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Abstract—Configuration of hardware knobs in multicore en-
vironments for meeting performance-power demands constitutes
a desirable feature in modern data centers. At the same time,
high energy efficiency (performance per watt) requires optimal
thread-to-core assignment. In this paper, we present the runtime
estimator (RePP-C) for performance-power, characterized by
processor frequency states (P-states), a wide range of sleep
intervals (Cl-states) and workload consolidation. We also present
a schema for frequency and contention-aware thread-to-core
assignment (FACTS) which considers various thread demands.

The proposed solution (RePP-C) selects a given hardware
configuration for each active core to ensure that the performance-
power demands are satisfied while using the scheduling schema
(FACTS) for mapping threads-to-cores. Our results show that
FACTS improves over other state-of-the-art schedulers like
Distributed Intensity Online (DIO) and native Linux scheduler
by 8.25% and 37.56% in performance, with simultaneous
improvement in energy efficiency by 6.2% and 14.17%,
respectively. Moreover, we prove the usability of RePP-C by
predicting performance and power for 7 different types of
workloads and 10 different QoS targets. The results show
an average error of 7.55% and 8.96% (with 95% confidence
interval) when predicting energy and performance respectively.

I. INTRODUCTION

Managing energy efficiency (performance per watt)
requirements has become a key issue in all types of
computing systems, ranging from hand-held devices to
modern data centers. The energy efficiency requirements can
be satisfied at a very fine granularity to the level of workloads
or cores in multi-core environments. On the level of data
centers, mismatch in Quality of Service (QoS) requirements
is usually observed, this leads to violation of the performance
or power QoS guarantees for a given workload at a given
time instance. Satisfying these QoS requirements needs data
center administrators to control performance or power at
runtime for a given workload or a node.

This is an online optimization problem that may be
represented in various forms: for example minimizing energy
consumption subject to a performance target and peak power
constraint, or maximizing performance subject to a peak power
constraint or to enable energy-efficient cluster management
in data centers (which thread is assigned to each core and
what frequency to set each core when) and typically use the
native hardware (HW) capabilities. Irrespective of the precise
formulation, any solution, whether optimal or heuristic-based,
requires a fast and accurate model to predict how a potential
change in P-State (DVFS, Dynamic Voltage/Frequency

Scaling), C-State or other low-level power state would
translate into real thread performance and power demand.

Traditionally, power and performance controlling algorithms
are iterative P-State based. These algorithms are based either
on the thread behavior history [1] or in a given time quantum
and set the P-States setting for the next quantum. However,
these approaches require multiple iterations before power-
performance criteria are satisfied and this leads to massive
violations in power-performance budgets for data centers run-
ning on strict service level agreements.

In lieu of quick, yet non-reactive approaches, prediction
based algorithms provide the benefit of quick response and
reaction for a small fraction of computation costs. Since
threads have a broad spectrum of computation and memory
requirements among others, the hardware performance
monitoring counters (PMCs) available on most commercial
processors provide users the means to understand the
thread behavior. Using such counters, predictive algorithms
determine if the thread is scalable at runtime and select the
most appropriate configuration based on online optimization
problem in a single time instance.

Modern architectures with performance-power control
mechanisms such as P-States and idle-cycles (Cl-States) [4],
do not allow users to satisfy QoS guarantees below a certain
threshold with all cores active [23] (any core with a thread
running is defined as an active core). Our insight is that
using both prediction techniques and scheduling threads [3],
[5T-[8], [13], [18], [19] to avoid negative interference, can
minimize power consumption.

The main contribution of this paper include:

@ A frequency and contention-aware thread co-running
schema (FACTS) for workload balancing with core consoli-
dation, where each core operates at a different core configu-
rations. We evaluate and compare the energy efficiency and
performance over other state-of-the-art schedulers like native
Linux scheduler and Distributed Intensity Online (DIO) [3]
while considering various workloads from the SPECcpu2006
benchmark suite [2]. In particular, the algorithm developed
improves in energy efficiency over DIO by 6.2% mean (8.25%
mean in performance) and the native Linux scheduler by
14.17% mean (37.56% mean in performance).

