Monitoring Strategies for Scalable Dynamic
Checkpointing

Swann Perarnau
Argonne National Laboratory

Abstract—Resilience is an important challenge for extreme-
scale supercomputers. Failures in current supercomputers are
assumed to be uniformly distributed in time. However, recent
studies show that failures in high-performance computing sys-
tems are partially correlated in time, generating periods of higher
failure density. The detection of those periods is important in
order to adjust the system to new conditions. In this paper
we present a monitoring system that listens to hardware events
across computing nodes and forwards important events to the
fault tolerance runtime so it can react to those regime changes.
Our evaluation at scale shows several aspects of this dynamic
checkpointing scheme, critical to understanding its applicability
on production systems, as well as to identifying possible avenues
for future improvements. In particular, we evaluate the ability
of our system to monitor as many types of events as possible,
measure their importance, and forward them to the resilience
runtime.

Index Terms—Supercomputers, Fault Tolerance, Resilience,
Introspective Systems, Failures, High-Performance Computing.

I. INTRODUCTION

Today, most science domains use supercomputers as im-
portant research tools to accelerate research. These supercom-
puters have been increasing in size for the past two decades
and they are expected to keep improving in performance over
the coming years. This evolution of supercomputers is also
imposing new challenges. Resilience is one of these challenges
that must be addressed for extreme scale computing. Indeed, as
the number of components increases, the frequency of failures
in modern supercomputers keeps increasing, bringing down
the mean time between failures (MTBF) [1], [2]. In addition,
power constraints are leading the industry to reduce the voltage
at which these computing devices operate, increasing the
probability of voltage disturbances and hence generating more
soft errors.

In High-Performance Computing (HPC) the most common
way to cope with failures is checkpoint/restart (CR). CR
consists of saving the important data of an application into
reliable storage, so that the application can restart from that
state after a failure occurs. The state saved by the application is
usually large enough to force the application to pause during
the checkpoint and resume only after all the data has been
successfully moved to disk. This process involves a certain
overhead, which is why HPC applications do not checkpoint
frequently. In fact, CR is an optimization problem, and it
has been studied in numerous research works [3], [4]. It
depends on two parameters: the MTBF and the checkpointing
overhead. These formulas are good approximations based on

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Leonardo Bautista-Gomez
Barcelona Supercomputing Center (BSC)

the assumption that failures follow an exponential distribution.
However, recent studies [5], [6] have shown that failures
in supercomputers are correlated in time and generate time
periods of higher failure activity. We call those periods of
time the degraded regime, as opposed to the normal regime.

Although current systems are unable to recognize in real
time when the system is functioning in degraded mode, we
recently developed a monitoring system and the accompanying
dynamic checkpointing runtime to take advantage of this in-
formation [7]. Our system design is straightforward: daemons
running on all compute nodes monitor as many types of events
as possible, use operational knowledge to determine whether
those events are the sign of degraded regimes, and forward the
critical events to the checkpointing runtime. The runtime can
then adapt its checkpointing interval accordingly.

Such a scheme relies on the ability of the system to detect
when the machine enters a degraded regime. Such ability
depends on several critical functions. First, the system must
be able to monitor as many relevant sources of events (i.e.
indicators of regime change) as possible. Second, critical
events coming from all those sources must be accurately
identified. Third, the dynamic checkpointing runtime must be
notified as quickly as possible.

In this paper, we study the scaling and performance of this
monitoring and dynamic checkpointing scheme. First, since
the dynamic checkpointing runtime uses a centralized decision
process to adapt its checkpointing interval, we focus our
scalability study of the event monitoring scheme on the impact
of increasing the amount of nodes monitoring and reporting
events to a single node for classification and notification.
Second, as some types of components are prone to cascading
failures (clusters of components failing all in a short amount of
time), we evaluate the ability of our monitoring scheme to cope
with event bursts at scale. Finally, we study the throughput
of the regime change notification as more compute time is
dedicated to the analysis of an event to detect regime change.

