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Abstract—The negative effects of theDynamic Voltage and
Frequency Scaling (DVFS) technique on the system reliability
has recently promoted the research onreliability-aware power
management (RAPM). RAPM aims at reducing the system
energy consumption while preserving the system’s reliability.
In this paper, we study the RAPM problem for parallel real-
time applications for shared memory multiprocessor systems
in the presence of precedence constraints. We show that
this problem is NP-hard. Depending on how recoveries are
scheduled and utilized by a subset of selected tasks, we
investigate both individual-recovery and shared-recovery based
RAPM heuristics. Online RAPM schemes that exploit dynamic
slack generated at runtime are also considered. The proposed
schemes are evaluated through extensive simulations. The
results show that all schemes can preserve system reliability
under all settings. For modest system loads, similar energy
savings are obtained by all static schemes. However, when the
system load is low, the shared-recovery based schemes need
coordinated recovery operations on all processors and thus
save less energy. Moreover, by reclaiming dynamic slack, the
online schemes yield better energy savings.

Keywords-DVFS; Transient Faults; Reliability; Multiproces-
sor Real-Time Systems; Dependent Tasks

I. I NTRODUCTION

Power management remains as one of the grand chal-
lenges for the research and engineering community, both in
industry and academia [9]. In the last decade, several power
management techniques have ben proposed. Among these,
Dynamic Voltage and Frequency Scaling (DVFS)is a widely
popular technique with applicability ranging from real-time
embedded systems to server systems.

More recently, the research community has started to
explore the interplay between power management and other
operational objectives, such as reliability and dependability.
Reliability, as a traditional system requirement, can be
enhanced through various fault tolerance techniques by ex-
ploiting different forms of redundancy.Modular redundancy
can be used to detect/mask permanent faults by executing
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an application on several processing units in parallel.Tem-
poral redundancycan be exploited to re-execute a faulty
application that incurs transient faults, thereby increasing
the system reliability [17]. Note that, there is an interesting
trade-off between system energy efficiency and reliability
since both DVFS and backward recovery techniques actively
use and compete for free CPU time (orslack) in the system.
Although both power management [14], [23], [28] and fault
tolerance [7], [17], [19] have been studied extensively, the
co-management of energy and reliabilityhas attracted the
researchers’ attention only recently.

A number of studies considered incorporating fault toler-
ance objectives to the DVFS settings for real-time embedded
applications [6], [15], [22], [24]. However, none of the
above work has considered the negative effects of DVFS
on system reliability. In fact, it has been established that
the probability of having transient faults increases drastically
when systems are operated at lower supply voltages [8], [29].
Taking such negative effects into consideration, a number
of reliability-aware power management (RAPM)schemes
have been proposed forsingle-processor systems[20], [25],
[26], [27]. For distributed heterogeneous embedded sys-
tems, Popet al. studied a constrained logic programming-
based (CLP) scheme to determine the voltage levels, start
times, and message transmission times for real-time tasks
to achieve a user-defined reliability goal while minimizing
energy consumption [16]. Ejlaliet al. studied astandby-
sparinghardware redundancy technique to tolerate transient
faults while saving energy [5]. In our recent work [18],
we have studied global scheduling based RAPM schemes
for independent real-time tasks running on multiprocessor
systems.

In this paper, we explore the RAPM problem for parallel
real-time applications withprecedence constraintsrunning
on a shared-memory multiprocessor system (denoted as the
RAPM-PCproblem). The problem is similar to the one stud-
ied in [16], however, we propose schemes to find the energy-
efficient mapping of tasks to processors, which is different
from the existing solution that assumes a given task-to-
processor mapping. This research effort can be considered



as an extension of our recent work [18], which addressed
RAPM schemes forindependenttasks on a multiprocessor
system. In many applications, real-time tasks are given by
precedence constraints that define input-output relationships
among them. Therefore, we believe the investigation of the
RAPM-PC problem will prove very useful in practice.

