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Abstract—The energy costs of running computer systems
are a growing concern: for large data centers, recent estimates
put these costs higher than the cost of hardware itself. As a
consequence, energy efficiency has become a pervasive theme
for designing, deploying, and operating computer systems. This
paper evaluates the energy trade-offs brought by data dedupli-
cation in distributed storage systems. Depending on the work-
load, deduplication can enable a lower storage footprint, reduce
the I/O pressure on the storage system, and reduce network
traffic, at the cost of increased computational overhead. From
an energy perspective, data deduplication enables a trade-off
between the energy consumed for additional computation and
the energy saved by lower storage and network load. The main
point our experiments and model bring home is the following:
while for non energy-proportional machines performance- and
energy-centric optimizations have break-even points that are
relatively close, for the newer generation of energy proportional
machines the break-even points are significantly different. An
important consequence of this difference is that, with newer
systems, there are higher energy inefficiencies when the system
is optimized for performance.

I. INTRODUCTION

Storage systems have evolved to employ techniques that
enable trade-offs over performance metrics such as through-
put, reliability, and generated I/O overhead. While the trade-
off space over these traditional performance metrics has been
extensively studied over the past decades, performance with
regard to energy efficiency attracted less attention. As a
result, determining the balance between system performance
and its energy bill is a complex and unexplored task.

Data deduplication [1]–[8] is one storage system opti-
mization that provides a trade-off between compute and
I/O overheads. It consumes additional CPU cycles to detect
data similarity and, in return, reduces the storage footprint,
pressure on the storage system, and network traffic.

While the impact of data deduplication on traditional
metrics (e.g., data throughput, storage footprint) is well
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understood [1]–[3], previous studies leave an important gap:
energy consumption analysis. They overlook two important
issues. First, while data deduplication increase the CPU load,
it may reduce the network and storage devices’ load. As
a result, it is unclear under what scenarios it will lead to
energy savings, if any. Second, the performance impact of
energy-centric tuning of the storage system is unexplored.

To gain experience with the methodological and practical
difficulties of such analysis, this work targets fixed-block
data deduplication as a first case-study. We explore dedu-
plication for its popularity – a wide class of data-intensive
systems employ deduplication from backup systems, virtual
machine image repositories, to checkpointing optimized
storage systems; and for its simplicity to design experiments
that explore the characteristics of various workloads.

The contribution of this work is threefold. First, an empir-
ical evaluation of energy consumption for data deduplication
(§III). This evaluation quantifies the energy consumption
on two hardware platforms with different characteristics in
terms of power proportionality and identifies deduplication’s
break-even point - threshold that separates the cases when
it is worth or not deduplicating data from an energy or
performance perspective (§IV). Second, it shows that break-
even points for performance and for energy efficiency are
different (§IV). Third, a simple energy consumption model
that makes it possible to reason about the benefits of
deduplication and offers an approximation for the energy
break-even point (§V).

This work is related to a rapidly growing body of works
on deploying energy efficient systems. It joins others in
which the focus is to understand the energy consumption
of compression techniques in different scenarios [9], [10].
To the best of our knowledge, this work is the first to
study the impact of data deduplication on storage system
energy consumption. Besides, it also considers different
generations of machines to demonstrate the impact of the
new power proportional hardware (i.e., hardware whose
power consumption is proportional to the utilization level)



[11] on energy consumption.
The empirical evaluation and energy model suggest that,

as storage systems and their components become increas-
ingly energy proportional, the energy and throughput break-
even points will shift farther apart. This trend has an
important consequence: optimizations for energy efficiency
and performance will likely conflict. As a result, storage
system designers and deployers will have to make conscious
and informed decisions about the metric to optimize for.

II. BACKGROUND AND RELATED WORK

This work directly relates to efforts in design/evaluation
of data deduplication solutions and energy efficient systems.