The rest of this paper is organized as follows. Section II
explains briefly the presence of regimes in HPC production
systems. Section III then describes the design and implemen-
tation of our monitoring and dynamic checkpointing scheme.
Section IV details our experimental setup, our evaluation
methodology, and discusses the results of this evaluation and
their impact on future designs for monitoring and dynamic
checkpointing schemes. Section V discusses related work, and
Section VI briefly summarizes our conclusions and mentions



possible avenues for future work.

II. MOTIVATION

Extreme-scale HPC systems will be more dense and com-
plex than current supercomputers, because of their need to
deliver orders of magnitude higher performance. The density
and complexity of those systems are expected to create de-
pendencies and correlations between different hardware com-
ponents that will be observed on post-mortem failure analysis.
A minimalistic example of such correlations is compute nodes
that share the same power supply, as is quite common in cur-
rent systems. Hybrid systems with deeper storage hierarchies
and multiple shared components might magnify those effects,
generating more complex failure patterns.

A. Failure Frequency and Regimes

Recent studies [5] have shown the existence of a strong
temporal correlation between failures in HPC systems. When a
failure occurs in a supercomputer, the probability of observing
more failures in the following minutes or hours is larger than
the average probability of failures during the rest of the time.
Several reasons may account for such behaviors. First, the
root cause of a failure is not always well understood and may
generate more failures if the problem is not solved correctly.
For instance, overheating problems on a node might not always
be linked to the workload of the node but could also be related
to a cooling system malfunctioning, which could cause other
nodes to fail in the near future. Accurately designating the
root cause of a failure on extreme- scale systems is extremely
hard. Second, even if the root cause of the failure was correctly
understood, the mitigation plan to deal with the failure might
not necessarily produce instantaneous results. To continue with
our example of the malfunctioning cooling system, the fix of
such a problem takes time, and the overheated nodes might
not come back to nominal temperatures as rapidly as desired,
leading to more failures. Third, not all types of failures are
easy to fix in a timely manner because of their nature. For
example, disk reconstructions might generate long delays in
the file system, and such a drop in performance will last until
the failed disk has been successfully reconstructed, a process
that could take many hours depending on the amount of data
previously stored.

It has been estimated that current petascale systems spend
most of the time in normal regime and less than a third of the
time in degraded regime. Moreover, the majority of failures
occur during the intervals of degraded regime, acting in some
cases like failure bursts. In many cases, those failures bursts
are composed of the same type of failures, whereas other
failures occur most of the time in an isolated fashion. By
analyzing failure patterns, it is possible to classify failures
in two groups depending on their likelihood of belonging
to a failure burst. Such analysis can be enhanced by the
assimilation of other events often monitored by the system,
such as temperature sensors and network degradation counters.

B. Introspective Systems

Modern supercomputers gather vast amounts of data about
the status of the machine, from temperature sensors to system
workload, passing by a wide variety of performance coun-
ters. In addition, events such as ECC corrected errors and
connection time-outs have been shown to be often linked
to multiple types of system failures. Moreover, performance
degradation is also frequently followed by partial or total
failure of a system component. All these events could help
the system forecast failure bursts and ultimately reduce wasted
time. However, the amount of data generated by large-scale
systems presents a challenge. Indeed, monitoring systems will
need to analyze large numbers of events in real-time, without
slowing the scientific application running on the same nodes
that are collecting system information. Such analysis can be
complex because of their lack of regularity (i.e., performance
numbers, system messages) and their interaction with a large
number of exterior components.

Event analysis and classification in large-scale system have
been the subject of many studies, and research has shown
that they can lead to good prediction results [8], [9]. One
of the major challenges in this endeavor is the impact of
false positives. False positives will trigger unnecessary fault-
tolerant measures (e.g., proactive checkpointing) that could
result in large overheads for the application if the analysis
is not accurate enough. Therefore, real-time system event
analysis needs to be both extremely fast and accurate in order
to be effective in extreme-scale HPC systems.

In order to guarantee speed and accuracy, the event analysis
should be performed in a distributed fashion, in which each
node monitors its internal data and filters irrelevant events
locally. This avoids the multiplication of repeated events across
the system before analysis. While this is a good approach,
however another challenge also needs to be addressed: the
efficient notification of important events across the system.
Forwarded events should be taken into account in order to
make important resilient decisions, but multiple events could
be generated in different parts of the system, creating a
cascade of increasingly more aggressive measures to deal with
the forecasted degraded regime. Such measures, again, could
produce prohibitively expensive overheads for the application
if not handled carefully. The rules of what is to be considered
an important event and which measures should be taken must
be set equally across the system.

