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Abstract—The negative effects of theDynamic Voltage and  an application on several processing units in parallein-
Frequency Scaling (DVFS) technique on the system reliability — poral redundancycan be exploited to re-execute a faulty
has recently promoted the research oreliability-aware power 5, hlication that incurs transient faults, thereby inciregs

management (RAPM). RAPM aims at reducing the system L . L
energy consumption while preserving the system’s reliakiy. the system reliability [17]. Note that, there is an inteiregt

In this paper, we study the RAPM problem for parallel real-  trade-off between system energy efficiency and reliability
time applications for shared memory multiprocessor system  since both DVFS and backward recovery techniques actively
in the presence of precedence constraints. We show that yse and compete for free CPU time @ack in the system.
this problem is NP-hard. Depending on how recoveries are Although both power management [14], [23], [28] and fault

scheduled and utilized by a subset of selected tasks, we . .
investigate both individual-recovery and shared-recovery based tolerance [7], [17], [19] have been studied extensivelg, th

RAPM heuristics. Online RAPM schemes that exploit dynamic ~ CO-management of energy and reliabilinas attracted the
slack generated at runtime are also considered. The propode researchers’ attention only recently.

schemes are evaluated through extensive simulations. The A number of studies considered incorporating fault toler-
results show that all schemes can preserve system reliafi 506 gpjectives to the DVFS settings for real-time embedded
under all settings. For modest system loads, similar energy L

savings are obtained by all static schemes. However, wheneh applications  [6], [15], . [22], [24]. Howeyer, none of the
system load is low, the shared-recovery based schemes need above work has considered the negative effects of DVFS
coordinated recovery operations on all processors and thus on system reliability. In fact, it has been established that

save less energy. Moreover, by reclaiming dynamic slack, & the probability of having transient faults increases dcady

online schemes yield better energy savings. when systems are operated at lower supply voltages [8], [29]
Keywords-DVFS; Transient Faults; Reliability; Multiproces- Taking such negative effects into consideration, a number
sor Real-Time Systems; Dependent Tasks of reliability-aware power management (RAPMEhemes
have been proposed fsingle-processor systenfia0], [25],
I. INTRODUCTION [26], [27]. For distributed heterogeneous embedded sys-

P . f th d ch ems, Popet al. studied a constrained logic programming-
ower management remains as one o the grand Chagaseq (CLP) scheme to determine the voltage levels, start

!enges for the researph and engineering community, both Iﬂmes, and message transmission times for real-time tasks

industry and academia [9]. In the last decade, several POWEE achieve a user-defined reliability goal while minimizing

managgment techniques have ben proposed. Ampng the%%ergy consumption [16]. Ejlalet al. studied astandby-
Dynamic Voltage and Frequency Scaling (DV#S) widely sparinghardware redundancy technique to tolerate transient

popular technique with applicability ranging from reah# faults while saving energy [5]. In our recent work [18],

embedded systems to server systems. we have studied global scheduling based RAPM schemes

More recently, the research community has started G, jndependent real-time tasks running on multiprocessor
explore the interplay between power management and Oth%ﬁ/stems

operational objectives, such as reliability and depeniabi In this paper, we explore the RAPM problem for parallel

Reliability, as a tradi_tional system requireme_nt, can bereal-time applications wittprecedence constraintainning
enhz.:\nce(.j through various fault tolerance techniques by ex, 5 shared-memory multiprocessor system (denoted as the
ploiting different forms of redundanciodular redundancy _RAPM-PCproblem). The problem is similar to the one stud-
can be used to detect/mask permanent faults by executingy i, [16], however, we propose schemes to find the energy-