@ Nishtala et al [4] devised a technique to predict power
and performance at runtime (RePP) for a multicore Intel
architecture using PMCs. We extend [4] for runtime estimation
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of performance-power with workload consolidation (RePP-
C). We show that RePP-C scales well and is effective to
multicore architectures that require meeting QoS guarantees.
RePP-C provides a mapping from processor performance
states (P-States), Cl-States and core consolidation to QoS like
performance (Millions of Instructions Per Second (MIPS))
and power (in W), respectively. We observe average errors
of 7.55% and 8.96% (with 95% confidence interval) when
predicting energy and performance, respectively.

II. RELATED WORK

Prior research focused on exploring the energy efficiency or
performance benefits in multicore processors, with emphasis
on thread-to-core mappings to avoid negative interference due
to shared resource contention [3], [5]-[&], [13], [18], [19].
The existing literature also refers to guaranteeing a certain
performance or power consumed using prediction techniques.

[Performance-Power prediction]: In particular, Bellosa [9]
used PMCs at run time to build a power-aware policy at OS
level. Isci first showed that using PMC:s it is possible to detect
fine-grained thread phases [10] and then show breakdown of
power per component using multilinear models [! 1].

In contrast to Mccullough et al. [12], who propose that
linear regression of power tends only to work in restricted
scenarios and will tend to over-fit based on thread type.
Our results and prior work [11], [13]-[16] show that linear
regression models built using a small training dataset do
predict power and performance at runtime for a broad range of
benchmarks, which are not a part of the training dataset, with
high accuracy. S. Srinivasan et al. [17] predict the performance
of threads running on heterogeneous cores, that is from one
core type to another, using closed expressions. These
expressions, however, do not suffice for a generic approach.

Pack & Cap [18] predicts performance with an offline
analysis trained using multi-nomial logistic regression
classifier. When a change in configuration is required at
runtime, this classifier returns the best candidate operating
configuration. In contrast, RePP-C builds power and
performance models using PMCs, giving a more generic
approach with low complexity. Since, RePP-C can predict
performance-power for a distinct combination of P-States,
Cl-States and core consolidatoin simultaneously. This makes
RePP-C a good black-box for a single step fine grained per-
core power or performance online optimization problem solver
without external power meters or using thread signatures [19].

The recent work on PEPP [16] (Performance, Energy and
Power Predictor) proposes a system-level performance [20]
and power model by taking advantage of the hardware PMCs
available in recent commodity AMD processors to estimate
the total number of leading loads, and in turn, predicts
performance and power across P-States states. In contrast to
PEPP, RePP-C improves in three distinct ways: (1) RePP-C
builds performance and power models based on basic PMCs
available across all architectures (Intel, AMD and ARM).
However, the leading loads counter used in PEPP is exclusive
to AMD processors [21]. (2) In addition to providing

system level performance and power management techniques,
RePP-C also facilitates thread level power and performance
control. This is especially useful in multi-node, multicore
data centers consisting of numerous threads having different
performance and power requirements. (3) Finally, RePP-C
provides fine grained, in terms of time and precision, power
and performance control because it also consider CI-State.
[Contention-aware scheduling]: DIO [3] is a thread
scheduling technique directed towards reducing the contention
for shared resources such as cache and memory. DIO
dynamically schedules threads by spreading contention equally
among different memory domains, taking into consideration
the cache intensity of the threads. A memory domain is
defined as a set of cores sharing a last level cache (LLC).

III. FACTS: FREQUENCY AND CONTENTION AWARE
THREAD SCHEDULING

The most important research challenges when addressing
workload balancing and co-running threads at runtime is the
need to select the appropriate co-runner that will minimize
the negative impact on performance or power. Scheduling
algorithms have been proposed for co-running threads based
on inter-core [5], [6] and intra-core [7] contention.

We present our solution that addresses the challenges in
inter-core contention to improve distribution of memory band-
width across all cores while trying to maximize energy effi-
ciency with heterogeneous P-States. To cope with the changes
in the thread behavior, mapping of threads to core(s) is done
periodically (reassignment interval). The mapping of threads
is determined by taking into account the memory bandwidth
requirements and the current P-State of the core.