In addition, a dynamic fault-tolerance runtime must exist
in order to take advantage of the monitoring and system-
wide notification system. This involves constant awareness
of the state of the machine and clear rules about how to
react in each situation. It might also require certain changes
in the application’s resilience mechanisms to make them
more dynamic than current standards. Our previous work [7]
shows how such dynamic runtime can be implemented and
the theoretical benefits that such a scheme might offer. In
this paper we focus more on the monitoring aspects of that
system, in order to increase the number of correct regime



detections and decrease the application overhead generated by
false positives.

III. REAL-TIME MONITORING AND DYNAMIC
CHECKPOINTING

While current production HPC machines do have fault
monitoring, notification, and management systems, those com-
ponents are typically considered part of the RAS (reliabil-
ity, availability, serviceability) software stack. As such, their
purpose is to notify system administration staff and, to a
lesser extent, the job scheduler, so that failed components
can be repaired, exchanged, or reconfigured. Moreover, current
machine configurations tend to destroy any job encountering
a failure, without the application being able to act on it.

Nevertheless, we expect future machines to provide more
details about the current status of the system, and we also
expect that runtime systems will be capable of using that
information to react to failures. As an example, the Argo
project [10] is building an operating system and runtime soft-
ware stack for exascale systems and includes a fault manage-
ment component linked to a publish/subscribe infrastructure
available to application runtime systems. In the meantime, it
might be possible to collocate this kind of service with a user
job.

To this end, we describe here an application-facing event
monitoring system capable of notifying application runtimes
when a regime change occurs in the machine. While for the
purpose of this paper the only relevant events are those that
might be indicative of an incoming failure, we do not expect all
relevant machine resources or components to be able to self-
report on anomalous behavior. Therefore, we consider that, for
our purpose, an HPC production machine and a user-facing
monitoring system built for it should be decomposed into
two distinct pieces: a monitoring service and a classification
service.

A. Monitoring Machine Events

Decoupling the monitoring of the system from the iden-
tification of which events are indicative of regime changes
allows our system to perform in a distributed fashion. Indeed,
we can then place the monitoring service on each node of
the machine, while keeping centralized the identification of
regimes and the notification of the application runtime. This
will result in less messages transiting through the system, and
a better performance overall. We identify three key concepts
in our monitoring service: components, monitors, and triggers.

Components are any machine resource, software, or piece
of hardware for which status can be reported. We consider
that the status of a component is an arbitrary binary payload.
Examples of components can be the cores, socket, and memory
modules inside a compute node, the network links between
nodes or the I/O infrastructure of the machine. One could
report multiple kinds of information on the status of these
resources, for example the temperature of cores and memories,
the amount of traffic on a network link, the CPU utilization
of a compute node, the free space available on a disk, the

occurrence of ECC errors on a memory DIMM, or the list of
running daemons on management node. When a component
behaves in an anomalous way, we consider that it is possible
to classify this behavior into a discreet amount of component-
dependant behavior types.

Monitors are any component or piece of software that
can report on the current status of a component. Monitors
are responsible for polling various components for status
information. As an example, one can look at Machine Check
Exceptions [11] on most recent processors. These exceptions
are interrupts generated by processors when a correctable
or uncorrectable error occurs in hardware. The interrupt is
then handled by the operating system kernel. On Linux, if
the exception doesn’t create a system panic right away, it is
re-encoded and forwarded to a special user-space device. A
user code can then poll this device to discover recent MCEs.
Another example is a monitor that retrieves at regular intervals
information from the temperature sensors in the system. This
information might include the location of the sensor (e.g., fan,
CPU), the current reading, and the hardware limits (critical
levels).