The main contributions of this paper can be summarized
as follows. We first show that the RAPM-PC problem is
NP-hard. Then, depending on how recoveries are scheduled
and utilized by a subset of selected tasks, we develop
both individual-recoveryandshared-recoverybased heuris-
tic schemes. The former strategy involves scheduling a
separate recovery task for every selected task, while the
latter enables multiple tasks running on the same processor
to share a single recovery task. Based on theslack-sharing
technique [28], online RAPM schemes that exploit dynamic
slack generated at runtime are also proposed.

The simulation results show that all schemes can preserve
system reliability under all settings. For modest system
loads, the static schemes achieve similar energy savings.
However, when the system load is low, the individual-
recovery based scheme can save more energy since the
shared-recovery based schemes need coordinated recovery
operations across all processors. Moreover, by reclaiming
dynamic slack, the online schemes can save more energy.

The remainder of this paper is organized as follows.
Section II presents system models and formulates the
RAPM-PC problem. The static heuristic schemes are
explored in Section III and online schemes are discussed in
Section IV. Section V presents the simulation results and
Section VI concludes the paper.

II. SYSTEM MODELS AND PROBLEM FORMULATION

In this section, we first present system models and state
our assumptions. Then, after reviewing the basic RAPM
concepts, we formulate the RAPM-PC problem considered
in this paper.

A. Models and Assumptions

Application Model: In this work, we consider a paral-
lel application consisting ofn real-time tasks with prece-
dence constraints, represented by adirected acyclic graph
(DAG) G = (V, E). The set of vertices (nodes)V =
{T1, ..., Tn} represents the set of tasks. The set of edges
E = {E1, ..., Em} represents a partial order corresponding
to the precedence constraintsamong tasks, with the inter-
pretation that whenever the edge(Ti, Tj) ∈ E, the taskTj

cannot start to execute untilTi has been completed [1], [13].
Hence, theready timeof a task is defined as the time instant
at which all its predecessors have been completed.

The worst-case execution time (WCET) of taskTi under
the maximum normalized processing frequencyfmax = 1 is
denoted byci (1 ≤ i ≤ n). WhenTi is executed at a lower

frequencyfi, its execution time is assumed to beci

fi
in the

worst case. All tasks in the application need to complete
by the deadlineD, which is also theperiod (or frame) of
the application. An example application with six tasks is
shown in Figure 1, where the WCET of each task is labeled
accordingly and the application deadline is assumed to be
D = 313.
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Figure 1. DAG for the example application.

The application will be executed on a shared memory
multiprocessor system withk identical processors with
negligible communication overhead. In multiprocessor
settings, dependent tasks are typically scheduled by the
list scheduling technique. It is known that finding the
optimal execution order (or priority) of tasks to minimize
the schedule length is NP-hard [4]. Therefore, when
tasks have the same predecessors and become ready
simultaneously, we use thelongest task first (LTF)heuristic
to determine their execution orders. For instance, in
when both tasksT2 and T3 become ready after taskT1

finishes in the application shown in Figure 1,T2 enters
the ready queue first as it has larger WCET. Assuming all
tasks take their WCETs, thecanonical executionof the
example application running on two processors under list
scheduling with LTF can be found to finish at time219,
well before the application deadline313. In this paper,
we assume that an application’s canonical execution under
list scheduling with LTF can finish no later than its deadline.

Power Model: The processors in the system are assumed
to have DVFS capability, which is a common feature in
modern processors. We further assume that the processors
can only operate atL different discrete frequency levels
{f1, f2, . . . , fL}, wheref1 = fmin and fL = fmax = 1.0
are the minimum and maximum frequency, respectively.
Moreover, the time overhead for frequency (and supply
voltage) changes is assumed to be incorporated into the
tasks’ WCETs [28].

With increasing importance of leakage power and em-
phasis on the need for considering all system components
in power management [2], [10], [12], we adopt a system-
level power model for multiprocessor systems [18], where
the power consumption of a system withk processors can



be expressed as:

P (F1, . . . , Fk) = Ps +
k

∑

i=1

~i(Pind + Cef · Fm
i ) (1)

Here,Ps stands forstatic power, which can be removed only
by powering off the whole system. Due to the prohibitive
overhead of turning off and on the system in periodic real-
time execution settings, we assume that the system is inon
state at all times and thatPs is always consumed. Hence,
we will focus on the energy consumption related to active
power, which is given by the second component of the
expression above.