Specifically, we aim to minimize the difference in the total
number of LLC misses per second in a given memory domain.
To distribute the contention across memory domains, we
assign the thread with the least number of cache misses (high
MIPS and low stall cycles, destination thread) and highest
number of cache misses (low MIPS and high stall cycles,
target thread) to the core with the highest operating P-State.
Similar to operating in heterogeneous multicore platforms,
where threads with high IPS and low LLC, are mapped to
big cores to maximize energy efficiency.

[Algorithm description]: FACTS is run periodically with
a period determined by the reassignment interval of 1 second
(empirically determined). The initial thread mappings are
assigned by the Linux scheduler, which allocates threads to
cores to balance the workload among all available cores in the
system [22]. After a reassignment interval, we read the P-State
of the each core (the core P-State is fixed, refer Section V-A)
and gather the LLC misses using PMCs to determine the
memory requirements of the thread. Thereafter, sort the threads
in the descending order of LLC misses and sort active core
based on the descending order of current P-State of the cores.
Finally, FACTS maps threads to cores at runtime (low cache
misses to cores with higher P-State). Thereafter, the remaining
threads, if any, are mapped to the cores in reverse order to
the cores, that is, high cache misses to the core with high



P-State and low cache misses. This mapping given by FACTS
helps spread the total contention uniformly among all cores.

IV. REPP-C: RUNTIME ESTIMATOR FOR PERFORMANCE
POWER WITH CORE CONSOLIDATION

This section proposes RePP-C (Runtime Estimator for
Performance-Power with Core Consolidation) to model and
estimate performance-power in multicore systems with core
consolidation. We begin the section with an overview of
RePP, the way to select a configuration in RePP-C to meet
QoS guarantees and then we define QoS. Then show the
procedure to build the model to predict performance-power
using multilinear regression models with core-consolidation
using FACTS and RePP-C. Finally, we describe a technique
to select the configuration.

[Overview of RePP]: RePP is a scalable modeling and
prediction technique on multicores that works for single-
threaded and multiprogrammed workloads alike. It is aimed at
controlling performance and power in data centers that execute
hundreds of new instances of threads.

RePP does not leverage thread signatures or similarities
between threads to predict the performance and power. Instead
it is based on online monitoring of basic PMCs, which provide
thread behavior at runtime. Such data is then fed into statistical
tools to predict performance and power, making RePP fast,
accurate, and architecture-agnostic.

RePP is divided into two phases: offline and online. In
the offline phase, we build single core models by extensive
profiling of a small set of benchmarks at various P-States
and Cl-States to build multilinear regression models. We build
one multilinear regression model per P-State. We show that
the basic version of RePP provides accurate predictions for
single and multicore architectures with low error and marginal
overheads [4]. In the online phase, we use the multilinear
regression models to predict, at all P-States and Cl-States,
and control performance and power per core in the multicore
environment. To obtain the total performance or power in
multicore architectures, we aggregate the results from each
of the single cores to estimate the system performance and
power consumption (see [4]).

In the offline phase, we profile the activity in the mi-
croarchitectural components Front End (FE), Integer units
(INT), Floating Point units (FP) branch predictor unit (BPU),
private L1 (L1 cache), private L2 (L2 cache), LLC (L3 cache)
and memory subsystem (MEM). Since, these components do
have PMCs to record their activity directly, the activity ratio
(AC) of these components is computed using PMCs activity
formulas. The activity ratio is defined as the components
average number of uops per cycle (uops/cycle). The complete
set of activity formulas for can be seen in [4].

[RePP-C configuration selector]: To enforce strict QoS
guarantees, RePP-C controls the core’s P-State, Cl-State of
the next interval. We select a configuration per core every
250ms by doing a linear search for the P-State which has
the nearest proximity to the given QoS. Then, select the CI-
State for the given P-State that satisfies the QoS. This selected

configuration, P-State, Cl-State, is used for enforcing QoS
strictness for each interval. This process is repeated across
all cores.

In this study, we assume that the QoS is distributed
homogeneously across all cores. In our case study, it is
divided as 25% per core. At runtime, for the spawned
threads, RePP samples thread behavior periodically and uses
the models built to predict performance and power at all
configurations. RePP then selects the optimal configuration
for each interval to satisfy QoS.

