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Abstract—Electrocardiograms (ECGs) are usually recorded
in a clinical setting by medical professionals using twelve leads
attached to the patient. Our industry partner has developed a
single-lead ECG machine for use by patients at home. Patients
can then send these readings to remote doctors. The goal of the
machines is to make medical expertise more accessible, affordable,
and convenient.

The ECGs recorded by patients with a single-lead suffer
greatly from baseline wandering and high frequency noises, as
compared to ECGs recorded with twelve-leads in a clinical setting.

Accurate R-peak detection is an important step in ECG
analysis. A variety of methods have been proposed in the past
against standard clinical twelve-lead ECG recordings. In this
study, we propose a new R-peak detection algorithm for single-
lead mobile ECG recordings. Our area-based approach is built
on the understanding that QRS complexes are typically narrow
and tall, resulting in large areas over the curve around these
locations. Our algorithm is simple to implement, computationally
efficient, and does not require any signal pre-processing. This
conceptual simplicity is a quality that distinguishes our approach
from existing solutions.

We evaluated our algorithm against data collected by patients
from single-lead portable devices, and yielded 99.4% precision
and 99.4% recall. The MIT/BIT Arrhythmia Database of twelve-
lead clinical ECG recordings was also used to verify our algo-
rithm. On this dataset we obtained a precision of 99.3% and
recall of 98.6%.

I. INTRODUCTION
Electrocardiograms (a.k.a. ECG and EKG) record the
heart’s electrical activity and are used by medical professionals
in clinic for a variety of monitoring and diagnostic tasks.
Our overseas industrial partner has developed four models

Fig. 1 Areas over the curve (blue shading) for each local
maximum (P, R, T) in an ECG pulse.

R

— W

Fig. 2 ECG with severe baseline wandering and interruption
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Fig. 3 ECG with small b. wandering and high frequency noise

of a small, inexpensive, and simple ECG machine for patient
use at home. Our partner is the top vendor of such devices
in their domestic market, where they have been selling these
machines since 2005. In that time they have shipped hundreds
of thousands of units and established partnerships with dozens
of hospitals. Patients take ECG readings at home, which they
send in to the hospital for interpretation by medical staff.

Each ECG pulse comprises five points, known as P, Q, R,
S, and T (Figure 1). Computer algorithms are sometimes used
to automatically identify these points (e.g., [1-16]).

We have developed a new algorithm for identifying R-
peaks by computing the area over the curve. Our algorithm
performs competitively on both the standard MIT-BIH clinical
dataset [17], and a dataset of over 1000 patient-collected ECG
readings from our industrial partner. Our algorithm is easy to
understand and implement, does not require preprocessing the
signal, handles both high and low frequency noise, and is not
fooled by peaked T waves (a medical condition in which the T
waves are sharp, and are abnormally higher than the R peaks).

The quality of the ECG data produced by these inexpensive
portable machines used by patients is lower than what one
would get from an expensive machine operated by profession-
als. The data typically suffer from baseline wandering, high
frequency noise, and arbitrary interruption. (Refer to Figure 2
and Figure 3, where R peaks are labelled by blue dots.)

The devices have a single lead that the patient holds against
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Fig. 4 Normal ECG with R-peaks labelled by blue dots

Fig. 6 Pseudocode for getRIndexes(points)
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Fig. 5 Sorted over curve areas for local maxima in Figure 4.

Area over the curve for standard ECG graph
1600 n

1200

800

Area over the curve

400

Index of local maximum sorted by area over the curve

their chest. Patients typically cannot maintain constant pressure
on the lead, which introduces much of the noise.

II. AREA OVER THE CURVE

The inspiration of our algorithm came from the fact that it
is extremely easy for humans to perceive where the R peaks
are located, even when the T waves have higher amplitudes
and relatively sharp peaks. We believe that this is due to the
fact that QRS complexes are very narrow and tall (some T
waves may have higher amplitudes, but they are much wider
towards the base). Using this hypothesis, we came up with the
notion of area over the curve, which stems from the idea that
if something is narrow and tall, it must have a lot of empty
spaces around it, as illustrated by Figure 1.

