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Abstract—Designing server clusters for intermittent power
introduces new possibilities to make them cheaper, greener, and
more reliable, including leveraging variable electricity prices to
buy more power when it is cheap, increasing the use of clean
renewable energy, and capping power at low levels to extend
UPS lifetime during blackouts. However, regulating power usage
to take advantage of these possibilities is challenging, since
applications often access persistent distributed state, where power
fluctuations impact I/O performance and data availability. To
address the problem, we design and implement BlinkFS, which
combines a blinking abstraction with a power-balanced data
layout and popularity-based replication/reclamation to optimize
I/O throughput and latency as power varies. Our experiments
show that BlinkFS outperforms existing approaches, particularly
at low steady power levels and high levels of intermittency.
As one example of our results, we show that BlinkFS reduces
completion time for MapReduce-style jobs by 42% at 50% full
power compared to an existing energy-proportional DFS.
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I. INTRODUCTION

The power consumption of information technology (IT)—
estimated at 1.7-2.2% of U.S. consumption [1]—raises both
environmental and cost concerns. For instance, excessive
power consumption has serious environmental ramifications,
since 83% of U.S. electricity derives from burning “dirty”
fossil fuels. Prior research often assumes that grid energy is
always available in unlimited quantities, and focuses largely on
designing applications to best use the available energy without
impacting performance [2], [3]. By comparison, there has been
little research on designing server clusters to use intermittent
power that fluctuates over time. Designing server clusters for
intermittent power introduces new possibilities to make IT
greener, cheaper, and more reliable, as outlined below.

Increasing Renewable Penetration. Environmental and cost
concerns have led IT companies to experiment with using
clean energy sources, such as wind [4] and solar [5], that are
inherently intermittent. Since long-term battery-based storage
is prohibitively expensive, increasing renewable penetration
requires closely matching local power consumption to genera-
tion. IT is particularly well-positioned to leverage renewables,
since unlike household and industrial loads, many workloads,
including delay-tolerant batch jobs, may permit some amount
of performance degradation due to periodic power shortages.
We argue that reducing carbon emissions to zero (Google’s
explicit goal [6]) necessitates using intermittent power.

Market-based Electricity Pricing. Electricity prices vary
continuously based on supply and demand. Many utilities now
offer customers access to market-based rates that vary every
five minutes to an hour. As a result, there are now opportunities
to reduce the electricity costs of servers by using less power
when prices are high, and more power when prices are low.

Unexpected Blackouts or Brownouts. Servers often connect
to Universal Power Supplies (UPSs) that supply backup power
during unexpected blackouts. An extended blackout may force
servers to limit their power consumption at a low level to ex-
tend UPS lifetime. As we discuss, maintaining the availability
of distributed applications at low power levels is challenging
if these applications access persistent distributed state.

In this paper, we present the design of a distributed file
system (DFS) for intermittent power. Since DFSs now serve
as the foundation for a wide range of distributed applications,
taking advantage of any of the opportunities above necessitates
a DFS optimized for intermittent power. As we discuss,
designing such a DFS poses a significant research challenge,
since periods of scarce power may render data inaccessible,
while periods of plentiful power may require costly data
layout adjustments to scale up I/O throughput. Our approach
leverages a recently proposed blinking abstraction [7], which
rapidly, e.g., once a minute, “blinks” servers between a high-
power active state and a low-power inactive state, that has
been shown to improve performance for stateless applications,
e.g., memcached, running on intermittent power. We show how
the technique applies to applications that store persistent state,
which remains an open problem since both disk and memory
state become unavailable whenever a blinking node is inactive.

Our system, called BlinkFS, represents a departure from
prior techniques that focus solely on energy-efficiency and are
workload-driven—they assume a varying incoming workload
and attempt to match the energy use of the system to varying
demand, e.g., by powering down servers during periods of low
demand. Instead, our techniques are power-driven—we assume
a varying supply of power, due to renewables, and modulate the
energy footprint of the system to match available power, while
continuing to provide good performance. As we discuss, our
DFS designed for intermittent power has numerous advantages
over prior workload-driven energy-efficient storage techniques,
e.g., [8], [9], [10], [11], [12], [13]. These advantages include
low amortized overhead, bounded replica inconsistency, no
capacity limitations, and always-accessible data. The primary
research challenge with applying the blinking abstraction to a
DFS is that each node’s data is inaccessible for some period
of time each blink interval. Thus, BlinkFS’s goal is to achieve
the advantages above without significantly degrading latency.
In achieving this goal, we make the following contributions.

Blinking-aware File System Design. We detail BlinkFS’s
power-driven energy management and its advantages over
co-opting existing energy-proportional DFSs for intermittent
power. The design leverages a small number of always-
active proxies to absorb file system operations, while masking
BlinkFS’s complexity from higher-level applications.

Latency Reduction Techniques. We design techniques to
mitigate blinking’s latency penalty. Our techniques combine978-1-4799-0623-9/13/$31.00 © 2013 IEEE
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staggered node active intervals with a power-balanced data
layout to ensure replicas stored on different nodes are active
for the maximum duration each blink interval. We also use
popularity-based replication/reclamation to further decrease
latency for frequently-accessed blocks of data.

Implementation and Evaluation. We implement BlinkFS on
a small-scale prototype using 10 Mac minis connected to a
programmable power supply that drives variable power traces.
We then benchmark BlinkFS’s performance and overheads at
different (fixed and oscillating) power levels. We also compare
BlinkFS with prior energy-efficient storage systems in an
intermittent power scenario using wind and solar energy for
two real-world applications: a MapReduce-style batch system
and the MemcacheDB key-value store. As an example of
our results, BlinkFS improves MapReduce job completion
time by 42% at 50% power compared to an existing energy-
proportional DFS. At 20% power, BlinkFS still finishes jobs,
while existing approaches stall due to inaccessible data.