When the ith processor executes a task and isactive,
~i = 1; otherwise, ~i = 0. Pind is the frequency-
independent active power, which is the same for all
processors. Thefrequency-dependent active powerdepends
on each processor’s frequencyFi, and system-dependent
constantsCef and m [3]. From this model, we can derive

the energy-efficient frequencyas fee = m

√

Pind

Cef ·(m−1) [18],
which is assumed to be smaller thanfmin.

Fault and Recovery Models: During the operation of a
computing system, bothpermanentandtransientfaults may
occur due to, for instance, the effects of hardware defects
or cosmic ray radiations, which can result in systemerrors.
Focusing on transient faults, which have been shown to be
dominant [11] especially with scaled technology sizes [8],
the average rate of soft errors caused by such faults is
assumed to follow the Poisson distribution. Considering
the negative effects of DVFS on transient faults, the soft
error rate at a scaled frequencyf (< fmax) (and the
corresponding supply voltageV ) can be modeled as [29]:

λ(f) = λ0 · 10
d·(1−f)
1−fmin (2)

whereλ0 is the average error rate atfmax and d (> 0) is
a constant, representing the sensitivity of soft errors caused
by transient faults to DVFS.

It is assumed that soft errors are detected bysanity (or,
consistency) checks at the end of a task’s execution [17]. The
overhead for fault detection is also assumed to be incorpo-
rated into tasks’ WCETs. To tolerate soft errors,backward
recoverytechnique is employed with recovery tasks, which
are assumed to take the form of re-execution [26].

B. RAPM and Problem Formulation

We first review the fundamental ideas of RAPM schemes
through an example. Suppose that a taskT is dispatched at
time t with the WCET of2 and needs to finish byt + 5.
Here, there will be3 units of available slack. Without special
attention to the negative effects of DVFS on task reliability,
the ordinary power management scheme will useall the
available slack to scale down the execution of taskT for the
maximum energy savings as shown in Figure 2a. However,

such an approach can lead to a degradation of several orders
of magnitude in task’s reliability figures [26].
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Figure 2. RAPM: An example [26].

Instead, as shown in Figure 2b, the RAPM scheme
reserves a portion of the slack to schedule arecovery task
RT for task T before scaling down its execution using
the remaining slack [26]. The recovery taskRT will be
dispatched (at the maximum frequencyfmax) only if errors
are detected when taskT completes to recuperate the
reliability loss due to DVFS. Here the overallreliability
of task T will be the summation of the probability ofT
being executed correctly andthe probability of incurring
errors duringT ’s scaled execution whileRT is executed
correctly, which has been shown to be no worse than task
T ’s original reliability (which is defined as the probability
of having no error whenT is executed at the maximum
frequencyfmax) [26].

Problem Formulation: As in previous work on RAPM
[26], [27], we aim to preserve the original reliability of each
task even when applying DVFS. As a result, a recovery task
needs to be scheduled before the scaled task’s deadline to
mitigate the negative effects of DVFS on reliability. After
an error has been detected in a scaled task, its recovery task
is invokedsequentiallyon the same processor and runs at
fmax. Note that, due to the workload constraints, not all
tasks may be selected for scaling down to save energy. We
use a binary variablexi to denote whetherTi is selected
or not. The tasks that are not selected (withxi = 0) will
run atfmax to maintain their original reliability; while those
selected (withxi = 1) will be eligible to run at a frequency
that is lower thanfmax.