[QoS]: In validating RePP-C on multicore architectures, we
do two types of experiments: one for validating QoS for power
and the other for performance. We define 2 input parameters:
(a) frequency of change, and (b) load (or power). The load
offered by the threads is constant between two load changes,
which can occur in intervals of 1, 6, or 9 seconds. When
the load changes, it can change based on a change_factor, as
follows. Load, measured in MIPS, starts at a minimum, and
varies by multiplying load by change_factor until it reaches
a maximum load; thereafter, the load is multiplied by the
negative value of change_factor until it reaches the minimum.
The values of change_factor tested were 20% (Turtle), 35%
(Humane), and 50% (Devil). The minimum load is defined
as the minimum IPS (instructions per second) among all 4
threads running at minimum frequency; similarly, maximum
load is the sum of IPS for all 4 threads at maximum frequency.
In another set of experiments, we change the power consumed
by the workload similarly to the load offered by the workload.

A violation in QoS occurs when RePP-C selects a configu-
ration that makes the thread fall short of the minimum required
IPS (or exceed the maximum power requirement) in a given
mapping interval.

We ran ten experiments for power and ten for performance.
Nine of them come from the combinations of the 2 parameters
(change frequency and load/power) described above; the tenth
comes from a Random setting within fixed boundaries of QoS.
Selecting a broad spectrum of load (or power) and frequency
of change allowed us to validate RePP-C across multiple
combinations of configuration at runtime. Hereafter, we refer
to Turtle, Humane, Devil and Random as QoS types.

A. RePP-C

In building performance and power models with core con-
solidation, the models need to address the following issues: (a)
How to consolidate cores? (b) Which thread co-runners will
minimize interference between workloads?; (c) What is the
impact on power consumption and performance degradation?;
(d) What is the computational latency to predict?

The technique of core consolidation can be enforced at
runtime by removing the core from the set of active cores [23].
It can also be achieved by using C-States (This reduces the
total power consumption of the inactive core to the baseline
static power.) and ensuring that there exists at least one inactive
core out of the set of active cores. In the remainder of the
paper, the core consolidation mechanism is implemented using
C-States, and we maintain the core in deep sleep state [24].



TABLE I: Component definitions for Intel Core i7

Component  Activity Formula Modeled components

1d/st execution, mob,

L1, L1 dtlb, L2 dtlb

L2 12_rqgsts:0xc0/ L2
cpu_clk_unhalted:core_p

L1 perf_count_hw_cache_l1d

LLC last_level_cache_references/ LLC
cpu_clk_unhalted:core_p
MEM perf_count_hw_bus_cycles/ memory,

cpu_clk_unhalted bus front side bus (fsb)

We verify the sleep state residency using the available machine
specific registers (MSR) (Section V-A).

We build a training set consisting of workloads with
varying memory footprint sizes and instruction rate from
SPEC suite (Section V-B). The workloads are run for 100
seconds to gather PMCs and are sampled at every 250ms. The
resulting model is validated using four other workloads which
were not a part of training set (validation set) at different
QoS types. These models are based on the activity recorded
in the microarchitectural components such as L1, L2, LLC
and MEM. A summary of the microarchitectural components
can be found in Table I [25].

Intuitively, as the total number of active cores allocated to
a workload decreases, the performance per thread and power
consumption decreases. Contrary to our intuition, our findings
show that only corunning threads have a negative impact
on their performance and power consumption significantly,
where as the reminder of the threads show minimal changes
in performance and power consumption.

We implement FACTS to allocate threads-to-cores (at a
reassignment interval of 1 second) while using RePP or
RePP-C to select a configuration that ensure QoS guarantees.
RePP-C is used to predict performance and power while
having the total number of active cores less than the number
of benchmark threads running on the system. Since the goal
of RePP-C is to predict with core consolidation, we assume
that there exists at least one inactive core. The estimated
decrease in power consumption and performance due to
the core consolidation is modeled offline using multilinear
regression techniques (Eq. 1). The result, performance or
power, is subtracted for every prediction on a per-thread level
for the pair of co-running threads.

We build one model for performance and another for power.
The models are built using a five step procedure:

@The performance and power limits are set exclusively
under different QoS type for each workload.

@ RePP is used to select a core configuration, P-State and
ClI-State.

@ Spawn the training workloads (Section V-B) consecu-
tively using the scheduling policy FACTS.

@ Gather PMCs and compute activity ratios for private
L1, private L2, LLC and MEM for each thread.