II. DFSS AND INTERMITTENT POWER

Much prior work on power consumption in server clus-
ters focuses on workload-driven energy-proportional systems,
where power usage increases or decreases with workload
demands [14]. The goal of these systems is to not impact
performance: if demands increase, these systems increase
power consumption to maintain performance, and conversely,
can reduce power usage during low demand periods without
impacting performance. In contrast to these workload-driven
techniques, the primary constraint in our system is a vary-
ing supply of power; our system must reduce power usage
when the available power (rather than the workload) drops,
e.g., when the output from a solar panel drops. Thus, while
energy-proportional systems optimize energy consumption to
satisfy workload demands, designing for intermittent power
requires systems to optimize performance as power varies. A
strawman approach to modulating the energy footprint of the
system is to borrow ideas from workload-driven techniques
and vary the number of active nodes in response to changes in
available power rather than workload demands. As we discuss
below, such an approach does not work well for DFSs using
intermittent power due to the presence of disk state on nodes.

A. Energy-Proportional DFSs

DFSs, such as the Hadoop Distributed File System
(HDFS) [15], are widely-used systems for storing data
across multiple nodes in a server cluster. Designing energy-
proportional DFSs is challenging, since naı̈vely deactivating
nodes to reduce energy usage may render data inaccessi-
ble [10]. One simple way to prevent data on inactive nodes
from becoming inaccessible is by storing replicas on active
nodes. Replication is already used to increase read throughput
and reliability in DFSs, and is effective if the fraction of
inactive nodes is small. For example, with HDFS’s random
placement policy for replicas, the probability that any block is
inaccessible is m!(n−k)!

n!(m−k)! for n nodes, m inactive nodes, and k
replicas per block. Figure 1 plots the fraction of inaccessible
data as a function of the fraction of inactive nodes, and
shows that nearly all data is accessible for small numbers
of inactive nodes. However, the fraction of inaccessible data
rises dramatically once half the nodes are inactive, even for

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

In
a

cc
e

ss
ib

le
 D

a
ta

 (
%

)

Inactive Nodes (%)

k=1
k=3
k=7

Fig. 1: Inaccessible data rises with the fraction of inactive
nodes using a random replica placement policy.

aggressive replication factors, such as k=7. Further, even a few
inactive nodes, where the expected percentage of inaccessible
data is small, may pose serious problems, e.g., by stalling short
batch jobs that are dependent on inaccessible data.

Thus, one popular approach for designing energy-efficient
DFSs is to use concentrated data layouts, which deactivate
nodes without causing inaccessible data. The layouts often
store primary replicas on one subset of nodes, secondary
replicas on another mutually-exclusive subset, tertiary replicas
on yet another subset, etc., to deactivate non-primary nodes [8],
[10] without causing inaccessible data. Another approach is
to concentrate data to optimize for skewed access patterns,
by storing only popular data on a small subset of active
nodes [9], [11], [13], [16], [17]. Concentrated layouts lead to
two problems if available power varies, as we discuss below.

Inaccessible Data. If there is not enough power available to
activate the nodes necessary to store all data, then some data
will become inaccessible at low power levels. As we mention
in §1, sustained low power periods may occur during extended
blackout or brownout scenarios. Thus, gracefully degrading
throughput and latency down to extremely low power levels
is important. With concentrated data layouts, as data size
increases, the number of nodes, and hence minimum power
level, required to store all data and keep it accessible increases.

Write Off-loading Overhead. Energy-proportional DFSs
leverage write off-loading to temporarily cache writes on
currently active nodes, since clients cannot apply writes to
inactive nodes, e.g., [8], [12], [18]. Write off-loading is also
useful for deferring writes to overloaded nodes, which are
common when only a small number of active nodes store all
data. While a small number of active primary nodes decreases
the minimum power level necessary to keep data accessible,
it overloads primaries by requiring them to process all writes.
The approach also imposes abrupt overheads when activating
or deactivating nodes, either to apply off-loaded writes to
newly active nodes or overloaded primary nodes, respectively.

Below, we highlight two energy-proportional DFSs that use
concentrated data layouts, and discuss additional problems they
encounter if power variations are significant and frequent.

B. Migration-based Approach

We classify any approach that varies power consumption by
migrating data to concentrate it on a set of active nodes, and
then deactivating the remaining nodes, as a migration-based
approach. With this approach, power variations trigger changes
to the number of nodes storing either the most popular data or
primary, secondary, tertiary, etc. replicas. In either case, data
layout changes require expensive migrations to spread data out
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to provide higher I/O throughput (as nodes become active) or
to concentrate data and keep it accessible (as nodes become
inactive). Thus, mitigating overheads is a focus of much prior
work on energy-efficient storage [9], [11], [13].

C. Equal-Work Approach

Amur et al. propose an energy-proportional DFS, called
Rabbit, that eliminates migration-related thrashing using an
equal-work data layout [8]. The layout uses progressively
larger replica sets, e.g., more nodes store (n+ 1)-ary replicas
than n-ary replicas. Specifically, the layout orders nodes 1 . . . i
and stores bi =

B
i blocks on the ith node, where i > p and

p nodes store primary replicas (assuming a data size of B).
The layout ensures that any 1 . . . k active nodes (for k < i
total nodes) are capable of servicing B

k blocks, since B
i < B

k .
Since the approach is able to spread load equally across any
subset of nodes in the ideal case of reading all data, it ensures
energy-proportionality with no migrations.