Suppose the processing frequency for taskTi is fi. Its
active energy consumption is:

Ei(fi) = (Pind + Ceffm
i ) ·

ci

fi

(3)

Without considering the energy consumed by recovery tasks
(which normally have a small probability of being invoked),
we focus on theprimary tasks and aim to minimize thefault-
free energy consumption. Suppose that thestart time and
completion timeof Ti (and its recovery task, if any) under



list scheduling aresti andcti, respectively. TheRAPM-PC
problem is defined as:select an appropriate set of tasks
(i.e., determine{xi} values) and their scaled frequencies
(i.e., {fi}) to:

minimize
∑n

i=1 Ei(fi) (4)

subject to

fi ∈ {f1, . . . , fL−1}, (if xi = 1) (5)

fi = fL, (if xi = 0) (6)

sti ≥ ctj , ∀Tj ∈ Pred(Ti) i = 1, . . . , n (7)

max{cti | i = 1, . . . , n} ≤ D (8)

Here, the constraints (5) and (6) give the ranges for task
frequencies. In Equation (7),Pred(Ti) denotes the set of
task Ti’s predecessor tasks and the condition enforces the
dependencies among tasks. Equation (8) guarantees that all
tasks complete their executions before the deadline.

Intractability of RAPM-PC: Note that, when there is
no dependency among tasks, the RAPM-PC problem will
reduce to the RAPM problem for independent tasks, which
has been shown to be NP-hard [18]. Therefore, finding the
optimal solution for the RAPM-PC problem is intractable
and we will focus on efficient heuristics in this paper. As
in [18], we consider bothindividual-recovery(where each
selected task has a separate recovery task) andshared-
recovery(where several selected tasks mapped on the same
processor share one recovery task) based approaches. How-
ever, our solutions consider the precedence constraints in
both static and dynamic phases of the problem.

III. STATIC RAPM-PC SCHEMES

In the case of independent tasks, all available slack is
to appear at the end of the schedule and can be utilized
by all tasks [18] on a given processor. However, with
dependent tasks and list scheduling, slack may be available
in the middle of the schedule, which can only be reclaimed
by a few tasks. Therefore, different from the solution for
independent tasks that relies on only workload and task
sizes, the solution for dependent tasks should also take tasks’
dependence relation into consideration.

A. RAPM-PC with Individual Recovery

We first considerindividual-recoverybased approach.
That is, to preserve system reliability, we aim to preserve
the original reliability of all tasks by scheduling aseparate
recovery task for any task whose execution is to be scaled
down. To guide our task selection process, we bear the
intuition that it is typically more beneficial to obtain energy
savings through DVFS with minimum increase in the sched-
ule length (as increasing the schedule length would limit
the scaling opportunities for other tasks in future iterations).
This is also supported by the fact that, with dependent tasks,
scaling down a task may not always affect the start time of

Algorithm 1 Static RAPM-PC with individual-recovery
1: For taskTi (i = 1, . . . , n): li = L; fi = fL;//initialize
2: MoreTaskToScale = true;
3: while (MoreTaskToScale) do
4: for ((∀Ti ∈ DAG)&&( li > 1)) do
5: c′i = ci

fli−1
+ ci; //try to scale downTi

6: Get the tentative scheduleS′ by list scheduling;
7: if (length(S′) ≤ D) then
8: ESi = Ei(fi) − Ei(fli−1);
9: SIi = length(S′) − length(S);

10: else
11: ESi = −1;//cannot be scaled down
12: end if
13: end for
14: if (∃Ti with ESi > 0) then
15: MoreTaskToScale = true;
16: if (∃Ti with SIi = 0) then
17: Find Tx with ESx = max{ESi|SIi = 0};
18: else
19: Find Tx with Rx = max{Ri = ESi

SIi
};

20: end if
21: lx −−; // Scale downTx

22: Get the new scheduleS with the new speed ofTx;
23: else
24: MoreTaskToScale = false;
25: end if
26: end while

its successor tasks and the schedule length. As a result, we
propose to iteratively consider theratio of energy savings
over schedule length increasefor each task before deciding
which task to scale down in each step. The pseudo-code of
our solution is given in Algorithm 1.