efficient mapping of tasks to processors, which is different
978-1-4577-1221-0/11/$26.0@2011 |IEEE. This work was supported ppINg P
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as an extension of our recent work [18], which addressedrequencyf;, its execution time is assumed to Bein the
RAPM schemes foindependentasks on a multiprocessor worst case. All tasks in the application need to complete
system. In many applications, real-time tasks are given bypy the deadlineD, which is also theperiod (or framég of
precedence constraints that define input-output reldtipgs the application. An example application with six tasks is
among them. Therefore, we believe the investigation of theshown in Figure 1, where the WCET of each task is labeled
RAPM-PC problem will prove very useful in practice. accordingly and the application deadline is assumed to be
The main contributions of this paper can be summarized> = 313.
as follows. We first show that the RAPM-PC problem is
NP-hard. Then, depending on how recoveries are scheduled o 53
and utilized by a subset of selected tasks, we develop
both individual-recoveryand shared-recoverpased heuris- o /®4>
tic schemes. The former strategy involves scheduling a @ \
separate recovery task for every selected task, while the
latter enables multiple tasks running on the same processor \ 8 @
to share a single recovery task. Based ondlaek-sharing @
technique [28], online RAPM schemes that exploit dynamic
slack generated at runtime are also proposed. Figure 1. DAG for the example application.
The simulation results show that all schemes can preserve
system reliability under all settings. For modest system
loads, the static schemes achieve_similar energy_sfavings. The application will be executed on a shared memory
However, when the system load is low, the individual-m iprocessor system with: identical processors with
recovery based scheme can save more energy since t@gjigible communication overhead. In multiprocessor

shareo!-recovery based schemes need coordinated recov@ftings, dependent tasks are typically scheduled by the
operations across all processors. Moreover, by reclaimingg; scheduling technique. It is known that finding the

dynamic slack, the online schemes can save more energygniimal execution order (or priority) of tasks to minimize
The remainder of this paper is organized as follows.he schedule length is NP-hard [4]. Therefore, when
Section Il presents system models "?‘“fj formulates theygks have the same predecessors and become ready
RAPM-PC problem. The static heuristic schemes ar&;myitaneously, we use tHengest task first (LTFeuristic
explored in Section Il and online schemes are discussed ify getermine their execution orders. For instance, in
Section IV. Section V presents the simulation results andynen poth tasks» and T3 become ready after task;
Section VI concludes the paper. finishes in the application shown in Figure T, enters
the ready queue first as it has larger WCET. Assuming all
tasks take their WCETSs, theanonical executiorof the

, . ] example application running on two processors under list
In this section, we first present system models and Stat@cheduling with LTE can be found to finish at tin29

our assumptions. Then, after reviewing the basic RAPMye| pefore the application deadlingl3. In this paper,
concepts, we formulate the RAPM-PC problem considereqye assume that an application’s canonical execution under

in this paper. list scheduling with LTF can finish no later than its deadline

\
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Il. SYSTEM MODELS AND PROBLEM FORMULATION

A. Models and Assumptions

Application Model: In this work, we consider a paral- Power Model: The processors in the system are assumed
lel application consisting of: real-time tasks with prece- (© have DVFS capability, which is a common feature in
dence constraints, represented bylieected acyclic graph modern processors. We_ further assume that the processors
(DAG) G = (V,E). The set of vertices (nodes) = can only operate af. different discrete frequency levels
{Ty,...,T,,} represents the set of tasks. The set of edgeéflvf%---v_f_L}v where fi = fnin @nd fr = fraz = 1.0

E = {E,...,E,)} represents a partial order corresponding®® the minimum and maximum frequency, respectively.
to the precedence constrainmmong tasks, with the inter- Moreover, the time overhead for frequency (and supply
pretation that whenever the edg&,T;) € E, the taskT; voltage) changes is assumed to be incorporated into the
cannot start to execute unfi} has been completed [1], [13]. (@Sks WCETs [28].

Hence, theeady timeof a task is defined as the time instant  With increasing importance of leakage power and em-
at which all its predecessors have been completed. phasis on the need for considering all system components
The worst-case execution time (WCET) of taBkunder in power management [2], [10], [12], we adopt a system-
the maximum normalized processing frequetfigy,. = 1is  level power model for multiprocessor systems [18], where

denoted bye; (1 <i < n). WhenT; is executed at a lower the power consumption of a system withprocessors can