Amur et al. provide details of the approach in prior
work [8], including its performance for workloads that diverge
from the ideal. Rabbit’s primary constraint is its storage
capacity limitations as i → ∞, since B

i defines the capacity
constraint for node i. Thus, for N homogeneous nodes capa-
ble of each storing M blocks, the nodes’ aggregate storage
capacity is MN , while Rabbit’s storage capacity is pM +∑N

i=p+1
pM
i = O(logN). For example, for N=500 nodes and

M=214=16384 64MB blocks, the aggregate storage capacity
across all nodes is MN=500 terabytes, while Rabbit’s capacity
is less than 15 terabytes, or 3% of total capacity, when p=2.

The relationships above show that the fraction of unused
capacity increases linearly with N . Thus, the total storage ca-
pacity is capable of accommodating significantly more replicas
than Rabbit uses as N increases. Thus, to achieve its benefits,
Rabbit’s design wastes a significant amount of storage space—
97% in the example above—in homogeneous clusters where
each node has a similar sized storage capacity. As we show,
for intermittent power, BlinkFS achieves performance close to
or better than Rabbit without wasting any storage capacity.

III. APPLYING BLINKING TO DFSS

The systems in the previous section use activation policies
that vary power consumption only by varying the number of
active nodes. The blinking abstraction supports many other
types of blinking policies. As we discuss in §4, BlinkFS uses
an asynchronous staggered blinking policy. Below, we provide
a brief, high-level summary of blinking. A detailed description
of the abstraction and its implementation is available in prior
work [7]. Blinking builds on PowerNap [19], which enables
rapid server transitions between the active and inactive states

The blinking abstraction permits an external controller to
remotely set a blink interval t and an active interval tactive
on each node, such that for every interval t the node is active
for time tactive and inactive for time t − tactive. ACPI’s S3
(Suspend-to-RAM) state is a good choice for the inactive
state, since it combines the capability for fast millisecond-scale
transitions with low power consumption (<5% peak power).
To control inter-node blinking patterns, the abstraction also
enables a controller to specify when a blink interval starts, as
well as when within a blink interval the active interval starts.
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Fig. 2: Simple example using a migration-based approach (a)
and blinking (b) to deal with power variations.

A. Advantages for DFSs

To see the advantages of blinking for DFSs over a
migration-based approach, consider Figure 2, where there is
initially enough power to operate four nodes that each provide
storage for a fraction of the data. If the available power
decreases by 2X, with blinking (b) we have the option of
keeping all four nodes active for time tactive = t

2 every
blink interval t, rather than deactivating two nodes. In this
case, instead of migrating data (a) and concentrating it on
two active nodes, we are able to keep the same data layout
as before without changing our aggregate I/O throughput
over each blink interval, assuming each node has the same
I/O throughput when active. Thus, at any fixed power level,
blinking is able to provide the same I/O throughput, assuming
negligible transition overheads, as an activation approach.

However, blinking has a distinct advantage over a
migration-based approach if the available power changes, since
it is possible to alter node active intervals nearly instantly to
match the available power without the overhead of migration.
In essence, blinking migrates power to data, rather than migrat-
ing data to power, which is similar to designs that advocate
migrating computation to data rather than migrating data to
computation. In contrast to Rabbit, the blinking approach does
not require severe capacity limitations on nodes to maintain
throughput. Finally, the approach is beneficial at low power
levels if not enough nodes are active to store all data, since
data is accessible for some period each blink interval.

B. Reliability Concerns

One potential drawback of frequently transitioning mag-
netic disks to and from their low-power standby state is its
impact on the reliability of the stem. We are not aware of any
work that directly addresses the reliability impact of frequently
transitioning a server platform’s electric components between
ACPI’s S0 and S3 state. In fact, recent work on PowerNap [19]
advocates even more rapid transitions (∼100ms) than our pro-
totype (∼60s) to eliminate server idle power. Anecdotally, we
have blinked our prototype tens of thousands of times over the
past year without any failures. Similarly commodity operating
systems aggressively and frequently spin down laptop disks to
save battery power without significantly impacting reliability.

Nevertheless sever disks, which are not designed for fre-
quent transitions, may reach their rated limit (estimated at
50, 000 start/stop cycles) within 5 years when transitioning
only 28 times per day [13]. More frequent transitions will pro-
portionately reduce lifetimes. However flash-based Solid State
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Fig. 3: Detailed architecture of BlinkFS, including its file metadata server, file proxy, client, block servers, and power manager.

Drives (SSDs) are reducing our reliance on magnetic disks, and
are becoming increasingly popular, since they support higher
I/O rates and are more energy-efficient than disks for a range
of seek- and scan-intensive workloads [20], [21]. SSDs do
not have these reliability concerns since they do not contain
mechanically moving parts. Further, SSD storage capacities
continue to increase and the cost per bit of storage has been
decreasing rapidly. Thus SSDs are likely to become common
in small and medium-size servers in the coming years—just as
they have become common in utralight laptops. Blinking and
BlinkFS are well suited to exploit these trends.

Further, prior work estimates that consumer disks use
roughly 10W when active and 5W when idle [20], while
other non-mechanical components may consume more than
150W. Thus, introducing a new low-power state, similar
to ACPI’s S3 state, that decouples the power state of the
mechanical components would still permit blinking only a
node’s high-power electric components, without power cycling
other mechanical components such as fans and reducing their
expected lifetime. Finally, servers highly optimized for data-
intensive applications may operate many disks, e.g., 16 disks
per server in TritonSort [22], making the power consumption
of the disks a substantial fraction of the platform’s power
consumption. In this case, BlinkFS’s approach may not be
effective, since blinking only the electric components may
have only a negligible impact on the cluster’s overall power
consumption. BlinkFS does not target these scenarios.