Triggers are the algorithms that receive the status reports
from monitors and generate events if anomalous behavior is
detected. Triggers can be edge-triggered, that is, a single event
is generated when a component transitions between normal
and anomalous state, or level-triggered, that is, an event is
generated at regular intervals while the anomalous behavior
is detected. Moreover, triggers might use mechanisms similar
to hysteresis (from control systems) to limit the number of
events generated. A typical example of an edge-triggered
trigger with hysteresis is a trigger that generate an event when
the temperature of a component rise above a given value A,
and generate another event when the temperature has fallen
back to another value B, with B lower than A. This type of
trigger ensure that components that tends to have variability in
their behavior do not cause events to be generated more than
necessary.

B. Identifying Regime Changes

Our classification service runs alongside the master rank of
an application (typically rank 0). As most checkpoint/restart
schemes handle checkpoints from a centralized location, it
is reasonable to co-locate the service responsible for the
notification of regime changes on the same resources.

This classification services uses identifiers. Those algo-
rithms receive events from the monitoring service and identify
if such events are indicative of a regime change. The classi-
fication service then retransmit the regime change detected
to applications, along with the related event information.
Identifiers might use information from several events coming
from different sources to identify a regime change.

Our current identification service avoid unnecessary com-
plexity by using platform knowledge to map the type and
source of events it receives to the probability that an event
occurs during normal or degraded regimes. While we demon-
strated previously that such scheme could result in satisfying



Rank O

Classifier

Rank 1

Monitoring

System network (events)

Rank n — 1

Monitoring

Rank n

Monitoring

Fig. 1. Overview of a deployment our of system alongside an MPI application.

results [7], one could imagine more complex identifiers using
real-time information on the system to adapt its detection.

C. Implementation

From an implementation point of view, our current monitor-
ing service supports polling the log files containing machine
check exception information, polling Linux kernel data for
network and disk usage monitoring, and temperature checks
using 1ibsensors. Our monitor service retrieves at regular
intervals information from the temperature sensors in the
system, including the location of the sensor (e.g., fan, CPU),
the current reading, and the hardware limits (critical levels).
For all those cases, we implemented edge-triggered triggers,
using platform-specific alert levels. Edge-triggered alerts are
more efficient from our perspective, as they result in less
events being sent across the system.

When an event is generated by our monitoring service, it
follows a specific encoding. This encoding includes compo-
nent, monitor, and trigger identification, as well as the status
information that resulted in the event being triggered.

Those events are then forwarded to the classification service
with ZeroMQ using pub/sub communications over TCP/IP.
Our classification implementation is straightforward. It listens
for events, classifies them, and reacts to them by either
filtering them or forwarding them to an application runtime.
The built-in identifiers are implemented with support from the
event encoding, as well as user-provided platform information.
The main goal of the classification is to attach information
about regimes to important events before forwarding them to
applications.

Figure 1 gives an overview of how our monitoring and
notification system could be deployed along an application.
Our classification service runs alongside the application’s MPI
rank O while the other nodes run the monitoring services.
In this example, the system manager (or batch scheduler)
is capable of launching user services along the application,
and services and applications use separate networks. Not

represented here is the unix socket connecting rank 0 of
the application to the classifier to receive notifications about
regime changes.

Platform information is required about the machine upon
which this monitoring and notification system is deployed.
This platform information is used at the monitoring level to
configure triggers so that anomalous statuses can generate
events and inside the classification service to react to events,
decide whether a regime change occurred, and attach the
relevant information to the event forwarded to applications. We
expect that this platform information will originate from offline
analysis of the machine behavior. For our experiment purposes,
the platform information is used to map events to information
about their occurrence during normal and degraded regimes.

IV. EVALUATION

The applicability of our monitoring, notification, and dy-
namic checkpointing scheme depends on its ability to perform
as intended as the number of components and associated
failures increases.

To evaluate such performance, we designed several scaling
experiments using the Chameleon testbed. Because this testbed
provides us with root access to baremetal nodes, we are able
to launch our monitoring and classifier services as actual
service daemons across all nodes. All the nodes are dual-socket
systems using Intel Xeon E5-2670 v3 “Haswell” processors
(each with 12 cores running at 2.3 GHz). Two memory nodes
are present on each node, each 64 GiB in size. Each socket
also contains a 30MiB shared L3 cache and 256 KiB L2
caches private to each core. This system is running a vanilla
4.1.3 Linux kernel. The Linux kernel configuration contains
support for machine check exceptions (CONFIG_X86_MCE¥*)
and temperature sensors (CONFIG_SENSORS¥*).