Given that the typical QRS complex can last up to 120ms,
for each local maximum M, we define the neighbors N of M
as the set of points within 60ms of M. Then, M’s area over
the curve is defined as the sum of the magnitude of M minus
the magnitude of every point in N. The peaks are then sorted
by their area under the curve, and those with the greatest areas
are considered R-peaks.

Figure 4 shows an ECG reading from a healthy individual
taken with one of our partner’s portable devices. The R-peaks
are labelled with blue dots. Figure 5 shows the local maxima
points from this ECG sorted by their area over the curve. Note
the discontinuity in the graph: the R-peaks have much higher
area over the curve than the P and T peaks do.

Figure 6 lists pseudocode for finding the R-peaks by
computing the area over the curve. This algorithm does not
require any preprocessing of the ECG data: it is impervious to
both high and low frequency noise, as low frequency noises
have little effect over the short window; while peaks from
high frequency noises have small areas over the curve. Other
techniques require pre-processing with Fourier transforms [1],

duration < duration of ECG in seconds
window < number of points corresponding to 60ms
rindexes < []
arealist < []
for i = window to points.length - window - 1 do
isLocal Max < true
current < {index = i, area= 0}
for j = -window to window do
delta < points[i] - points[i + j]
if delta < 0O then
isLocal M ax < false
break
else
current.area+ = delta
end if
end for
if isLocal M ax then
areaList.add(current)
end if
end for
sort arealist by area in descending order
medianArea < areaList[duration / 2].area
thresholdArea < medianArea / 2
for i = 0 to arealist.length - 1 do
if areaList[i].area < thresholdArea then
break
else
rIndexes.add(areaList[i].index)
end if
end for
return rIndexes

Fig. 7 High-T syndrome ECG with R-peaks labelled by dots

Hilbert transforms [4, 10], wavelet transforms [6], etc.

Figure 7 shows an ECG reading from a patient with
peaked T waves: the T-peaks are higher than the R-peaks.
Nevertheless, the R-peaks still have a greater area over the
curve because the T-peaks are wider, as shown by Figure 8.

By contrast, the windowed filter technique [1] struggles
with high T waves. Figure 9 shows the windowed filter
technique successfully identifying R-peaks in a normal ECG.
Figure 10 shows the windowed filter technique erroneously
identifying T-peaks as R-peaks on an ECG from a patient with
peaked T waves.

III. EVALUATION
We evaluate our algorithm in terms of precision, recall, and
conceptual simplicity. We measure precision and recall on the
standard MIT-BIH [17] ECG dataset, as well as on a dataset



Fig. 8 Sorted over curve areas for local maxima in Figure 7.
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Fig. 9 Windowed filter [1] applied to a normal ECG. R-peaks
are the local maxima in the filter (green shaded area at top).
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from our industrial partner.

A. Precision and Recall on Industrial Partner’s Dataset

Our industrial partner provided us with 1000 unlabelled
ECG recordings taken by patients using their portable devices
at home. These ECGs are 250Hz format for 30s duration, and
have roughly 50 pulses each. We selected a random sample of
fifty ECGs and manually labelled the R peaks (2526 pulses).

Our area-over-the-curve technique obtained a precision of
99.4% and a recall of 99.4% on these ECGs.

For comparison, we also implemented the double differ-
ence technique [2] and evaluated it on this dataset, resulting
in slightly lower precision than area-over-the-curve (99.0%),
and equivalent recall (99.4%). Applying a pre-processing step
to filter high frequency noise improved the double-difference
scores to 99.4% precision and 99.5% recall, but did not change
the area-over-the-curve scores.

B. Precision and Recall on the MIT-BIH dataset
The MIT-BIH dataset [17] contains 48 ECGs collected in a
clinical setting and annotated by a team of cardiologists. These

Fig. 10 Windowed filter [1] applied to an ECG with high-
T syndrome. T-peaks are now the local maxima in the filter
(green shaded area), and the R-peaks are below the filter.
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Description | Adv. Math | Pre. | Constants

Hilbert transform [5]

Wavelet transform [6]
Mode decomposition [8]