IV. BLINKFS DESIGN

Figure 3 depicts BlinkFS’s architecture, which resembles
other DFSs, including GFS [23], HDFS [15], Rabbit [8], etc.,
which uses a master meta-data server to coordinate access to
each node’s data via a block server. The master also maintains
the file system namespace, tree-based directory structure, file
name→ blocks mapping, and block→ node mapping, as well
as enforces the access control and block placement/replication
policy. Files consist of multiple fixed-size blocks replicated
on zero or more nodes. The master may also recover from
meta-data information stored proxies, as described below.

BlinkFS also includes a power manager that monitors
available power, as well as any energy stored in batteries, using
hardware sensors. The power manager implements a blinking
policy that continuously alters per-node blinking patterns to
match power consumption with available power. Specifically,
the power manager communicates with a power client on
each node to set the blink interval duration t, as well as its
start time and active interval (tactive). The power client also
acts as an interface for accessing other resource utilization
statistics, including CPU utilization, I/O accesses, etc. The
power manager informs the master and proxies, described
below, of the current blinking policy, i.e., when and how long
each node is active every blink interval, and per-node resource
utilization statistics. To access the file system, higher-level
applications interact with BlinkFS clients through well-known
APIs. Our prototype uses the POSIX API’s file system calls.

We do not assume that BlinkFS clients are always active,
since the BlinkFS clients in the general mixed-use clusters,
which co-locate computation and DFS storage, that BlinkFS
targets may be running on blinking nodes themselves. Thus,
to enable clients to read or write blocks on inactive nodes,
BlinkFS utilizes one or more always-active proxies to intercept
read and write requests if a client and block server are not
concurrently active, and issue them to the appropriate node
when it next becomes active. Each proxy maintains a copy
(loaded on startup by querying the master) of the meta-
data information necessary to access a specific group of files
(each file is handled by a single proxy), and ensures replica
consistency every blink interval. The proxy propagates any file
system operations that change meta-data information to the
master before committing the changes. The power manager
also maintains an up-to-date view of each node’s power state,
since each power client sends it a status message when
transitioning to or from the inactive state. The messages also
serve as heartbeats: if the power manager does not receive
any status messages from a power client within some interval,
e.g., 5 minutes, it checks if its block server has failed. A failure
prompts the master to initiate the appropriate recovery actions.

Similar to a set of always-active nodes storing primary
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replicas, proxies consume power that increases the minimum
threshold required to operate the cluster. Importantly, proxies
only serve as intermediaries, and do not store data. As BlinkFS
scales, it requires more proxies to increase its maximum
throughput, especially at moderate power levels. Note that the
target I/O throughput, and not data size, dictates the number
of proxies. As we discuss below, to ensure proxies are not a
bottleneck when power is plentiful, we employ an optimization
that enables clients to bypass proxies at high power. At low
power, the lack of node availability is the constraint, and
not the proxies. At low power, proxies buffer client read and
write operations until the necessary block servers are available,
which in-turn blocks client applications, reducing the rate at
which they issue new reads and writes. Thus, the use of a
proxy is primarily an issue at moderate power levels (∼50
full power), where the high-power optimization above is less
effective but clients still issue requests at a high rate. For
moderate power levels, our experiments (Section VI) show a
proxy-to-block server ratio of 1:10 performs well, and suggest
that for some workloads a proxy may be able to support more
nodes. Below we discuss how BlinkFS facilitates consistent
reading and writing of files, and then present techniques for
mitigating BlinkFS’s high latency penalty.

A. Reading and Writing Files

Proxies mask the complexity of interacting with blinking
nodes from applications. The master and each client use a well-
known hash function to map a file’s absolute path to a specific
proxy. To read or write a file, clients either issue requests to
the proxy directly, or use an optimization, discussed below,
that bypasses a file’s proxy if the client is active at the same
time as the file’s block servers, while preserving consistency.

Handling Reads. The meta-data necessary to read a file
includes its block IDs and their version numbers, as well as
the (IP) address and blinking information of the block servers
storing replicas of the file’s blocks. The proxy holds read
requests until a node storing the block becomes active, issues
the request to the block server, receives the data, and then
proxies it to the client. If multiple block servers storing the
block’s replicas are active, the proxy issues the request to the
node with the longest remaining active interval, assuming the
remaining active time exceeds a minimum threshold necessary
to read and transmit the block. Using a proxy to transfer data
is necessary when executing both clients and block servers on
blinking nodes, since the client may not be active at the same
time as the block server storing the requested data.

To optimize reads, mostly-active clients may directly re-
quest from the proxy the block information—IDs and version
numbers—and blinking policy for each block server holding a
replica, and then access block servers directly when they be-
come active. The optimization significantly reduces the proxy
load for read-intensive workloads. To ensure the proxy applies
all previous client writes to a block before any subsequent
reads, the proxy includes a version number for each block,
incremented on every update, in its response to the client. If
the version number for the block stored at the block server
is lower than the requested version number, it means proxy
holds pending writes that it has not yet applied. In this case,
the read stalls until the proxy applies the writes and the version
numbers match. If the block server has an equivalent or higher

version number, it sends back the data immediately. In either
case, a block server ensures that a client never gets stale data,
i.e., a block of version number lower than the requested version
number. Like a Unix file system, application-level file locking
are necessary to ensure the atomicity of cross-block reads, e.g.,
as with concurrent producers and consumers.