Initially, all tasks have the maximum frequencyfmax =
fL (line 1), which is assumed to be schedulable under list
scheduling with LTF. Then, for each task, assuming its
frequency is scaled down by one level, we can find the
tentative new schedule under list scheduling. If the new
schedule can still finish in time, the energy savings (ESi)
and schedule length increase (SIi) are calculated (lines4
to 13). Finally, the task with the maximum energy saving
rate is chosen to actually slow down its execution by one
level (lines14 to 21). Note that, when a task’s frequency is
reduced by one frequency level, it is possible that the new
schedule length does not change (this is because there may
be idle intervals in the schedule before the next task startsto
run after the completion of its predecessors). For such tasks,
the one with maximum energy savings is eventually chosen.
The above steps are repeated until no task can be further
slowed down one more level while preserving feasibility.

Note that, with n tasks andL frequency levels, the
maximum number of iterations for the outer while-loop



will be n · L. Moreover, to get the largest ratio of energy
savings over schedule length increase within each iteration,
the inner for-loop has the complexity ofO(n2·k). Therefore,
the overall complexity of Algorithm 1 can be found to be
O(L · n3 · k).
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Figure 3. The example: individual recovery.

Consider the example in Figure 1 where we as-
sume that there are four normalized frequency levels
{0.4, 0.6, 0.8, 1.0}. After finishing the above steps, tasks
T3, T5 and T6 are selected to scale their frequencies to
0.6, 0.4 and 0.4, respectively. The resulting schedule with
individual recovery tasks is shown in Figure 3, where
recovery tasks are represented by darkened rectangles. Here,
we can see that all tasks can finish in time. Moreover,
assumingPind = 0.1, Cef = 1 and m = 3, we can see
that RAPM-PC with individual recovery can save about20%
energy compared to that of no power management (NPM)
where all tasks run atfmax.

B. RAPM-PC with Shared Recovery (SHR)

The global shared-recovery based RAPM has been studied
for independent tasks on multiprocessor systems recently
in [18]. In this section, we extend that solution to the case
of tasks with precedence constraints. As observed in [18],
due to the potentialsimultaneous failuresof tasks running
concurrently on different processors, we need to have a
recovery task on all processors to guarantee the preservation
of all tasks’ original reliability figures. Moreover, to ensure
that the largest selected task can be recovered onany
processor, the recovery tasks on all processors have the same
size, which is set to the WCET of the largest selected task.
Uniform Scaled Frequency Technique:First, we consider
the simplest approach where all selected tasks take the
same scaled frequency. Note that, the common size recovery
tasks on all processors need to be scheduled at the end
of the schedule to recover the potential failure of the last
task on each processor. That is, only the slack at the end
of the schedule can be utilized for the shared recovery
task. Therefore, only the tasks with size not exceeding the
smallest slackat the end of the scheduleon all processors
areeligible and can be potentially scaled down.

For energy efficiency, we may exclude a few large eligible
tasks to get smaller common size recovery tasks while
leaving more slack for energy management. By excluding
the largest eligible task from management, we can find the
lowest uniform frequency for all other smaller eligible tasks
while ensuring that all tasks finish on time. By repeating the

above process for other eligible tasks, we can finally find the
best subset of eligible tasks and their corresponding scaled
frequency level to get the best energy savings.

������
������
������
������

�
�
�
�

0

P

P

68.8

T

T T

TT RT = 55

RT = 55

251

2

1 T1 2 4 6

D = 313

Time257.9226174.8159.8
53

Figure 4. SHR: uniform frequency.

For the example task set, Figure 4 illustrates the schedule
with shared recovery tasks. Note that, all tasks are eligible to
scale down their execution as the amount of available slack
is more than the size of the largest taskT2. However, to
get smaller shared recovery tasks and achieve better energy
savings, the largest two tasksT2 andT3 are excluded in the
final solution. That is, tasksT1, T4, T5 andT6 are uniformly
slowed down to frequency0.8 while the shared recovery
tasks take the size of taskT1, which is the largest selected
tasks. With the same parameters as before, we can calculate
that the shared recovery with uniform scaled frequency can
save around14% energy, compared to NPM.
Nonuniform Scaled Frequency Technique: Although the
objective of shared recovery approach is to leave more slack
for energy management to obtain better energy savings, the
above example shows that the energy savings is less than
that of individual recovery based approach. Note that, with
uniform scaled frequency, the selected tasks may not be able
to efficiently explore the slack in the middle of the schedule.
For that purpose, we consider the shared recovery scheme
with nonuniform scaled frequency.