A. Methodology

All our experiments follow the same workflow. We start
by dedicating one compute node as the master, where the
classification service will be launched. Once the compute
nodes are ready (boot, install of appropriate binaries), we
configure, launch, and trace this service on node 0. It will
run continuously, listening for messages, and outputting a
trace containing relevant experimental information. We then
launch the configured number of monitors, one per core, in
round robin fashion across nodes (i.e. monitor 0 on core 0
in node 0, monitor 1 on core 0 in node 1, and so on). For
experiments that require event bursts going through the system,
we use an event injector instead of the monitor, using the
same communication infrastructure and deployment strategy.
We used 33 (32 monitoring + 1 classifier) compute nodes for
all experiments.

Since the end goal of our monitoring infrastructure is the
notification of user applications when a regime change occurs,
we focus our measurements on a straightforward metric: the
throughput of the classifier. We measure this throughput by
measuring the number of messages the classifier can identify
and forward for the duration of each experiment. This is



directly correlated with two other key characteristics of the
system: the time it will take for an event to transit from
the monitors to the application runtime, and the capability of
the classifier to identify regime changes during the execution
of an application. Indeed, if the classifier cannot handle
messages fast enough, messages coming from the monitors
might end up delayed, increasingly the likelihood that a failure
happens before the application is notified of the regime change.
Similarly, a classification too slow to filter messages cannot
be used to implement more complex identification strategies
(analysis of aggregated events across multiple resources for
example). We consider here that the latency between the first
time an anomalous behavior is present in the system and its
detection by the monitor can be ignored: it depends only on
the rate of monitoring and a negligible parsing/encoding phase
that we already validated in our previous work.

All our experiments are run as long as necessary for each
monitor/injector in the system to send 1000 messages, ensuring
that we capture most of the behavior of the experiment.

B. Experiments

Fist, we look at the performance of our system under con-
tinuous load. For this experiment, we modified our monitoring
daemon to generate dummy events ten times per second. This
might correspond to a configuration where monitors detect too
many anomalous events, either because of a bad configuration
(alarm level on a level-triggered event too low) or a bad
component on all nodes (bug in hardware). The classifier is
here configured to discard all events (no processing). As the
number of monitors running increases, we observer whether
the classifier is able to keep up with the continuous influx of
events.

8,000

6,000 |-

4,000 -

2,000 |-

Throughput (messages/seconds)

! ! ! ! ! ! !
100 200 300 400 500 600 700

Number of Monitors

Fig. 2. Performance of our system under continuous load.

Figure 2 presents the results of this experiment. We display
the throughput of the classifier as the number of messages it
reacted to (by second), for a number of monitors between 32
and 768. As each monitor sends 10 messages per second, we
can see that the classifier is able to filter them in as much time

as it takes to generate them. From that point of view and at
this scale, our classifier seems able to handle moderate traffic
from each node without any trouble.

Our second experiment is similar, but this time we use an
event injector instead of the monitors to trigger event bursts:
short periods of time where many events occur at the same
time. This situation corresponds to a more realistic scenario:
a key component in a part of the machine is experiencing
anomalous behavior (a power or network switch, for example)
for a short period of time, triggering many smaller components
to behave erratically.

2 50,000

40,000

30,000

20,000

Throughput (messages/seconds

—_
o
o
o
o
Py

)

\
600

\ \ \
100 200 300 400 500 700

Number of Injectors
Fig. 3. Performance of our system during event bursts.

Figure 3 displays the result of this experiment. Again, we
plot the throughput of the classifier, as the average number
of messages filtered (by second) during the experiment. As
we can see, the classifier this time is less able to cope
with the number of messages arriving all at once in the
system. In this setup, each injector sends 100 messages to
the classifier, and all the injectors are launched at the same
time. This process creates contention in the network and for
the classifier, resulting in a filtering rate that fluctuates during
the experiment. Nevertheless, the filtering rate hover around
5,000 messages per second. We believe this number is high
enough that even in the case of cascading failures, the classifier
would be able to notify the application in just a few seconds.
In typical setups, such notification time would still be more
than enough to adjust checkpoints until the next failure.