Handling Writes. The proxy performs a similar sequence for
writes. All writes flow through a file’s proxy, which serializes
concurrent writes and ensures all block replicas are consistent
each blink interval. The proxy may also return to the client
before applying the write to every block replica, since sub-
sequent reads either flow through the proxy or match version
numbers at the block server, as described above. The proxy
maintains an in-memory write-ahead log to track pending off-
loaded writes from clients. Since the log is small, the proxy
stores in-memory backups on one or more nodes (updated on
each write before returning to the client), which it recovers
from on failure. When the client issues the write, the proxy first
records the request in its log, increments the version number
of the updated blocks, updates the master metadata and its own
metadata, and returns to the client; next it then propagates the
write to all replicas as the block servers become active; finally,
when all replicas successfully apply the write, it removes the
request from its log of pending writes.

Since all block servers are active for some time period
each blink interval, all replicas are consistent within one
blink interval from when the client issues the write, and the
maximum time a write remains pending in the proxy’s log is
one blink interval. Of course, the proxy does have a fixed-
size log for pending writes. After filling the log, further write
requests stall until the proxy propagates at least one of its
queued writes to each replica. Based on available power and
the CPU and network utilization of block servers, the proxy
limits write throughput to ensure all pending writes are applied
within a blink interval, e.g., by stalling additional writes.

As with reads, mostly-active clients can also write directly
to block servers, while still preserving consistency as described
below, as long as the client and block server are both active at
the same time. In this case, the proxy maintains an intermediate
version number for each block, not visible to read requests, to
handle concurrent writes. An intermediate version number is
always greater than or equal to the real version number for
any block; if it is strictly greater than the real version number,
it indicates that one or more writes are pending for the block.
We summarize the flow of a direct or bypass write below.

• To write data directly to block servers a client first
sends the filename, offset, and data size to the proxy.
The proxy increments the intermediate version number
of the blocks to be updated, and then sends back the
appropriate meta-data to the client.

• The client pushes the data to all replicas as the block
servers become active. Each block server keeps the
data from the client in an internal cache until it is
directed by the proxy to apply the write or delete it.
The client can push data in any arbitrary order.

• Once the data is successfully pushed to all block
replicas, the client sends the proxy a request that
describes the update (block IDs, version numbers,
offsets, data sizes) sent to the replicas. Note that the
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Fig. 4: Combining staggered blinking (a) with a power-balanced data layout (b) maximizes block availability.

version number in an update is the same as the block’s
intermediate version number assigned by the proxy.

• The proxy updates the metadata, including the version
number of the blocks and the file, updates the master
metadata, and finishes the write by returning back to
the client. Finally, the proxy notifies block servers to
apply writes to blocks.

• If the client could not finish the write within a time
threshold set by the proxy, based on the blink and I/O
rates of the block servers, the proxy aborts the write
and directs the block servers to clear their caches.

A write operation could span several blocks. To ensure
consistency and allow concurrent multi-block writes, the proxy
imposes two additional restrictions. First, the proxy cannot
finish a bypass write operation (steps 5 and 6) until all previous
overlapping write operations are already finished or aborted.
Second, the proxy stalls a via-proxy write until all previous
overlapping bypass writes are either completed or aborted.
Two write operations are overlapping if they have at least one
block in common. Since versioning and metadata updates are
serialized by the proxy, all replicas apply concurrent writes
in the same serial order, although the data could arrive in any
order. Finally, by applying the restrictions above the proxy also
ensures the atomicity of cross-block write operations. Since
a write call in an application returns success only after the
proxy updates the metadata information, as described above, a
subsequent read call from the same application will always
see the written data or a more recent version. Likewise, a
read request never gets inconsistent data since it cannot see
intermediate versions and all stable versions are consistent.

B. Reducing the Latency Penalty

While migration-based approaches incur high overheads
when power levels change, they ensure data is accessible, i.e.,
stored on an active node, as long as there is enough power
to activate the nodes necessary to store all data. In contrast,
naı̈ve blinking incurs a high latency penalty, since each node is
inactive for some time each blink interval. BlinkFS combines
three techniques to reduce I/O latency, as described below.

Asynchronous Staggered Blinking. Staggered blinking’s goal
is to minimize the overlap in node active intervals by stagger-
ing start times equally across each blink interval. Figure 4(a)
depicts an example of staggered blinking. To perform well at

both high and low power levels, the policy assigns equal-sized
active intervals to all nodes, while varying the size of this
interval to adjust to changes in available power. Thus, at any
power level all nodes are active for the same amount of time.
In contrast, while activating all nodes in tandem (akin to co-
scheduling) may exhibit slightly lower latencies at high power
levels (especially for read requests issued during an active
interval that span multiple blocks stored on multiple nodes), it
performs much worse at moderate-to-low power since it does
not take advantage of replication to reduce latency.

Formally, for available power pavailable, total power ptotal
necessary to activate all nodes, total power pinactive required
to keep all nodes in the inactive state, blink interval duration
t, and N nodes, the duration of each node’s active interval
is tactive = t ∗ pavailable−pinactive

ptotal−pinactive
, and the blink start time

(within each interval) for the ith node (where i=0 . . . N − 1)
is bstart=(t − tactive) ∗ i

N−1 . Next we discuss how staggered
blinking combined with a data layout that spreads replicas
evenly across nodes, maximizes (at any power level) the time
at least one block replica is available each blink interval.