Here, the size of the recovery tasks can be determined
in the same way as the above scheme. However, the scaled
frequency for each selected task is determined following the
similar steps as those in Algorithm 1. The difference is that
no individual recovery task is needed when a selected task
is first scaled down.
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The schedule for the example with shared recovery and
nonuniform frequencies is shown in Figure 5. Here, only
T3, T5 and T6 are selected to scale down their executions,
at frequencies as0.6, 0.4 and 0.8, respectively. The shared
recovery tasks have the size of taskT3. With better flexibility
to choose frequency for selected tasks, the nonuniform
frequency approach can save18% energy compared to
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Figure 6. Energy and reliability for static RAPM-PC schemes

NPM, which is slightly better than the case with uniform
frequency.

C. Failure Handling for Shared Recovery

Note that, unlike the individual recovery-based scheme
where the recovery of any faulty scaled task is independent,
for the shared recovery based schemes, coordinated recovery
actions are needed among the processors to ensure all
tasks can finish in time [18]. Specifically, when errors are
detected during the execution of a selected task on one
processor, other processors need to be notified to adopt the
contingency schedule. Here, the concurrently running tasks
on other processors can continue their executions at the
scaled frequency, but anynewly dispatchedtasks should run
at fmax for reliability preservationuntil the end of frame
(period). With one recovery task on each processor, the
shared recovery based scheme can ensure that any faulty
execution of the concurrently running tasks can be recovered
in time without violating tasks’ timing constraints.

IV. ONLINE RAPM-PC SCHEMES

Real-time applications typically only use a small fraction
of their worst-case execution times. Moreover, the recovery
tasks that are statically scheduled will be invoked only if
their corresponding scaled primary tasks fail, which can
occur with a small probability. Therefore, significant amount
of dynamic slack can be expected at run time, which
provides abundant opportunities to further scale down the
execution of selected tasks to improve energy savings or to
manage more tasks to enhance system reliability.

Based on theslack sharingtechnique in our previous
work [28], we can apply dynamic slack reclamation on top
of the schedules generated from the above static schemes. As
shown in [28], as long as the execution order of dependent
tasks is the same as in the static schedule (which is assumed
to complete before the application’s deadline), the slack
sharing based dynamic slack reclamation can be applied
without violating the deadline of the whole task set. Note
that, for the individual recovery based approach, if a task
does not have a statically scheduled recovery task, it needs

to schedule its recovery task before reclaiming the remaining
dynamic slack for energy savings. The steps are similar
to those described in [18] and are omitted due to space
limitation.

V. SIMULATION RESULTS AND DISCUSSIONS

We evaluated the performance of the variousRAPM-PC
schemes with a discrete event simulator. The system energy
consumption and reliability under theno power management
(NPM) scheme, which executes all tasks atfmax and puts
systems to power savings sleep states when idle, is used as
the baseline. The parameters for energy and fault models
are the same as those in [18]: For systems with4 and 16
processors, we havePs = 0.04 andPs = 0.16, respectively.
In addition, we havePind = 0.1, Cef = 1, m = 3 and we
assume the existence of four normalized frequency levels
given by{0.4, 0.6, 0.8, 1.0}. For transient faults, we assume
the exponential model withλ0 = 10−6 andd = 3.

We used the well-known TGFF library [21] to generate
the task graphs. TGFF can generate various dependent task
sets (such as tree and series-parallel graphs). For systems
with 4 and 16 processors, the generated task sets contains
40 and 160 tasks, respectively. The WCETs of tasks are
uniformly distributed in the range of[10, 100]. To quantify
the amount of static slack at the end of schedule, the system
loadγ is defined as the ratio of the schedule length over the
application’s deadline. The actual execution time of each
task Ti is generated based on the average-to-worst case
execution time ratioαi. For each setting,100 task sets are
generated and each task set is executed for50, 000, 000
times. The average results are reported.