be expressed as: such an approach can lead to a degradation of several orders

& of magnitude in task’s reliability figures [26].
P(Fy,...,Fy) =P, hi (P Cer - F™ 1
( 1, 5 k) s+; z( ind T ef i ) () f R . IS D
Here, P, stands foistatic poweywhich can be removed only . 1 1 time
by powering off the whole system. Due to the prohibitive t t+l 2 43 t+4 145
overhead of turning off and on the system in periodic real- a. Ordinary power management
time execution settings, we assume that the system asin S
state at all times and tha®; is always consumed. Hence, f T T D
we will focus on the energy consumption related to active time
power, which is given by the second component of the : N1 12 s b4 b
expression above. b. Reliability-aware power management
When theit" processor executes a task andaistive
h; = 1; otherwise,h; = 0. P;,q is the frequency- Figure 2. RAPM: An example [26].
independent active powemwhich is the same for all
processors. Th&equency-dependent active powdepends Instead, as shown in Figure 2b, the RAPM scheme

on each processor's frequendy, and system-dependent reserves a portion of the slack to scheduleeovery task
constantsC..; andm [3]. From this model, we can derive RT for task T' before scaling down its execution using

the energy-efficient frequenas f.. = 7 Ceflfw_l) [18], the remaining slack [26]. The recovery tagkl" will be

which is assumed to be smaller th#n,,.. dispatched (at the maximum frequengy,..) only if errors
are detected when task’ completes to recuperate the

Fault and Recovery Models: During the operation of a reliability loss due to DVFS. Here the overattliability

computing system, bothbermanenaindtransientfaults may of task T' will be the summation of the probability dr

occur due to, for instance, the effects of hardware defect€iNg exef:ute(’j correctlunﬂhe_ proba_blhty _Of Incurring

or cosmic ray radiations, which can result in systerrors. errors durlngTs scaled execution whilRT' is executed
Focusing on transient faults, which have been shown to bgc?rreqtly, wh|ch h.a.s beer_1 sh.own to be no worse than.task
dominant [11] especially with scaled technology sizes [8]'Ts or|g|nal reliability (whlch is defined as the probqblllty
the average rate of soft errors caused by such faults i f having no errgers wheril" is executed at the maximum
assumed to follow the Poisson distribution. Considerin requency fmas) [26]

the negative effects of DVFS on transient faults, the soft . . .

error rate at a scaled frequengy (< fue.) (and the Problem Formulation: As in previous work on RAPM

corresponding suoply voltadé) can be modeled as [291: [26], [27], we aim to preserve the original reliability ofda
poncing supply v g‘éj_(lif) [29] task even when applying DVFS. As a result, a recovery task

A(f) = Ao - 10T Fomin (2) needs to be scheduled before the scaled task’'s deadline to
] . mitigate the negative effects of DVFS on reliability. After
where )\, is the average error rate .., andd (> 0) IS ap error has been detected in a scaled task, its recovery task
a constant, representing the sensitivity of soft errorsedu 5 invoked sequentiallyon the same processor and runs at
by transient faults to DVFS. _ fmas. Note that, due to the workload constraints, not all
It is assumed that soft errors are detectedshpity (o,  tasks may be selected for scaling down to save energy. We
consistencychecks at the end of a task’s execution [17]. The;ge g binary variable;; to denote whethef; is selected
overhead for fault detection is also assumed to be incorpasy not. The tasks that are not selected (with= 0) will
rated into tasks’ WCETSs. To tolerate soft errdogckward  ryp at ... to maintain their original reliability; while those
recoverytechnique is employed with recovery tasks, whichgg|ected (withe; = 1) will be eligible to run at a frequency

are assumed to take the form of re-execution [26]. that is lower thanf,nas.

B. RAPM and Problem Formulation Suppose the process_ing _frequency for tdskis f;. Its
We first review the fundamental ideas of RAPM schemesacwe energy consumption is:

through an example. Suppose that a tésls dispatched at Ei(fi) = (Pina + Ces f™) - G ()

time ¢ with the WCET of2 and needs to finish by + 5. fi

Here, there will be units of available slack. Without special Without considering the energy consumed by recovery tasks
attention to the negative effects of DVFS on task reliagilit (which normally have a small probability of being invoked),
the ordinary power management scheme will ua# the  we focus on the@rimarytasks and aim to minimize tHault-
available slack to scale down the execution of téslor the  free energy consumption. Suppose that #tart time and
maximum energy savings as shown in Figure 2a. Howeveigompletion timeof T; (and its recovery task, if any) under



list scheduling arest; andct;, respectively. The(RAPM-PC  Algorithm 1 Static RAPM-PC with individual-recovery

problem is defined asselect an appropriate set of tasks
(i.e., determine{x;} values) and their scaled frequencies