A. Data deduplication

Data deduplication is a method to detect and eliminate
similarities in the data. Briefly, deduplication works as
follows: when a new file is stored, the storage system divides
the file into blocks, computes identifiers for each block
based on its content (e.g., by hashing the data), compares
the identifiers obtained with the identifiers of the blocks
already stored, and persistently stores only the new blocks
(i.e., those with different identifiers). Similar blocks are not
stored, saving storage space, reducing the I/O load, and also
reducing network load. Experiences show that space savings
can be as high as 60% for a generic archival workload [1],
85% for application checkpointing [3], or 95% for a virtual
machine image repository [7].

A number of research and commercial systems employ
various forms of deduplication targeting two main goals:
(i) reducing the storage footprint, such as Venti [1] and
Foundation [2] optimized for archival, Mirage [5] opti-
mized for storing virtual machine images, and DEBAR
[6] optimized for enterprise-scale backup services; and (ii)
improving performance by reducing the pressure on the
persistent storage or the volume of data transferred over
the network, including low bandwidth file system [8], web
acceleration [12] content-based caching [13], and high per-
formance storage system StoreGPU [4].

While previous work focuses on the storage footprint and
run time related benefits in systems of different scales, the
impact of deduplication on energy consumption is not clear.
On the one side, detecting similarity introduces computa-
tional overhead to compute the hashes of data blocks. On the
other side, if there is detectable similarity in the workload,
the computational overhead can be offseted by less storage
or network effort. This work explores this trade-off from an
energy standpoint.

B. Energy Optimized Systems

With non power proportional hardware (i.e., hardware
that draws the same power regardless of the utilization
level), energy efficiency [11] is tightly coupled with high

resource utilization. Consequently, to increase energy effi-
ciency, previous work recommends increasing system uti-
lization through mechanisms such as application consolida-
tion [14], or through runtime optimizations to reduce per-
task energy consumption (e.g., [15]).

Hardware has become increasingly power proportional.
This trend opens new opportunities for energy efficiency for
the software stack: it enables shifting work from the most
energy efficient component (most power proportional) of a
computer system to the less energy efficient component (e.g.,
from disk to CPU) to reduce the total volume of energy
consumed for a specific task [14].

Recently, Chen et al. [9] and Kothiyal et al. [10] have
investigated the trade-off of compressing or not data in the
context of MapReduce applications and data centers, respec-
tively. Similar to this work, they concluded that compression
is not always the best choice in terms of energy consump-
tion, as it depends on the workload. Ma et al. [16] investigate
deduplication performance using a commodity low power
coprocessor for hash calculations. Unlike this work, they do
not explore the trade-off of exchanging I/O operations by
extra CPU load, and do not quantify deduplication energy
savings.To the best of our knowledge, this work is the first
to study the energy impact of deduplication and to put in
perspective the impact of new generations of computing
systems that have different energy proportionality profiles.

III. METHODOLOGY

To start investigating the impact of deduplication on
energy consumption we chose an empirical approach: mon-
itoring a distributed storage system (MosaStore [17]) that
adopts deduplication and subjecting it to a checkpointing-
like workload. The main advantage of this methodology is
that it anchors the investigation with data obtained from
real systems subjected to a realistic workload. The main
drawback is limiting the exploration space: only deduplica-
tion using fixed-size blocks and only a distributed storage
scenario (as these are core assumptions made by MosaStore).

The rest of this section presents the key aspects of the stor-
age system used, the generated workload, the deployment
platform, and our solution to estimate energy consumption.

A. Deduplication in MosaStore

MosaStore [17] is an object-based distributed storage
system that can be configured to enable workload-specific
optimizations. More relevant to this study, MosaStore can be
configured to employ deduplication to eliminate similarities
between blocks of consecutive versions of the same file.
MosaStore has three main components: a metadata manager,
storage nodes, and the client’s system access interface (SAI)
that provides a POSIX API.

Each file is divided into fixed-size blocks stored on the
storage nodes. For each file, the metadata manager main-
tains a block map which contains block-level information



including the identifier (hash value) for each block. The
SAI implements the client-side deduplication mechanism.
To write to a file, the SAI first retrieves the file’s previous-
version block map from the manager, divides the new
version of the file into blocks, computes the hash value for
each block, and searches the file’s previous-version block
map for the same hash values. The SAI sends to the storage
nodes only the blocks not found in the previous-version
block map, and reuses the blocks already stored. Once the
write operation completes, the SAI commits the new file’s
block-map to the metadata manager. Other deduplication
systems [1], [2] use similar techniques.

