal value to be P = 512.

3.3. Evaluation metrics

Since we perform semantic segmentation between three
classes, we found the most insightful metric to be mean
intersection over union (mIoU). The metric captures the over-
all performance of the models, regardless of the unbalanced
distribution between classes. In addition, we reported the
inference time for a full resolution scene, which has a spatial
dimension about 1100× 1100.

3.4. Results

In Table 1 we report the results for ConvTr against two base-
line methods, ResNet based auto-encoder and UNet [20],
used in [4]. We observe that ConvTr surpass with more than
7% both baseline methods, while marginally raising the in-
ference time. Regarding the importance of different parts
of the network, when we only use the downsampling and

Land Water Ice

HH Input Label Prediction

Fig. 2. Results obtained with ConvTr model for product
20180607T184326. Along with the prediction, we also in-
cluded the HH input and the label.

upsampling blocks, we have the best inference speed, but the
performance is drastically affected. If we employ only the
transformer block, we note that the speed is highly impacted,
while the accuracy is with only 0.13% higher. Therefore,
combining both architectures, we exploit the benefits of those,
attaining the best performance-speed trade-off.

In addition to the objective metrics, we included in Fig. 2
the result of our best ConvTr on 20180607T184326 product
from the test set. We observe that the ice and land classes are
well segmented, while the water class is miss classified. A
potential reason could be the imbalanced training set.

4. CONCLUSION

In this paper, we propose a hybrid convolutional transformer
architecture for sea ice segmentation, based on SAR data. We
trained our model on a large scale data set, testing the general-
isation capacity on over 100 products. Moreover, we showed
that our hybrid architecture attains the best performance-
speed trade-off, being feasible to be deployed for automated
segmentation.
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