Our third experiment considers the identification implemen-
tation in the classifier, and its impact on the performance of
our monitoring scheme. All other things being equal, the more
time it takes for the classifier to identify whether an event
is indicative of a degraded regime, the fewer the messages
it can analyze in a given period of time. While our current
implementation merely maps an event code to its occurrence
rate in both normal and degraded regimes, one could easy think
of more advanced classification mechanisms, using offline
analysis of the failure history of the machine, for example.



For this experiment, we launch monitors the same way as
in the first experiment but modify the classifier to sleep a
configurable amount of time when an event is received.

8,000 - |
’ —*— 10us/msg 3
—e— 100us/msg
—m— Ims/msg
6,000 |- g
) —e— 10ms/msg

4,000

2,000

Throughput (messages/seconds)

! ! ! ! !
200 300 400 500 600

Number of Monitors

! !
100 700

Fig. 4. Performance of our classifier depending on various event classification
times.

Figure 4 gives the results of this experiment. We tested
several classification times for the classifier, from 10us per
messages to 10 ms per message. As we expected, when the
time to process a message increases too much, the classifier
becomes unable to handle the messages sent from the moni-
tors, ending in severely reduced throughput (100 messages per
second). Accordingly, the application notification will suffer
from the same issue, increasing the likelihood that a failure
happens before the application runtime can be notified.

All in all, those experiments showcase the kinds of issues a
notification system might encounter. If monitors send too many
messages to the classifier, the classifier is more likely to have
trouble handling any sudden influx of messages. Likewise, if
the classifier takes too much time processing messages, it will
have trouble handling even a moderate number of messages
coming from the monitors. These experiments confirms that
our approach should provide the right amount of flexibility.
By monitoring events at the node level, we limit the number
of messages that transit through the system, and we avoid
loading the classifier too much. Similarly, by using platform
knowledge both in the monitor and in the classifier to filter
events that are not indicative of a degraded regime, we ensure
that any critical event will be handled in a timely fashion.

V. RELATED WORK

Fault tolerance has been deeply studied in the HPC field [1],
[2], [12] with many works pointing at the importance of scal-
able fault tolerance runtimes for extreme scale computing [13],
[14]. Most of those research studies focus on the design
and evaluation of scalable techniques for checkpointing [15],
[16]. Other have proposed rejuvenation techniques to minimize
software failures [17], [18]. In addition, failure prediction has
been studied [8], [19] and has showed promising results that

could be leveraged for online system monitoring. While those
studies are fundamental for achieving high fault tolerance at
scale, they all consider a rather stable MTBF and they do not
take failure bursts into consideration. For instance, the optimal
checkpoint interval for an HPC application is always computed
assuming a static MTBF [3], although such an assumption is
not realistic.

In order to have a good understanding of the failure patterns
and correlations in large-scale systems, multiple studies have
been done with recent supercomputers [2], [6], [20], and
they have shown larger failure rates than previously expected.
Other studies have focused on failures on heterogeneous
clusters [21]-[23], and they have shown that accelerators such
as GPUs are often more vulnerable to memory errors than are
classic devices. Similar results have been demonstrated also
in petascale machines with tens of thousands of GPUs [24].
Concerning the nature of soft errors, some studies [25] have
shown that failures induced by cosmic rays are very unpre-
dictable. Others research works have studied the different types
of correlations between failures that exist in modern supercom-
puters. Strong temporal [5] and spatial [26] correlations have
been shown to exist in current systems. Others have proposed
in order to exploit spatio-temporal correlations to proactively
avoid failures [27]. Those studies are fundamental for the work
presented in this paper, given that such correlations can be
exploited by using monitoring tools and introspective systems;
but the studies do not propose any integration between those
correlations and the fault tolerance runtime.