Power-balanced Data Layout. A power-balanced data layout
spreads replicas for each block across nodes, such that any set
of nodes storing the block’s replicas have minimum overlap-
ping active intervals using the staggered blinking policy above.
However, maintaining an optimal placement for any number
of replicas requires migrating all replicas each time we add
or remove a single one. Thus, to avoid migrations, BlinkFS
implements a policy that diverges slightly from optimal, but
prevents migrations. In particular, to place replicas BlinkFS
orders all N nodes in a circular chain from 0 . . . N − 1 and
choose a random node to store the first replica of each block.
We then place the second replica on the node opposite the first
replica in the circle, the third replica on one of the nodes half-
way between the first and second replicas, the fourth replica
on the other node between the first and second replicas, etc.
Similarly, to delete replicas, we reverse the process.

Figure 4(b) depicts an example for the three replicas using
staggered blinking from Figure 4(a). The layout policy above
is optimal, i.e., maximizes the time each block is available on
an active node each blink interval, if the number of replicas
is a power of two. While BlinkFS’s layout is not perfectly
optimal, it is designed to be close to optimal without requiring
expensive migrations each time the number of replicas for a
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block changes. Note that for blocks with stable access patterns,
where the number of replicas rarely changes, we do evenly
distribute replicas around the chain. In addition, our power-
balanced layout is more resilient to correlated failures than
concentrated data layouts, since it spreads replicas evenly
across nodes, rather than concentrating them on small subsets.

Popularity-aware Replication and Reclamation. Replication
in DFSs is common to tolerate node failures and improve
read throughput. Likewise, migrating popular replicas to active
nodes is common in energy-efficient DFSs [9], [11], [12], [13].
BlinkFS also uses replication to mitigate its latency penalty as
power varies by employing popularity-aware replication and
reclamation to reduce the latency for popular blocks. Note that
our replication strategy is independent of the power level, since
replicating at low power levels may be infeasible. In this case,
a modest amount of battery-based storage may be necessary to
spawn the appropriate replicas to satisfy performance demands.
By default, as with GFS and Hadoop, BlinkFS maintains
three replicas per block, and uses any remaining capacity to
potentially store additional latency-improving replicas.

As clients create new files or blocks become less popular,
BlinkFS lazily reclaims replicas as needed. Using staggered
blinking and a power-balanced data layout, the number of
replicas r required to ensure a block is available 100% of each
blink interval, based on the total nodes N , blink interval t,
available power p, and active node power consumption pnode,
is r = d N

b (N−1)p
N∗pnode−p c

e. At low enough power levels, i.e., where

1 > p
pnode

, there are periods within each blink interval where
no nodes are active. In this case, the minimum possible fraction
of each blink interval the block is unavailable is 1 − p

pnode
,

assuming it is replicated across all nodes.

The master uses the relationships above to compute a
block’s access latency, given its replication factor and the cur-
rent power, assuming requests are uniformly distributed over a
blink interval. There are many policies for spawning replicas to
satisfy application latency requirements. In our prototype, the
master tracks block popularity as an exponentially weighted
moving average of a block’s I/O (read) accesses, updated by
the proxy every blink interval, and replicates blocks every
period in proportion to their relative popularity, such that all
replicas consume a target fraction of unused capacity. For
frequently updated blocks, BlinkFS caps the replication factor
at three, since excessive replicas increase write overhead.

V. IMPLEMENTATION

We implement a BlinkFS prototype in C, including a
master, proxy, client, power manager, power client , and
block server, totaling (∼6000LOC). The client uses FUSE
(Filesystem in Userspace) to transfer system calls from kernel
space to user space. Thus, BlinkFS clients expose the POSIX
file system API to applications, including some blink-specific
calls. To experiment with unmodified applications, we chose
to implement our prototype in FUSE, rather than extend an
existing file system implementation, such as HDFS.

Our prototype includes an implementation of BlinkFS,
including asynchronous staggered blinking, a power-balanced
data layout, and popularity-aware replication. Our current
implementation redirects all writes through the proxy, but
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Fig. 5: Maximum sequential read/write throughput for different
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permits clients to issue reads directly to block servers if both
are concurrently active. We also maintain an in-memory log of
writes in the proxy, but currently do not mirror it to a backup.
In addition, we implement both the migration-based approach
and Rabbit from Section II for comparison in our evaluation.
We also implement the load-proportional blinking policy from
[7], which blinks nodes in proportion to block popularity.
This blinking policy specifically targets skewed popularity
distributions, e.g., Zipf, without requiring migrations.

Hardware Prototype. To conduct real experiments, we con-
struct a small-scale hardware prototype that uses intermittent
power to experiment with BlinkFS in a realistic setting.
We chose to implement and experiment with a real-world,
albeit small-scale, system because BlinkFS’s design includes a
number of components and complex interactions that are not
conducive to accurate simulation. Our prototype is similar to
the Blink prototype used by Sharma et al. [7], although instead
of low-power OLPCs, we use more powerful but energy-
efficient Mac minis. We use a small cluster of ten Mac minis
running Linux kernel 2.6.38 with 2.4Ghz Intel Core 2 Duo
processors and 2GB of RAM connected together using an
energy-efficient switch (Netgear GS116) that consumes 15W.
Each Mac mini uses a flash-based SSD with a 40GB capacity.
We also use a separate server to experiment with external
always-on clients, not co-located with block servers. The time
to transition to and from ACPI’s S3 state on the Mac mini is
one second. Much faster sleep transition times, as low as a few
milliseconds, are possible [7]. Unfortunately, manufacturers do
not optimize transition time in today’s server-class nodes.