@ The difference between the PMCs read (or RAPL
register (Section V-A) and per-thread performance (or power)

limit for each thread that is corun in the workload, models the
error due to core consolidation and co-runners.

Eq. 1 represents the multilinear regression model to predict
the reduction in performance or power consumed due to
core consolidation, where A; represents the coefficient to be
learnt and AC'; represents the activity ratio of the individual
components (specifically L1, L2, LLC and MEM).

comps
core_consolidation = Z (A; x AC;)+constant (Eq. 1)
i=0

The initial thread-to-core assignment is carried out statically,
and the cores are set to the lowest frequency. Then, RePP pre-
dicts performance-power configurations that satisfy the perfor-
mance and power requirement as given by the QoS. Thereafter,
FACTS selects the potential co-runners for each thread running
on the system, assuming that there exists at least one inactive
core. In our case study, the core on which the thread with high-
est number of cache misses is allocated is the potential inactive
core. Consequently, RePP-C is used to predict performance-
power for each of the co-running threads, that is subtracting
the value obtained in Eq. 1 from the original prediction

(RePP). Thereafter, select RePP or RePP-C (Section 1V-B).

B. Selecting RePP or RePP-C:

At runtime, both RePP and RePP-C, predict performance
and power at all configurations for each thread. Selecting a
configuration at every interval (1s) that satisfies the given
performance or power QoS targets is based on (a) Favoring a
scheduling algorithm for power or performance target exclu-
sively; (b) Satisfying the system level QoS target; (c) Fulfilling
the per thread QoS target.

The mechanism, that is used in the system is as follows:

@ Select a configuration that satisfies per-thread target in
both algorithms.

@ Condition 1 (Cl): Compute the error between total
predicted output and QoS target.

@ Condition 2 (C2): Compute the error between the per-
thread predicted output and the QoS target per-thread.

@ If C1 and C2 are approximately met for RePP and
RePP-C, then select configuration as given using RePP, be-
cause it delivers a higher energy efficiency than RePP-C.

@ If C1 is approximately met for RePP, but C2 for RePP-
C or otherwise then: Select the configuration from either RePP
or RePP-C based on how often one does better than other in
satisfying per-thread QoS target.

V. EVALUATION

In this section, firstly, we describe the experimental setup.
Secondly, we describe the workloads used. Thirdly, we
evaluate FACTS and compare against other state-of-the-
art schedulers. Then, we validate RePP-C for a range of
workloads, which are not a part of training, by satisfying the
power and performance QoS targets. Finally, we discuss the
scalability of the proposed technique.



TABLE II: Composition of training and validation workloads
from the SPECcpu2006 benchmark suite.

Workload  Set of benchmarks

4C Calculix Gobmk Bzip2 Tonto
2M2C Lbm Astar CactusADM Calculix
4aM Astar Mcf Lbm Milc

3C1IM Povray Bzip2 Calculix Soplex
1C3M Tonto Lbm Milc Soplex

4R1 Astar Bzip2 Mcf Soplex

4R2 Lbm Bzip2 Calculix GemsFDTD

TABLE III: Composition of workloads from the SPECcpu2006
benchmark suite for validating FACTS.

Workload ~ Set of benchmarks
8C bzip2, calculix, gobmk, soplex, cactusADM, astar, tonto, povray
2M6C astar, calculix, cactusADM, gobmk, soplex, povray, tonto, bzip2

4M4C astar, milc, cactusADM, lbm, gobmk, tonto, povray, bzip
6M2C xalancbmk, wrf, gemsFDTD, astar, Ibm, tonto, calculix, cactusADM
SM astar, tonto, cactusADM, gemsFDTD, 1bm, milc, bzip2, mcf

A. Experimental Setup

We ran the experiments on an Intel SandyBridge processor
with four cores enabled running Linux kernel version 3.14.5.
Each core has a 64 KB on-chip private L1 cache and 256 KB
private L2 cache. The total shared LLC was 6 MDB, and
the DRAM capacity of 8 GB. The processor is capable of
frequency scaling from 0.8 GHz to 2.4 GHz. Turbo boost was
disabled. The total number of Cl-States in this study are 50
per core. We do not enable any other internal thermal/power
management algorithms which are run by the firmware.