(i.e., {fi}) to:

minimize>"_ | E;(f;) (4) :

subject to 6:
fie{fi, ., foah, (if z;=1) (5) 7:

fi=fr, (if 2; =0) (6) 85

st; > ct;,VT; € Pred(T;) i =1,...,n (7) 1?)
max{ct;|i=1,...,n} <D (8) 11:

Here, the constraints (5) and (6) give the ranges for task?
frequencies. In Equation (7)Pred(T;) denotes the set of 1%
task 7;’s predecessor tasks and the condition enforces thé%:
dependencies among tasks. Equation (8) guarantees that af*

tasks complete their executions before the deadline. 16:
17:

Intractability of RAPM-PC:

Note that, when there is 1&
no dependency among tasks, the RAPM-PC problem will1®:
reduce to the RAPM problem for independent tasks, which2®:
has been shown to be NP-hard [18]. Therefore, finding thé?!:
optimal solution for the RAPM-PC problem is intractable 22
and we will focus on efficient heuristics in this paper. As 23
in [18], we consider bothindividual-recovery(where each 2%
selected task has a separate recovery task) siraded- 2

1. For taskT; (i =1,...,n): l; = L; f; = fr;/linitialize
2: MoreTaskToScale = true;
3: while (MoreTaskToScale) do

for (VI; € DAG)&&(1; > 1)) do
/ Ci + ¢;; Iltry to scale dowrl;

c, = =
g fi;—1

Get the tentative schedul#f by list scheduling;
if (length(S’") < D) then

ES; = Ei(fi) — Ei(fi.—1);
SI; = length(S’) — length(S);
else
ES; = —1;/lcannot be scaled down
end if
end for

if (3T; with ES; > 0) then
MoreTaskToScale = true;
if (3T; with SI; = 0) then
Find T, with S, = max{FES;|SI; = 0};
else
Find T, with R, = max{R; = £3:};
end if
l, — —; Il Scale downT,
Get the new schedulg with the new speed of;
else
MoreTaskToScale = false;
end if

recovery(where several selected tasks mapped on the samgb: €nd while

processor share one recovery task) based approaches. How-
ever, our solutions consider the precedence constraints in
both static and dynamic phases of the problem.

Ill. STaTIc RAPM-PC SHEMES

In the case of independent tasks, all available slack i
to appear at the end of the schedule and can be utilize
by all tasks [18] on a given processor. However, with
dependent tasks and list scheduling, slack may be available
in the middle of the schedule, which can only be reclaimed/Z
by a few tasks. Therefore, different from the solution for
independent tasks that relies on only workload and tas
sizes, the solution for dependent tasks should also take’tas
dependence relation into consideration.

its successor tasks and the schedule length. As a result, we
propose to iteratively consider thratio of energy savings
.over schedule length increaser each task before deciding
hich task to scale down in each step. The pseudo-code of
ur solution is given in Algorithm 1.

Initially, all tasks have the maximum frequengy,.. =
(line 1), which is assumed to be schedulable under list
scheduling with LTF. Then, for each task, assuming its
llzrequency is scaled down by one level, we can find the
tentative new schedule under list scheduling. If the new
schedule can still finish in time, the energy savingsSy)

and schedule length increasgIf) are calculated (lined

A. RAPM-PC with Individual Recovery

to 13). Finally, the task with the maximum energy saving

We first considerindividual-recoverybased approach. rate is chosen to actually slow down its execution by one
That is, to preserve system reliability, we aim to preservdevel (lines14 to 21). Note that, when a task’s frequency is

the original reliability of all tasks by schedulingseparate

reduced by one frequency level, it is possible that the new

recovery task for any task whose execution is to be scalegchedule length does not change (this is because there may
down. To guide our task selection process, we bear thbe idle intervals in the schedule before the next task starts

intuition that it is typically more beneficial to obtain eggr

run after the completion of its predecessors). For suctstask

savings through DVFS with minimum increase in the schedhe one with maximum energy savings is eventually chosen.
ule length (as increasing the schedule length would limitThe above steps are repeated until no task can be further

the scaling opportunities for other tasks in future itenasi).

slowed down one more level while preserving feasibility.