B. Checkpointing: An Application Use Case

Checkpointing is representative for workloads that can
benefit from deduplication as there can be significant sim-
ilarity between successive checkpoint images. We have
collected and analyzed [3] checkpoint images produced
using VM-supported checkpointing (using Xen), process-
level checkpointing (using the BLCR checkpointing library
[18]), and application-based checkpointing. Depending on
the checkpointing technique, the time interval between
checkpoints, and the deduplication technique used, the de-
tected similarity between consecutive files varied between
no similarity to 82% similarity (for BLAST bioinformatics
application checkpointed using BLCR at 5min intervals).

This study uses synthetic workloads that mimic check-
pointing workloads: The workload generators produces files
at regular time intervals and controls the similarity ratio be-
tween consecutive file versions (from 0 to 100% similarity).

C. Evaluation Testbed

We evaluate performance and energy consumption on two
classes of machines which we label ‘new’ and ‘old’:

• ‘new’ machines (Dell PowerEdge 610) are equipped
with Intel Xeon E5540 (Nehalem) @ 2.53GHz CPU
(launched Q1’09, max TDP 80W), 48GB RAM, 1Gbps
NIC, and two 500GB 7200 rpm SATA disks. Nehalem
is a new Intels architecture that exhibits major improve-
ments in power efficiency. Indeed, a machine consumes
86W in idle mode and 290W at peak utilization;

• ‘old’ machines (Dell PowerEdge 1950) are equipped
with Intel Xeon E5395 (Clovertown) @ 2.66GHz CPU
(launched Q4’06, max TDP 120W), 8GB RAM, 1Gbps
NIC, and two 300GB 7200 rpm SATA disks. A machine
consumes 188W in idle mode and 252W at peak.

All machines run Fedora 14 Linux OS (kernel 2.6.33.6).
MosaStore uses the same configuration in all experiments.
To simplify power measurements, we use only two ma-
chines: the storage node on one machine; and the manager,
the SAI, and the workload generator on a second machine.
The machines are connected by a Dell PowerConnect 6248
10Gbps switch.

D. Evaluating Performance and Energy Consumption

We use two WattsUP Pro [19] power meters to measure
the energy consumption for each of the two machines. They
measure energy at the wall power socket, capturing the
energy consumption for the entire system. A third machine
collects the measurements from the meters via a USB
interface. The meters provide a 1W power resolution, 1Hz
sampling rate, and ±1.5% accuracy.

For energy, since the meters give only a 1Hz maximum
sampling rate, we collect the measurements every second
during an experimental batch (from the beginning of the first
write until the completion of the last write). The power is
given in watts (joules/s) for the last measurement interval,
giving the energy consumed during the last measurement
interval. For each machine, we sum energy consumption
estimates to obtain the total amount of energy consumed
during the experiment batch. We report the average energy
consumed per write by dividing the total energy consump-
tion by the number of checkpoint image writes.

The evaluation considers the energy consumed by all stor-
age system components: manager, storage node and client
SAI. On the client node, however, the workload generator
runs together with the storage system component. Since it is
not possible to isolate the consumption only for the storage
system path, the evaluation conservatively reports the energy
consumed for the whole system, including the workload
generator 2.

In the plots, each point presents the average value for a
file write operation (for energy or time) calculated over a
batch of 50 writes at a fixed similarity level. The exper-
iments consider different data sizes (32, 64, 128, 256 and
512MB) while varying the similarity level (0% - 100%, with
increments of 10%). Although the time and energy required
for each operation varies, the overall relation of energy
consumption, time, and similarity is the same regardless of
the data sizes. Thus, the plots show results just for 256MB.