We initialize one session of the performance monitoring
tool perf per thread to characterize the thread behavior and
periodically collect PMCs on a per thread session. We compile
25 SPEC benchmarks with gcc 4.8.1 and the Linux system call
sched_setaffinity ensures that the thread runs on the specified
core. The shortest thread in execution is always repeated to
the end of the experiment. To minimize the noise as much as
possible, we calculate the Percentage Absolute Average Error
(PAAE) over a period of 100 seconds.

In addition to PMCs used in Table I, we also collect
the PMCs instructions and cache-misses using perf for
gathering the number of instructions retired and last level
cache-misses to determine instructions retired and the cache-
intensity of workloads.

We change P-States by setting the CPUFreq governor
to userspace and scaling the frequency. Specifically,
the MSR register MSR_IA32_PERF_CTL [25], [26]
is used to reduce the Ilatency to a single register
move (Switching P-State using the MSR register
overrides the Linux kernel driver acpi-cpufreq). To
verify the C-State residency during core consolidation,
the MSR registers [25] MSR_PKG_C3_RESIDENCY,
MSR_PKG_C6_RESIDENCY and MSR_PKG_C7_RESI
DENCY are read periodically every second. The
computational cost (in cycles) was computed using the
RDTSC instruction.

B. Workloads

In validating FACTS, we design eight single threaded work-
load ranging from CPU- to memory-bound [2]. We allow twice
as many benchmark threads as cores. Similarly, for validating
REPP-C, we build four single threaded workloads ranging
from CPU- to memory-bound and map one benchmark for
every core available. The workloads are generated using the
technique described by Sanchez et al [27].

Similar to prior work [3], [S5]-[8], [16], [19] we have
also chosen a subset of benchmarks from the SPEC suite to
represent the effectiveness of our technique.

Table II refers to the workloads used in our environment
for validating RePP-C. In particular, the boldfaced workloads
are used for training the model: (4C) four compute intensive,
(2M2C) two memory- and two compute-intensive, (4M) four
memory intensive. The remaining workloads are used for
validating: (3C1M) three compute- and one memory-intensive,
(1C3M) one compute- and three memory-intensive, and (4R1,
4R2) two randomly chosen set of workloads consisting of four
benchmarks each. Table III refers to the workloads used in our
environment for validating FACTS. The legend for reading this
Table is similar to Table II.

C. Validating FACTS and RePP-C

[FACTS]: In validating FACTS, DIO and Linux, we set
for each scheduler all possible combination of P-States for
the set of active cores in consecutive runs for every workload
available. To compare the different scheduling policies, we
analyze the results obtained for the total energy efficiency,
activity in LLC and the total performance of all workloads for
the first 1000 seconds of execution of the workload. Also, we
study the pair of threads that are executed on a given core at
a particular P-State. To ensure statistical significance of these
results, each workload combination was run thrice and had a
95% confidence with very low error margin (less than 3%).

Previous research [3], [7], [19], [28] has shown that con-
tention for shared resources in cache hierarchy can impact
performance of the threads drastically. Miss penalty, measured
in computational cycles, is defined as the ratio of memory
access time to the inverse of frequency. Therefore, the power
consumption increases as miss penalty to access the lower
levels of caches increase.

Specifically, we show three main reasons why FACTS
improves over DIO and Linux in performance and energy-
efficiency when run for a fixed time quantum of 1000s. First,
one might intuitively assume FACTS runs slower because it
has a higher number of thread migrations which might cause
high overhead and make the workloads take longer when
dynamically mapped between cores, thus having less perfor-
mance. Towards that, Fig. 1a shows that the total performance
of FACTS improves over DIO by 8.25% (mean) and Linux
by 37.56% (mean). Second, since FACTS runs threads faster
than DIO, we assume that it might have a higher energy
consumption. However, FACTS schedules workloads based
on the demand for memory bandwidth and core P-States.
Therefore, the threads which stall for memory are migrated
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Fig. 1: Performance, Energy efficiency and LLC misses in all workloads over all frequency set combinations for FACTS, DIO

and Linux scheduler with 8 threads.

to cores with lower P-State, thus resulting in a small idle time
for compute intensive threads and small power consumption
while stalling for memory. Towards that, we looked at the
energy efficiency (MIPS/watt) and show that FACTS improves
over DIO by 6.2% (mean) and Linux by 14.17% (mean) (see
Fig. 1b). Third, since FACTS migrates threads which stall for
memory to cores with lower P-State, and DIO does not, it
improves the performance of the co-scheduled threads and
reduces the LLC misses by 4.87% (mean) over DIO and
41.70% (mean) over Linux (see Fig. lc).