This is also supported by the fact that, with dependent fasks Note that, with n tasks andL frequency levels, the
scaling down a task may not always affect the start time ofmaximum number of iterations for the outer while-loop



will be n - L. Moreover, to get the largest ratio of energy above process for other eligible tasks, we can finally find the
savings over schedule length increase within each iteratio best subset of eligible tasks and their corresponding dcale
the inner for-loop has the complexity 6f(n2-k). Therefore, frequency level to get the best energy savings.

the overall complexity of Algorithm 1 can be found to be

O(L -n? - k). ‘ D=313

D =313 T, ‘ T, ‘ T, ‘ Te ‘ RT =55
Ty ‘ T2 ‘ T4 —RE—F;—RT, A Ts % Ts ‘ .| RT=55

0 68.8 159.8174.8226 251257.9 Time

/Al Ts | . RT Figure 4. SHR: uniform frequency.

0 55 146 199 241 273.7 311 Time
Figure 3. The example: individual recovery.

For the example task set, Figure 4 illustrates the schedule
) _ ) with shared recovery tasks. Note that, all tasks are etdibl
Consider the example in Figure 1 where we as-scale down their execution as the amount of available slack
sume that there are four normalized frequency levelss more than the size of the largest taBk However, to
{0.4,0.6,0.8,1.0}. After finishing the above steps, tasks get smaller shared recovery tasks and achieve better energy
T5,Ts and Tg are selected to scale their frequencies t0savings, the largest two tasis and T are excluded in the
0.6,0.4 and 0.4, respectively. The resulting schedule with fina| solution. That is, task®&,, Ty, T5 and T, are uniformly
individual recovery tasks is shown in Figure 3, whereg|gwed down to frequency.8 while the shared recovery
recovery tasks are represented by darkened rectangles. Hefysks take the size of task , which is the largest selected
we can see that all tasks can finish in time. Moreoveriasks. With the same parameters as before, we can calculate
assumingPnq = 0.1, Cey = 1 andm = 3, we can see hat the shared recovery with uniform scaled frequency can
that RAPM-PC with individual recovery can save ab2ifc  save around 4% energy, compared to NPM.
energy compared to that of no power management (NPMyonuniform Scaled Frequency Technique: Although the
where all tasks run afyq.- objective of shared recovery approach is to leave more slack

B. RAPM-PC with Shared Recovery (SHR) for energy management to obtain better energy savings, the

) . apove example shows that the energy savings is less than
The global shared-recovery based RAPM has been StUd'G’\téDat of individual recovery based approach. Note that, with

for independent tasks on multiprocessor systems recently .

) . . ; niform scaled frequency, the selected tasks may not be able

in [18]. In this section, we extend that solution to the case - ) .
to efficiently explore the slack in the middle of the schedule

of tasks with precedence constraints. As observed in [18] )
e . . For that purpose, we consider the shared recovery scheme
due to the potentiasimultaneous failuresf tasks running : .
with nonuniform scaled frequency.

concurrently on different processors, we need to have a . .

.~ Here, the size of the recovery tasks can be determined
recovery task on all processors to guarantee the presamvati.

A SN in the same way as the above scheme. However, the scaled

of all tasks’ original reliability figures. Moreover, to ange . ) .

frequency for each selected task is determined followirg th
that the largest selected task can be recoveredaoy S ; ; . .

similar steps as those in Algorithm 1. The difference is that
processor, the recovery tasks on all processors have tre a8 individual recovery task is needed when a selected task
size, which is set to the WCET of the largest selected task. y

Uniform Scaled Frequency Technique:First, we consider is first scaled down.

the simplest approach where all selected tasks take the D =313
same scaled frequency. Note that, the common size recover i
tasks on all processors need to be scheduled at the en n | on [l | RT=82

Ty r"_Ts—\ RT =82

0 55 146 199 224230.9 Time
Figure 5. SHR: nonuniform frequencies.