We select a blink interval of one minute, resulting in
a transition overhead of 1

60=1.67% every blink interval. We
measure the power of the Mac mini in S3 to be 1W and the
power in S0 to be 25W. Thus, in S3, nodes operate at 4%
peak power. Since BlinkFS requires at least one node (to host
the master, proxy, and power manager) and the switch to be
active, its minimum power consumption is 40W, or 15% of
its maximum power consumption. The remaining nine nodes
each run a power client, block server, and BlinkFS client.
We power the cluster from a battery that connects to four
ExTech 382280 programmable power supplies, each capable of
producing 80W, that replay the variable power traces below.
Our experiments use the battery as only a short-term buffer
of five minutes; optimizations that utilize substantial battery-
based storage are outside the scope of this paper.

Power Signals. We program our power supplies to replay DC
generation traces from our own small-scale solar panel and
wind turbine deployment. We also experiment with multiple
steady and oscillating power levels as a percentage, where
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Latency (ms) Power (%)
⇓ 20 40 60 80 100

Replication factor = 1

Std Dev W 1619 1069 1014 9 7
R 15524 12701 1692 725 9

90thper
W 60 60 61 62 65
R 46058 33636 64 64 63

Replication factor = 3

Std Dev W 6017 4475 2089 22 22
R 5476 322 309 9 7

90thper
W 79 103 131 145 147
R 13065 64 63 63 63

Replication factor = 6

Std Dev W 8883 5743 2467 703 372
R 523 7 7 7 7

90thper
W 127 183 257 258 263
R 63 63 63 63 63

TABLE I: Standard deviation and 90th percentile latency at
different power levels and block replication factors.

0% oscillation holds power steady throughout the experiment
and N% oscillation varies power between (45+0.45N)% and
(45 − 0.45N)% every five minutes. For our renewable trace,
we combine traces from our solar/wind deployment, and set a
minimum power level equal to the power necessary to operate
BlinkFS’s switch and master node (40W). We compress our
renewable power signal to execute three days in three hours,
and scale the average power to 50% of the cluster’s maximum
power. Note that the 24X compressed power signal is not
unfair to the migration-based approach, since our data sets are
relatively small (less than 20GB). We expect large clusters to
store more than 24X this much data, increasing the relative
transfer time for migration. BlinkFS’s performance is, by
design, not dependent on the data set size.

VI. EVALUATION

We first benchmark BlinkFS’s overheads as a baseline
for understanding its performance at different steady and
oscillating power levels. We then evaluate BlinkFS for two
different types of real-world applications: a MapReduce-style
application [24] (a data-intensive batch system) and an unmod-
ified MemcacheDB (a latency-sensitive key-value store). Each
application runs as a normal process with access to the BlinkFS
mount point via FUSE. Due to space constraints, we focus
our evaluation on performance due to, potentially significant,
variations in available power. Since BlinkFS builds on the
design of existing DFSs, prior work has already evaluated other
general aspects of its design. For example, prior DFSs have
already shown that a centralized master meta-data server scales
to large server clusters, e.g., thousands of nodes [15], [23].

A. Benchmarks

To benchmark BlinkFS, we wrote a single-threaded appli-
cation that issues blocking read/write requests to the client’s
interface, rather than through FUSE, to examine performance
independent of FUSE overheads. The breakdown of the latency
overhead at each component for a sample 128KB read is
2.5ms at the proxy, 0.57ms at the block server, 2.7ms at the
client, and 0.33ms within FUSE for a total of 6.1ms. The
results demonstrate that BlinkFS’s overheads are modest. We
also benchmark BlinkFS’s maximum sequential read and write
throughput at full power for a range of block sizes. Figure 5
shows that, as expected, read and write throughput increase
with increasing block size. However, once block size exceeds

4MB throughput improvements diminish, indicating that I/O
transfer overheads begin to dominate processing overheads.

Read and write throughput via the proxy differ because
clients off-load writes to proxies, which return before applying
the writes to block servers. We also benchmark the throughput
for reads sent directly to the proxy, which shows how much
the proxy decreases maximum throughput (∼40% for large
block sizes). The overhead motivates our client optimization
that issues reads directly to the block server, assuming both
are concurrently active. The throughput of writes sent directly
to block servers is similar to that of reads. We ran a similar
experiment using 4MB blocks that scales the number of block
servers, such that each block server continuously receives a
stream of random I/O requests from multiple clients (using a
block size of 4MB). In this case, write throughput reaches its
maximum using three block servers, due to CPU overheads.
The result shows that in the worst case a proxy-to-block server
ratio larger than 1:3 does not improve write throughput; for
realistic workloads, each proxy is capable of supporting at least
ten nodes, as our case studies demonstrate

We also benchmark the read and write latency for different
block replication factors for a range of power levels. Fig-
ure 6(a) shows that average read latency increases rapidly when
using one replica if available power drops below 50%, increas-
ing to more than 8 seconds. Additional replicas significantly
reduce the latency using staggered blinking: in our prototype,
all blocks are always available, i.e., stored on an active node,
when using six replicas at 20% power. As expected, write
latency exhibits worse performance as we increase the number
of replicas. In this benchmark, where clients issue writes as fast
as possible, the proxy must apply writes to all replicas, since
its log of pending writes becomes full (Figure 6(b)). Since the
increase in the write latency is much less than the increase
in read latency, the tradeoff is acceptable for I/O workloads
that mostly read data. For our benchmarks, Table I shows the
standard deviation and 90th percentile latency for reads and
writes as the replication factor and power levels change.