For instance, while executing workload 4M4C at P-States
1.6GHz, 2.4GHz, 0.8GHz and 0.8GHz on cores 0-3, respec-
tively. DIO schedules cactusADM and Tonto on core with P-
State 0.8GHz for 82% of the execution time. We note that
cactusADM is a mid memory intensive, whereas, Tonto has
low memory activity. On the other hand, FACTS schedules
the pair of threads, Astar and Bzip2 are allocated for 10.65%;
Astar and cactusADM for 15.2%; Bzip2 and cactusADM are
allocated for 74.15% of the execution time on the core with
P-State 0.8GHz. Specifically in this scenario, we improve over
DIO by 6.84% in performance.

[RePP-C]: In validating RePP-C, we first demonstrate an
example of the prediction technique at runtime, and then we
evaluate RePP or RePP-C, in combination with FACTS to
map threads to cores. This latter evaluation is done based on
meeting the QoS target. See Section IV-B about how to select
the use of RePP or RePP-C.

Fig. 2 shows an example of the power prediction technique
implemented on our system for the first 20 seconds of exe-
cution for the workload 4R1 under QoS type Random. From
top-to-bottom, the first graph represents the power as measured
using RAPL, QoS target (Target) and the prediction made using
RePP-C. The second and third graph show the changes in
P-, Cl-States for all cores in response to changes in QoS
target along the course of the execution. The fourth graph
shows, if RePP (non-consolidated) or RePP-C (consolidated)
is deployed. Finally, the fifth graph shows the corunners to
the three active cores for RePP-C and four active cores for
RePP. We highlight two results. First, RePP-C does show the
capability to adapt to workloads consisting of multiple thread
phases [2] and ensure QoS guarantees per-thread. Despite that
fact that there are phases where RePP-C does not meet the
QoS target, for instance, in seconds 7-10 RePP-C makes a
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Fig. 2: Power prediction at runtime for workload 4R1 under
QoS type Random.

3.6W error, the average error is as low as 4.03%. Second,
RePP-C and RePP can predict power per thread which native
RAPL or PEPP [16] cannot achieve. This shows that the model
is accurate enough to capture the real behavior, is driven by
existing performance counters, and, since the computational
complexity at runtime is low, it can be used for fine-grain
power management.

Fig. 3 shows the energy consumption in millijoules (mJ)
using the power measured using native RAPL register and
QoS target over time (Target) for four workloads under all
QoS types for a period of 100 seconds. The X-axis represents
the type of workload, QoS type and the frequency of change
(in seconds). The configuration to satisfy the target is selected
using our prediction technique, RePP-C. On average, under all
QoS type the workloads exhibit an error in prediction of 7.55%
or 115.67mlJ. Observe, that the maximum error we incur is
286.4mJ (in 3C1M-Turtle_6). Moreover, the error in achieving
the given energy target for QoS types Devil, Humane, Turtle
and Randomized are 217.22mJ (16.23%), 41.63m] (2.24%),
107.80mJ (5.69%) and 56.72mJ (3.02%) respectively.

Fig. 4 shows the total performance (MIPS) in thousands
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Fig. 3: Energy consumed (mJ) across all workloads under QoS type Devil (D), Humane (H),

4R2-H_6

4R1-H_9

4R2-H_1

4R2-H_9

4R1-H_6
1C3M-T_1

1C3M-T_6

1C3M-T_9

3C1M-T_1

3CIM-T_6

3CIM-T_9

4R1-T_1

(R). The Y-axis is read as MEASURED using RAPL and QoS target over time (Target)

measured using PMCs and the QoS target over time (Target)
for four workloads under all QoS types for a period of
100 seconds. The configuration ensuring QoS guarantees is
selected using RePP-C. The X-axis represents the type of
workload, QoS type and the frequency of change (in seconds).
We incur an average error of 8.96% and a maximum error of
46.91% (in 4R2-Devil_9) and a total of 206.19MIPS.