of the schedule to recover the potential failure of the last @ %
task on each processor. That is, only the slack at the end
of the schedule can be utilized for the shared recovery
task. Therefore, only the tasks with size not exceeding the
smallest slaclat the end of the scheduten all processors
areeligible and can be potentially scaled down. The schedule for the example with shared recovery and
For energy efficiency, we may exclude a few large eligiblenonuniform frequencies is shown in Figure 5. Here, only
tasks to get smaller common size recovery tasks whilds, 75 and Ts are selected to scale down their executions,
leaving more slack for energy management. By excludingt frequencies a8.6,0.4 and 0.8, respectively. The shared
the largest eligible task from management, we can find theecovery tasks have the size of tagk With better flexibility
lowest uniform frequency for all other smaller eligiblekas to choose frequency for selected tasks, the nonuniform
while ensuring that all tasks finish on time. By repeating thefrequency approach can sau&% energy compared to
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Figure 6. Energy and reliability for static RAPM-PC schemes

NPM, which is slightly better than the case with uniform to schedule its recovery task before reclaiming the remgini
frequency. dynamic slack for energy savings. The steps are similar
. , to those described in [18] and are omitted due to space
C. Failure Handling for Shared Recovery limitation.
Note that, unlike the individual recovery-based scheme
where the recovery of any faulty scaled task is independent, V. SIMULATION RESULTS AND DISCUSSIONS

for the shared recovery based schemes, coordinated rgcover .
actions are needed among the processors to ensure aIIWe evaluated the performance of the varigtsPM-PC

tasks can finish in time [18]. Specifically, when errors areschemes with a discrete event simulator. The system energy
' IE(w)nsumption and reliability under tim® power management
e

detected during the execution of a selected task on on :

processor, other processors need to be notified to adopt t PtM) sctheme, Wh'Ch_ exectjtes all :asks{]aftaz_;nd.puts d

contingency schedulddere, the concurrently running tasks Sysiems 10 pOwer savings sieep stales when Idi€, 1S used as
htge baseline. The parameters for energy and fault models

on other processors can continue their executions at t . )
. are the same as those in [18]: For systems withnd 16
scaled frequency, but amewly dispatchetasks should run X
guency, bu WYy cISp we processors, we have, = 0.04 and P; = 0.16, respectively.

at f,... for reliability preservationuntil the end of frame -
! yp In addition, we haveP;,,q = 0.1, Cey = 1, m = 3 and we

(period). With one recovery task on each processor, the : .
shared recovery based scheme can ensure that any fau sume the existence of four normalized frequency levels

execution of the concurrently running tasks can be recavered" " by{0.4,0.6,0.8,1.0}. For transient faults, we assume

) A o
in time without violating tasks’ timing constraints. the exponential model witho = 10 ) andd = 3.
We used the well-known TGFF library [21] to generate

IV. ONLINE RAPM-PC SHEMES the task graphs. TGFF can generate various dependent task

Real-time applications typically only use a small fraction se_ts (such as tree and series-parallel graphs). For syst_ems
of their worst-case execution times. Moreover, the regpver With 4 and 16 processors, the generated task sets contains

tasks that are statically scheduled will be invoked only if40 @nd 160 tasks, respectively. The WCETSs of tasks are

their corresponding scaled primary tasks fail, which Canuniformly distribut(_ad in the range dfl0, 100]. To quantify
occur with a small probability. Therefore, significant ambu the amount of static slack at the end of schedule, the system

of dynamic slack can be expected at run time, WhichIoad'yis defined as the ratio of the schedule length over the

provides abundant opportunities to further scale down th@PPlication’s deadline. The actual execution time of each

execution of selected tasks to improve energy savings or tiSK Ti 1S generated based OQ the average-lio-worst case
manage more tasks to enhance system reliability. execution time ratiay;. For each setting]00 task sets are