IV. EVALUATION

We aim to estimate energy consumption, checkpoint im-
age write performance, and the performance and energy
break-even points for platforms with different energy pro-
portionality properties. To this end we execute the same
synthetic application while varying the level of data sim-
ilarity (this is equivalent to varying the frequency of the
checkpointing operation).

Figures 1(a) and 1(b) present the energy consumption
and, respectively, the average write time per checkpoint
on the ‘new’ testbed. The main point to note is that the
break-even points for energy and performance are differ-
ent: for similarity lower than 18%, hashing overheads are
not compensated by the energy savings in I/O operations,

2Indeed, we have noted that the workload generator is lightweight
compared to the client SAI.
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Figure 1. Average energy consumed and time to write a 256MB file for different similarity levels in the ‘new’ testbed. Note: Y axes do not start at 0.
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Figure 2. Average energy consumed and time to write a 256MB file for different similarity levels in the ‘old’ testbed. Note: Y axes do not start at 0

thus enabling deduplication brings benefits only when the
workload has a similarity rates higher than 18%. From
a performance perspective, enabling deduplication makes
sense only for higher similarity levels (higher than 40%).

A second point to note is that the relative gains enabled
by deduplication differ for energy and time. For energy,
the highest consumption level (at 0% similarity) is 2.9x
larger than the lowest (at 100% similarity). For the time to
write a checkpoint, this ratio is 3.6x. Although deduplication
enables energy savings starting at lower similarity than it
enables them for time, at 95% of similarity deduplication
saves almost the same rate of energy and time (around 50%).

Figures 2(a) and 2(b) present the energy consumption and,
respectively, the average time per checkpoint write for the

‘old’ testbed. Compared to the ‘new’ testbed, the break-even
point for energy (at 10% similarity) is closer to the one for
performance (at 16% similarity). For this testbed there are
similar differences in the relative gains that deduplication
enables.

One important factor to note is that, although the two
testbeds have almost the same performance profile (as ev-
idenced by the checkpoint write performance), they have
different energy profiles. The energy consumption per write
with deduplication turned off is about 45-50% higher in
the ‘old’ testbed (even though the writing time is only
10% higher). With deduplication turned on and a high
similarity rate, the differences are even more striking: about
2x higher energy consumption in the ‘old’ testbed for about



the same write time (Figure 1(a)). The reason is that the
newer generation machines (with Nehalem CPUs) are more
power proportional and save energy by matching the level
of resources enabled (e.g., switching on/off cores) to the
offered load.

The main point the experiments bring home is the
following: while for non energy-proportional machines
performance- and energy-centric optimizations have break-
even points that are relatively close, for the newer generation
of energy proportional machines the break-even points are
significantly different. An important consequence of this
difference is that, with newer systems, there are higher
energy inefficiencies when the system is optimized for
performance. The experiments presented above quantify
these inefficiencies: on the ‘old’ testbed, optimizing for
performance leads to an up to 5% energy inefficiency (in
the 10-16% similarity rate interval). For the ‘new’ testbed,
optimizing for performance leads to an up to 20% energy
inefficiency (in the 18-40% similarity rate interval).

V. MODELLING DATA DEDUPLICATION TRADE-OFFS

“All models are wrong; but some are useful.” – G.E.P.
Box (1976)

Section IV shows that deduplication can bring energy
and/or performance savings if enough similarity exists in
the workload. It also shows that the break-even points
for energy and performance are different and depend on
the characteristics of the deployment environment. In these
conditions, system administrators need a tool to support their
configuration decisions related to deduplication.

This section proposes a simple model to guide the storage
system configuration. The model can be used in two ways.
First, to identify whether deduplication will lead to energy
savings, for a given level of similarity. Second, to estimate
the energy impact of upgrading the system: for example, by
adding SSDs (to increase energy efficiency and performance)
or by adding energy-efficient accelerators (e.g., GPUs) to
support deduplication [4].

Two guidelines direct the design of the model. First, the
model should be simple to use and do not require extensive
machine benchmarking or the use of power meters. Ideally,
it should be seeded with power information available on
technical data-sheets of various components. Second, the
model should be simple and intuitive, even at the cost of
lower accuracy, since such models have higher chances to
be adopted and used to guide decisions in complex settings.