Fig. 3 and 4 demonstrate that RePP-C has been validated
under multiple QoS types with varying frequency of changes
exhibiting different QoS requirements. Moreover, each his-
togram represents a summary of the workload execution,
similar to Fig. 2.

[Scalability]: Scalability of RePP-C is based on the number
of predictions per unit time possible for a given number of
cores. In general, scalability of the prediction and scheduling
techniques depends on computational capabilities (hardware
configuration), the output required (number of configurations),
the accuracy of the prediction technique, and the total time
taken (in terms of computational cycles or ms) for producing
the output. For RePP-C, we consider the following costs: (a)
the cost to predict performance-power without consolidation
(RePP), including reading PMCs and computing the activity
ratio (b) the cost to predict performance-power with consoli-
dation (RePP-C) (c) selecting RePP or RePP-C.

The computational cost (in cycles, refer Section V-A) to
predict performance-power with RePP is 60,000 cycles and
the consolidation incur an additional 5000 cycles. The cost to
select RePP or RePP-C is 800 cycles at 2.4GHz.

The total number of configurations possible for a four core
system are 656 billion (900 configurations per core for RePP
and RePP-C) but due to the overlap in performance-power,
prediction at all possible configurations leads to a redundancy
in computational power. Therefore, we compute a total of 3600
configurations for a four core system. Observe that although
that the total number of configurations predicted is negligible
compared to total number possible, the models built predict
performance-power with an accuracy greater than 91%.

Table IV shows the number of configurations that can be
computed within a given quantum at a specific configuration.
For example, the number of configurations for a 2 core system

TABLE IV: Number of configurations possible per core given

4R1-T 6

4R1-T_9

4R2-T_1

4R2-T_6

the number of cores and time for modeling

4R2-T_9

1C3M-R
3C1M-R

4R1-R
4R2-R

Turtle (T) and Randomized

Frequency 2.4GHz 0.8GHz
Time(S)/#Core 1 2 4 1 2 4
0.500 900 | 230888 | 230888 | 900 | 76964 | 76964
0.250 900 | 115444 | 115444 | 900 | 38482 | 38482
0.125 900 | 57722 57722 | 900 | 19241 | 19241
0.063 900 | 29092 29092 | 900 | 9697 9697
0.031 900 14315 14315 900 | 4772 4772
0.016 900 7388 7388 900 | 2463 2463
0.008 900 3694 3694 900 1231 1231

are 810000 (900 configurations per core). However, given a
P-State (say 2.4GHz) and a time constraint (say 0.125s), the
total number of computable predictions are 57722 instead of
810000. Observe that for a single-core system at 2.4GHz or
0.8GHz, the number of configuration are same because there
are only 450 configuration for each, RePP and RePP-C.

We show using Table IV that although the assessment of
the prediction and scheduling policy has been carried out on
a four core system, the computational time for predicting and
scheduling workloads in manycore architecture takes a small
time quantum and Table IV allows for determining the number
of possible configurations that can predicted for a given time
quantum at a specified frequency.

VI. CONCLUSION

The results from this paper are twofold. Firstly, we pre-
sented FACTS, an online frequency and contention-aware
thread-to-core mapping scheduling policy for multicore ar-
chitectures. FACTS can be implemented on any multicore
processor without knowledge of the workload or the target
system. Therefore, it is quick and easy to implement user-level
Linux scheduler. We compared FACTS with other state-of-
the-art schedulers and our results show improvements over all
SPECcpu2006 workloads. FACTS improves energy efficiency
by 6.2% and 14.17% over DIO and native Linux scheduler,
respectively.

Secondly we extend RePP to RePP-C, a technique to
predict performance and power at runtime parametrized by
the hardware actuators, P-States and Cl-States in multicore
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architectures to also predict in scenarios for workload con-
solidation. We implement FACTS in RePP-C for workload
consolidation. The technique proposed includes a systematic
methodology to build models to predict performance-power
for each thread running on a multicore environment. The two
prediction techniques (under performance limits and power
limits) were built over RePP-C with multiple QoS targets
and workloads have shown that the average errors of 7.55%
and 8.96% (with 95% confidence interval) are observed when
predicting energy and performance, respectively.
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