Several studies about system monitoring have demonstrated
the feasibility of such an approach [28], [29]. Although those
works present important results about system monitoring in
HPC, they do not try to make the connection with different
failure regimes and dynamic resilience runtime in order to
minimize wasted time. In addition to monitoring techniques,
notification systems have been proposed [30] to spread infor-
mation about failures and system status across the machine.
Such notification frameworks are complementary to our mon-
itoring tool proposed in this work. Event-driven time series
have been modeled with semi-Markov models [31], which is
also an important contribution for system monitoring tools.
Log analysis has been studied in the HPC context [32] for
large supercomputers such as BlueGene/P machines; however,
this has not been done online in the context of failure regime
detection with dynamic adaptation.

In a previous work [7], we show how to leverage failure
correlation to reduce wasted time. Although that work included
a preliminary analysis of the different types of event and a
simple monitoring tool, the paper focuses more on giving a
picture of the whole structure and not on monitoring. Here we
build on top of that work, but focus solely on the monitoring
techniques at large scale and how they can be improved
and optimized for failure regime detection and dynamic fault
tolerance adjustment.



VI. CONCLUSIONS

In this work we have presented a scalable monitoring tool
capable of analysing thousands of events per second. This
monitoring tool can filter unrelated events and forward impor-
tant alerts to the resilience runtime for dynamic adaptation.
We evaluated our monitoring mechanisms at large scale and
demonstrated the scalability of the approach. The results of our
evaluation show that one can implement introspective systems
based on low-level system event analysis and classification.

The scalability of our scheme is ensured through two
components. First, we designed the scheme so that most
of the logic to detect key events in the system is included
into a node-level monitoring service. This ensures that the
complexity of the parsing of various log and error formats and
the continuous monitoring of system elements is decoupled
from the identification of regime change in the machine.
Moreover, if a node experiences failures, the overall scheme
will continue to work, and might be able to detect this event
through error messages coming from other nodes. Second,
because monitors encode events before sending them to the
classification service, this component is able to implement
regime change detection in a straightforward way: simply map
an event code to platform-dependent knowledge of how much
this event is indicative of regime changes. This last component
of our monitoring scheme is critical: by integrating platform
knowledge, sourced from offline analysis of the machine for
example, into the monitoring and classification services, we
ensure that event detection and regime change detection are
tuned to each machine it is deployed unto. This can result
in some performance improvements, for example by filtering
sooner (at the monitor level) the case of events that occur often
but are not correlated with regime changes.

Finally, we would like to acknowledge that such monitoring
and regime detection scheme can only be deployed on ma-
chines where the system administrators are willing to help with
the generation of the platform-dependent configurations, and
by ensuring that user-provided code can have access to low-
level information regarding the current state of the machine.
This might proves difficult, as this information tends to be
regarded as proprietary or confidential on some systems. Nev-
ertheless, we expect that for exascale system, such information
will become more readily available, as the increase in failure
rates should push for more infrastructure so that application
runtimes can use more advanced resilience schemes.

As future work, we want to focus on the analysis of real
HPC logs for multiple large scale supercomputers and evaluate
the level of accuracy of the approach.

ACKNOWLEDGMENTS

Results presented in this paper were obtained using the
Chameleon testbed supported by the National Science Foun-
dation. This material was based upon work supported by
the U.S. Department of Energy, Office of Science, Ad-
vanced Scientific Computer Research, under Contract DE-
ACO02-06CH11357. This research has also received funding

from the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2013] under the Mont-Blanc 2 Project
(www.montblanc-project.eu), grant agreement No0610402 and
it has been supported in part by the European Union (FEDER
funds) under contract TTIN2015-65316-P.

REFERENCES

[1] S. Borkar, “Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation,” IEEE Micro, 2005.

[2] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” TDSC, 2010.

[3] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” CACM, 1974.

[4] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” Future Generation Computer Systems, 2006.

[5] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing: Exploit-
ing temporal locality in failures to mitigate checkpointing overheads on
extreme-scale systems,” in DSN, 2014.

[6] C.-D. Lu, “Failure data analysis of hpc systems,” Technical Report CoRR
abs/1302.4779, 2013.