Finally, we benchmark the overhead to migrate data as
power oscillates, to show that significant data migration is
not appropriate for intermittent power. For the benchmark, we
implement a migration-based approach that equally distributes
data across the active nodes. As power varies, the number
of active nodes also varies, forcing migrations to the new
set of active nodes. We oscillate available power every five
minutes, as described in §5. We wrote a simple application
that issues random (and blocking) read requests; note that
the migration-based approach does not respond to requests
while it is migrating data. Figure 7 shows that read throughput
remains nearly constant for BlinkFS at different oscillation
levels, whereas throughput decreases for the migration-based
approach as oscillations increase. Further, the size of the data
significantly impacts the migration-based approach. At high
oscillation levels, migrations for a 20GB data set result in
zero effective throughput. For smaller data sets, e.g., 10GB,
the migration-based approach performs slightly better than
BlinkFS at low oscillation levels, since the overhead to migrate
the data is less than the overheads associated with BlinkFS.
Small power variations trigger large migrations in large clus-
ters. If a 1000 node cluster with 500GB/node varies power
by 2%, it must deactivate 20 nodes, causing a 10 terabyte
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migration which takes hours with a gigabit link.

B. Case Studies

We experiment with a MapReduce-style application and
MemcacheDB using the traces discussed in §5 for three
different approaches: BlinkFS, Rabbit, and Load-proportional.
Since MapReduce executes batch jobs, it is well-suited for
intermittent power if its jobs are tolerant to delays. We
also experiment with interactive applications (MemcacheDB)
to demonstrate BlinkFS’s flexibility. To fairly compare with
Rabbit, we use an equal-work layout where the first two nodes
store primary replicas, the next five nodes store secondary
replicas, and the last two nodes store tertiary replicas.

Note that, while Rabbit performs well in some instances,
it relies on severe capacity limitations, as described in §2, to
avoid migrations. For BlinkFS’s power-balanced data layout,
we use 2/9ths of the capacity to store one replica of each
block, and the rest to store additional replicas. We set the
default number of replicas to three, with a maximum replica-
tion factor of six for our popularity-aware replication policy.
For load-proportional, we arrange blocks on nodes a priori
based on popularity (from an initial run of the application) to
eliminate data migrations, which provides an upper bound on
load-proportional performance. Since MapReduce co-locates
computation and data, the nodes execute both a client and a
block server. For the other applications, we use an external,
e.g., always-on, client. Finally, we use a block size of 4 MB.

MapReduce. For MapReduce, we create a data set based
on the top 100 e-books over the last 30 days from Project
Gutenberg. We randomly merge these books to create 27 files
between 100 and 200MB, and store them in our file system. We
then write a small MapReduce scheduler in Python, based on
BashReduce, that partitions the files into groups for each job,
and sends each group to a MapReduce worker node, co-located
on each block server. We execute the simple WordCount
MapReduce application, which reads files on each node, counts
the words in those files, and sends the results back to the

scheduler. The scheduler then executes a reduce step to output
a file containing all distinct words and their frequency.

We experiment with MapReduce using both constant and
intermittent power. At constant power, Figure 8(a) shows that
the completion time is nearly equal for all three policies at high
power, but BlinkFS outperforms the others at both medium
and low power. For instance, at 50% power BlinkFS improves
completion time by 42% compared with Rabbit and 65% com-
pared with load-proportional. Note that at low power (20%),
MapReduce stalls indefinitely using Rabbit, since it requires
at least two active nodes to ensure all data is accessible.
Both Rabbit and Load-proportional also impact MapReduce
computations by deactivating or reducing, respectively, the
active time of cluster nodes as power decreases. BlinkFS does
not affect the scheduling or placement policy as power varies.

For variable power, we execute a stream of smaller jobs,
which process data sets that only consist of 27 e-books, to
track the number of jobs we complete every five minutes. For
this experiment, Figure 8(b) shows that BlinkFS outperforms
Load-proportional at all power levels, since it does not skew
the active periods of each node. While Rabbit performs better
at high power levels, it stalls indefinitely whenever power is
unable to keep all data accessible, i.e., two active nodes.

MemcacheDB Key-Value Store. MemcacheDB is a persistent
version of the memcached key-value store that uses Berke-
leyDB as its backend. We installed MemcacheDB on our
external node, and configured it to use BlinkFS to store
its BerkeleyDB. To avoid any caching effects, we configure
MemcacheDB to use only 128 MB of RAM and set all
caching-related configuration options to their minimum pos-
sible value. We then populated the DB with 10,000 100KB
objects, and wrote a MemcacheDB workload generator to issue
key requests at a steady rate according to a Zipf distribution.

Our results show that BlinkFS and Rabbit perform well at
high and medium constant power levels (Figure 9(a)), while
load-proportional performs slightly worse. Load-proportional
does not benefit from replication, since replicas of popu-
lar blocks are inevitably stored on unpopular nodes. Thus,
BlinkFS significantly outperforms load-proportional at low
power levels. As with MapReduce, Rabbit has infinite latency
at low power, since its data is inaccessible. Next, we run the
same experiment using our wind/solar signal and observe the
average request latency over each 5-minutes interval. As shown
in Figure 9(b), BlinkFS performs better than load-proportional
at nearly all power levels. The latency for BlinkFS scales
up and down gracefully with the power signal. As in the
MapReduce example, Rabbit performs better, except when the
available power is not sufficient to keep the primaries active.
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Fig. 8: MapReduce completion time at steady power levels and using our combined wind/solar power trace.
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VII. CONCLUSION

Intermittent power opens up new possibilities to make
server clusters cheaper, greener, and more reliable, including
leveraging market-based electricity pricing, incorporating clean
renewable energy, or operating during extended blackouts.
In this paper, we design BlinkFS, a DFS optimized for in-
termittent power, implement a real-world, albeit small-scale,
prototype, and evaluate its performance compared to co-opting
existing energy-proportional DFSs for two real applications.
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