Let us define the following variables:

• PI , PC , PIO are the power consumed by the machine
in idle state, peak CPU load, and peak I/O (disk and
network) load, respectively.

• EH is the extra energy consumed by the machine to
compute the hash value for one data block. It is roughly

approximated by EH = (PC − PI)× TH , where TH is
the time for hashing a single block.

• EIO is the energy consumed for the transfer of one
block on the storage path - including all system calls,
sending the block from the client machine, and receiving
it at the storage node and storing it on disk. EIO = 2×
(PIO−PI)×TIO. The factor 2 appears since there are
one client and one storage node involved in the storage
path, where TIO is the time for sending and storing a
block.

• S is the similarity ratio of the data;
• B is the total number of blocks to be written.
For each write operation, the extra energy needed to

compute the hash values is EH × B. The energy saved by
reducing the stress on the storage path is EIO×B×S. Every
time the energy savings are higher than the additional energy
spent to compute hash values (EIO ×B × S > EH ×B if
S > EH

EIO
= (PC−PI)×TH

2×(PIO−PI)
× TIO), then it is worth turning

deduplication on. Note that this choice is independent of the
data volume B.

The administrator can easily use this formula to guide her
deduplication related decisions. The parameters needed can
be easily benchmarked (TH and TIO), or can be provided
by system assemblers in technical sheets (PI , PC , and PIO),
and estimated or extracted from the workload history (S).

The above modeling exercise highlights our main theme:
for past, non-energy proportional systems optimizing for
energy and for performance are similar. Thus, the decision
to optimize for energy depends only on the relative runtime
to hash or store a data block and the similarity level present
in the workload. Power proportionality brings new factors
into this equation: the relative position of power consumed
when idle, under maximum I/O load and under maximum
compute load. Once a system is power proportional (that
is, if PI is significantly lower than PC and/or PIO) and it
draws different power levels at peak CPU vs. at peak I/O
load (PC 6= PIO) a richer trade-off space emerges.

To evaluate the accuracy of the simple model, we compare
its prediction of the energy break-even point with that of an
oracle. In this case, the oracle is the measurements of the two
testbeds from §IV. To benchmark the testbed and estimate
PI , PC , and PIO we ran an idle workload as well as a CPU,
and disk and network intensive workload and measured the
consumed power for each workload separately.

Benchmarking the testbed and plugging its characteristics
into the model indicates that the energy break-even points
are at 21.4% similarity for the ‘new’testbed and at 18.1%
similarity for the ‘old‘ testbed. This is close to the oracle: the
actual measurements indicate 18% and, respectively, 10% for
the energy break-even points. Despite the model simplicity, it
estimates the break-even point with relatively good accuracy.
It only fails to predict when the similarity ratio is between
18-21.4% in the new testbed or between 10-18.1% in the
old. When the similarity is in these ranges deduplication



configured using the model consumes less than 10% extra
energy compared to the optimal configuration (Figures 1(a)
and 2(a)).

Note that designing an accurate fine-granularity model for
the storage system energy consumption is a complex task:
the main reason is that it is hard to decouple the energy
consumption of different components in the system, and to
decouple the energy consumed by the application running
in the system.

VI. CONCLUSION

While for non-energy proportional computer systems,
energy- and performance-centric optimizations do not
conflict, the recent trend towards increasingly energy-
proportional systems opens new trade-offs that make the
design space significantly more complex as optimizations
for these two criteria start to diverge.

To better understand this issue, this work focuses on
data deduplication. We evaluate the energy consumption and
the performance of data deduplication in storage systems
on two different generations of machines. This evaluation
supports and quantifies the above intuition: the more power
proportional a system, the higher the opportunities to trade
among different resources and the larger the gap between
performance- and energy-centric optimizations.

We also propose an energy consumption model that high-
lights the same issues and, in spite of its simplicity, can be
used to reason about the energy and performance break-even
points when configuring a storage system.
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