[7]1 L. Bautista-Gomez, A. Gainaru, S. Perarnau, D. Tiwari, S. Gupta, C. En-
gelmann, F. Cappello, and M. Snir, “Reducing waste in extreme scale
systems through introspective analysis,” Argonne National Laboratory
(ANL), Tech. Rep., 2016.

[8] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cap-
pello, “Modeling and tolerating heterogeneous failures in large parallel
systems,” in SC, 2011.

[91 M. S. Bouguerra, A. Gainaru, L. B. Gomez, F. Cappello, S. Matsuoka,
and N. Maruyam, “Improving the computing efficiency of HPC systems
using a combination of proactive and preventive checkpointing,” in Par-
allel & Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on. 1EEE, 2013, pp. 501-512.

[10] P. Beckman, M. Snir et al., “Argo: An exascale operating system and
runtime research project,” http://www.argo-osr.org/.

[11] Intel Corporation, “Intel 64 and IA-32 architectures software developer’s
manual.”

[12] N. Taerat et al., “Blue Gene/L log analysis and time to interrupt
estimation,” in ARES, 2009.

[13] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox,
and E. Brewer, “Path-based failure and evolution management,” in NSDI,
2004.

[14] T. J. Hacker, F. Romero, and C. D. Carothers, “An analysis of clustered
failures on large supercomputing systems.” in JPDC, 2009.

[15] L. A. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: High performance fault tolerance
interface for hybrid systems,” in SC, 2011.

[16] Leonardo Bautista-Gomez, “Dynamic version of
https://github.com/leobago/fti/tree/dynamic, 2015.

[17] A. Andrzejak and L. M. Silva, “Deterministic models of software aging
and optimal rejuvenation schedules.” in Integrated Network Manage-
ment, 2007.

[18] V. Castelli, R. Harper, P. Heidelberger, S. Hunter, K. Trivedi,
K. Vaidyanathan, and W. Zeggert, “Proactive management of software
aging,” IBM Journal of Research and Development, 2001.

[19] S. Rani, C. Leangsuksun, A. Tikotekar, V. Rampure, and S. Scott., “To-
ward efficient failure detection and recovery in hpe,” High Availability
and Performance Workshop, 2006.

[20] B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” Journal of Physics: Conference Series 78:012022, 2007.

[21] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A large-scale
study of soft-errors on GPUs in the field,” in HPCA, 2016.

[22] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell et al., “Understanding
GPU errors on large-scale HPC systems and the implications for system
design and operation,” in HPCA, 2015.

[23] D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell, “Reliability
lessons learned from GPU experience with the Titan supercomputer at
Oak Ridge Leadership Computing Facility,” in SC, 2015.

[24] C. D. Martino et al., “Lessons learned from the analysis of system
failures at petascale: The case of Blue Waters,” in DSN, 2014.

[25] A. Hwang, I. Stefanovici, and B. Schroeder, “Cosmic rays don’t strike
twice: understanding the nature of dram errors and the implications for
system design,” SIGARCH Comput. Archit. News, 2012.

FTL”



[26]

[27]
(28]

[29]

S. Gupta, D. Tiwari et al, “Understanding and exploiting spatial
properties of system failures on extreme-scale HPC systems,” in DSN,
2015.

S. Fu and C. Xu, “Quantifying temporal and spatial fault event correla-
tion for proactive failure management,” SRDS, 2007.

K. Yamanishi, “Dynamic syslog mining for network failure monitoring,”
in KDD, 2005.

J. Becklehimer, C. Willis, J. Lothian, D. Maxwell, and D. Vasil, ‘“Real
time health monitoring of the cray xt3/xt4 using the simple event
correlator (sec).” 2011.

(30]

(31]

[32]

R. Gupta, P. Beckman, B.-H. Park, E. Lusk, P. Hargrove, A. Geist,
D. K. Panda, A. Lumsdaine, and J. Dongarra, “CIFTS: A coordinated
infrastructure for fault-tolerant systems,” in /CPP, 2009.

F. Salfner, “Modeling event-driven time series with generalized hidden
semi-markov models,” Technical Report 208, Department of Computer
Science, Humboldt University, 2006.

Z. Zheng and L. Yu, “Co-analysis of RAS Log and Job Log on Blue
Gene/P,” IPDPS, 2011.