Based on theslack sharingtechnique in our previous 9€nerated and each task set is executed5f000,000

work [28], we can apply dynamic slack reclamation on topt'mes' The average results are reported.
of the schedules generated from the above static schemes. As .
shown in [28], as long as the execution order of dependeﬁ%" Static RAPM-PC Schemes

tasks is the same as in the static schedule (which is assumedFor the static schemes where all tasks are assumed to take
to complete before the application’s deadline), the slackheir WCETs, we evaluate individual recovery based RAPM-
sharing based dynamic slack reclamation can be applieBC (ndiv-recoy, shared recovery based RAPM-PC with uni-
without violating the deadline of the whole task set. Noteform frequency $HR-uniforn), and shared recovery based
that, for the individual recovery based approach, if a taskRAPM-PC with non-uniform frequencysHR-nonunjf The

does not have a statically scheduled recovery task, it needsdinary static power management (SPM), that uniformly
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Figure 7. Performance of online RAPM-PC schemes for 16 gsmrs

scales down the execution of all tasks based on the systeMote that, with system loa¢ = 0.4, all tasks under DPM
load without scheduling any recoveries, is also consideredwill be scaled to the minimum frequendy.4. Although
First, Figure 6(a) shows the normalized energy consumpbPM consumes more energy when dynamic load increases,
tion of the static schemes under different system loads for he normalized energy consumption slightly decreases as
system with4 processors. As the system load increases, lesSIPM consumes more energy as well. For the individual-
static slack is available and both SPM and the individual+ecovery based scheme, as unused recovery tasks can be
recovery based schemes consume more energy. Howeveeclaimed as slack for better energy savings, it consumes
for the shared-recovery based schemes, when system loadly slightly more energy (arount% to 14%) compared to
is low (e.g.,7 < 0.4), the transient faults that can occur that of DPM. However, the shared-recovery based schemes
in the early stage of the execution with higher probability consistently perform much worse wits0% to 40% more
force the rest of tasks to run df,.., causing more energy energy consumption. Again, this is due to the increased
consumption when compared to that of individual-recoveryprobability of faults affecting tasks with many successors
based scheme. The results are in line with those for indepemt lower frequencies, and the required coordination among
dent tasks [18]. For the system willé processors, similar processors for fault handling. For high system load with
results are obtained as shown in Figure 6(c). ~v = 0.8, similar results are obtained as shown in Figure 7(b).
Figure 6(b) further shows thprobability of failure for Note that, for higher value of, there is less dynamic
all schemes, which is defined as the number of failed taskslack and both individual and shared recovery based schemes
(despite the use of potential recoveries) over the totalberm perform roughly the same in terms of energy savings.
of tasks executed. Here, we can see that all static RAPM-PC Not surprisingly, all online RAPM-PC schemes can pre-
schemes can preserve system reliability (by having loweserve system reliability as shown in Figure 7(c) when the
probability of failure) when compared to that ™PM, system load isy = 0.8. Again, without taking the negative
confirming our theoretical results. In contrast, altho&ftM  effects of DVFS on system reliability into consideratiome t
can save more energy, it can lead to significant systerordinaryDPM scheme results in much increased probability
reliability degradation (up to four orders of magnitude) fo of failure (by up to three orders of magnitude).
low-to-moderate system loads.

B. Online RAPM-PC Schemes VI. CONCLUSIONS

For online schemes, we apply dynamic slack reclamation In this paper, for parallel real-time applications with
technigues on the static solutions obtained from the statiprecedence constraints running on shared memory mul-
RAPM-PC schemes. The three variants are denoteith-as tiprocessor systems, we investigated the reliabilityrawa
div+DYN, SHR-unif+DYNand SHR-nonunif+DYNrespec- power management (RAPM) schemes that save energy while
tively. Again, for comparison, we includBePM that repre- guaranteeing a certain level of system reliability. Noting
sents the scheme that reclaims slack available in the SPthat the problem is NP-hard, we studied both individual and
schedule. Here, we consider the system withprocessors shared recovery based heuristics, where a separate rgcover
with v = 0.4 and~ = 0.8 (which corresponds to low and task is scheduled for any selected tasks and a few selected
high system loads, respectively). tasks on the same processor sharing one recovery task,

First, for the low system load with = 0.4, Figure 7(a) respectively. Moreover, online schemes based orskhek-
shows the normalized energy consumption of dynamicharing slack reclamation technique are also considered.
schemes when varying dynamic loadl) (from 0.3 to 0.9 Simulation results confirm that the effectiveness of the
(here, lower values ofv indicate more dynamic slack). proposed schemes.
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