A. Static RAPM-PC Schemes

For the static schemes where all tasks are assumed to take
their WCETs, we evaluate individual recovery based RAPM-
PC (indiv-recov), shared recovery based RAPM-PC with uni-
form frequency (SHR-uniform), and shared recovery based
RAPM-PC with non-uniform frequency (SHR-nonunif). The
ordinary static power management (SPM), that uniformly
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Figure 7. Performance of online RAPM-PC schemes for 16 processors

scales down the execution of all tasks based on the system
load without scheduling any recoveries, is also considered.

First, Figure 6(a) shows the normalized energy consump-
tion of the static schemes under different system loads for a
system with4 processors. As the system load increases, less
static slack is available and both SPM and the individual-
recovery based schemes consume more energy. However,
for the shared-recovery based schemes, when system load
is low (e.g.,γ ≤ 0.4), the transient faults that can occur
in the early stage of the execution with higher probability
force the rest of tasks to run atfmax, causing more energy
consumption when compared to that of individual-recovery
based scheme. The results are in line with those for indepen-
dent tasks [18]. For the system with16 processors, similar
results are obtained as shown in Figure 6(c).

Figure 6(b) further shows theprobability of failure for
all schemes, which is defined as the number of failed tasks
(despite the use of potential recoveries) over the total number
of tasks executed. Here, we can see that all static RAPM-PC
schemes can preserve system reliability (by having lower
probability of failure) when compared to that ofNPM,
confirming our theoretical results. In contrast, althoughSPM
can save more energy, it can lead to significant system
reliability degradation (up to four orders of magnitude) for
low-to-moderate system loads.

B. Online RAPM-PC Schemes

For online schemes, we apply dynamic slack reclamation
techniques on the static solutions obtained from the static
RAPM-PC schemes. The three variants are denoted asin-
div+DYN, SHR-unif+DYNand SHR-nonunif+DYN, respec-
tively. Again, for comparison, we includeDPM that repre-
sents the scheme that reclaims slack available in the SPM
schedule. Here, we consider the system with16 processors
with γ = 0.4 and γ = 0.8 (which corresponds to low and
high system loads, respectively).

First, for the low system load withγ = 0.4, Figure 7(a)
shows the normalized energy consumption of dynamic
schemes when varying dynamic load (α) from 0.3 to 0.9
(here, lower values ofα indicate more dynamic slack).

Note that, with system loadγ = 0.4, all tasks under DPM
will be scaled to the minimum frequency0.4. Although
DPM consumes more energy when dynamic load increases,
the normalized energy consumption slightly decreases as
NPM consumes more energy as well. For the individual-
recovery based scheme, as unused recovery tasks can be
reclaimed as slack for better energy savings, it consumes
only slightly more energy (around7% to 14%) compared to
that of DPM. However, the shared-recovery based schemes
consistently perform much worse with30% to 40% more
energy consumption. Again, this is due to the increased
probability of faults affecting tasks with many successors
at lower frequencies, and the required coordination among
processors for fault handling. For high system load with
γ = 0.8, similar results are obtained as shown in Figure 7(b).
Note that, for higher value ofα, there is less dynamic
slack and both individual and shared recovery based schemes
perform roughly the same in terms of energy savings.

Not surprisingly, all online RAPM-PC schemes can pre-
serve system reliability as shown in Figure 7(c) when the
system load isγ = 0.8. Again, without taking the negative
effects of DVFS on system reliability into consideration, the
ordinaryDPM scheme results in much increased probability
of failure (by up to three orders of magnitude).

VI. CONCLUSIONS

In this paper, for parallel real-time applications with
precedence constraints running on shared memory mul-
tiprocessor systems, we investigated the reliability-aware
power management (RAPM) schemes that save energy while
guaranteeing a certain level of system reliability. Noting
that the problem is NP-hard, we studied both individual and
shared recovery based heuristics, where a separate recovery
task is scheduled for any selected tasks and a few selected
tasks on the same processor sharing one recovery task,
respectively. Moreover, online schemes based on theslack-
sharing slack reclamation technique are also considered.
Simulation results confirm that the effectiveness of the
proposed schemes.
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