X[ X X X < L <

Slope deflection [3] \/ 3
Shifting window [15] vV 4
Adaptive threshold [16] Vv ~ 6

| Area over the curve \ | x] 2 |

TABLE II Precision and recall on the MIT-BIH dataset

| Description | Prec. | Recall | Subset |
Shifting window [15] 99.9% | 99.9% | ~ 15%
Wavelet transform [6] 99.8% | 99.5% | ~ 23%
Hilbert transform [5] 99.9% | 99.8% | ~ 98%
Adaptive threshold [16] | 99.7% | 99.6% All
Mode decomposition [8] | 99.8% | 99.9% All
Slope deflection [3] 99.9% | 99.9% All
Area over the curve 99.3% | 98.6% All
Area over the curve 99.7% | 99.4% | ~ 94%

ECGs were recorded in the late 1970’s and have been available
to the research community for over thirty years. Each ECG is
30 minutes long, and digitized at 360Hz. The dataset contains
approximately 110,000 pulses.

Table II summarizes the results of our algorithm on this
dataset, as well as some other techniques that report these
results in their papers. Some papers report results on only a
subset of the MIT-BIH dataset, as indicated in Table II. Our
technique is competitive, but not quite as good as the top three:
adaptive threshold [16], mode decomposition [8], and slope
deflection [3].

We observed that our technique struggled with ECGs that
display premature ventricular contractions (PVC), which have
the form of a wider QRS complex, resulting in a smaller area
over the curve and a higher chance of false classification. If we
remove these PVC ECGs then the precision and recall scores
for area-over-the-curve improve.

C. Conceptual Simplicity

While our algorithm is able to perform competitively with
existing algorithms, our approaching stands out in terms of
its simplicity. A simpler algorithm is easier to implement,
requires less advanced software technology, and is less error-
prone. We consider three measures of simplicity in Table I:
whether advanced mathematics (e.g., Fourier transform, Hilbert
transform, wavelet transform, efc.) are required; whether pre-
processing is required; and how many constants are named
in the code. Most other techniques seem to require either
advanced mathematics or pre-processing, whereas our tech-
nique requires neither. Implementing advanced mathematics or
pre-processing is likely to be easier using advanced software
technology such as Matlab. Our technique, by contrast, can
be easily implemented in any general purpose imperative pro-
gramming language. Moreover, our technique requires fewer
named constants than others.

Other measures of conceptual complexity include the max-
imum depth of nested control structures and the cyclomatic



complexity [18]. Most papers do not list their pseudocode, so
it is difficult to make these measurements. In any case, our
algorithm (Figure 6) has a nested control structure depth of 3
and a cyclomatic complexity of 6.

IV. RELATED WORK

There are a fair number of prior approaches to R-peak
detection, some of which we have compared our technique
with above. A more comprehensive comparison with the
following works remains for future work. We categorize the
related work here into techniques that specifically look for R-
peaks and those that looks for QRS complexes. We sort each
list by year of publication.

A. R-peak detection:
e RRinterval detection algorithms (mobile devices) [13]
e  empirical mode decomposition [11]
e shifting window difference threshold and forward-
backward difference threshold (for real-time applica-
tions) [15]

e  preprocessing techniques for R peak detection [9]

e  variable threshold method [12]

e acombination of wavelet transform, Hilbert transform,
and adaptive thresholding [10]

e  Hilbert transform [4]

e  Hilbert transform and moving average filter [5]

e windowed filter [1]

e a sorted metric relating to slope [2]

e tensor decomposition and Kalman filtering [14]

B. ORS complex detection
e  wavelet transform [6]
e  empirical mode decomposition [8]
e  empirical mode decomposition in MATLAB [7]
e  positive negative deflection (corresponds to slope) [3]

V. CONCLUSION

The area-over-the-curve approach to R-peak detection per-
forms competitively, achieving precision and recall rates of
over 99% on both the standard MIT-BIH [17] clinical dataset
and the dataset of patient-gathered ECG recordings from our
industrial partner. One of the main advantages of the area-over-
the-curve approach is its conceptual simplicity: it does not
require advanced mathematics; it does not require advanced
software technology (e.g., Matlab); it can be implemented
with any general purpose programming language; it has low
cyclomatic complexity; it has a low number of nested control
structures; it has a low number of named constants; and it
is robust to both high and low frequency noises without pre-
processing. This conceptual simplicity makes it a suitable can-
didate for mobile computing, in particular, low-cost portable
ECG recorders.
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