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Abstract—Chaos-based approaches are frequently proposed
in information hiding, but without obvious justification. I ndeed,
the reason why chaos is useful to tackle with discretion,
robustness, or security, is rarely elucidated. This research work
presents a new class of non-blind information hiding algorithms
based on some finite domains iterations that are Devaney’s
topologically chaotic. The approach is entirely formalized and
reasons to take place into the mathematical theory of chaos
are explained. Finally, stego-security and chaos securityare
consequently proven for a large class of algorithms.

I. I NTRODUCTION

Chaos-based approaches are frequently proposed to im-
prove the quality of schemes in information hiding [1]–
[4]. In these works, the understanding of chaotic systems
is almost intuitive: a kind of noise-like spread system
with sensitive dependence on initial condition. Practically,
some well-known chaotic maps are used either in the data
encryption stage [2], [3], in the embedding into the carrier
medium, or in both [1], [5].

This work focus on non-blind binary information hiding
scheme: the original host is required to extract the binary
hidden information. This context is indeed not as restrictive
as it could primarily appear. Firstly, it allows to prove the
authenticity of a document sent through the Internet (the
original document is stored whereas the stego content is
sent). Secondly, Alice and Bob can establish an hidden
channel into a streaming video (Alice and Bob both have
the same movie, and Alice hide information into the frame
number k iff the binary digit numberk of its hidden
message is 1). Thirdly, based on a similar idea, a same
given image can be marked several times by using various
secret parameters owned both by Alice and Bob. Thus more
than one bit can be embedded into a given image by using
dhCI dissimulation. Lastly, non-blind watermarking is useful
in network’s anonymity and intrusion detection [6], and to
protect digital data sending through the Internet [7].

Methods referenced above are almost based on two fun-
damental chaotic maps, namely the Chebychev and logistic
maps, which range inR. To avoid justifying that functions
which are chaotic inR still remain chaotic in the computing
representation (i.e., floating numbers) we argue that func-
tions should be iterated on finite domains. Boolean discrete-
time dynamical systems (BS) are thus iterated.

* Authors in alphabetic order

Furthermore, previously referenced works often focus on
discretion and/or robustness properties, but they do not
consider security. As far as we know, stego-security [8] and
chaos-security have only been proven on the spread spectrum
watermarking [9], and on the dhCI algorithm [10], which is
notably based on iterating the negation function. We argue
that other functions can provide algorithms as secure as the
dhCI one. This work generalizes thus this latter algorithm
and formalizes all its stages. Due to this formalization, we
address the proofs of the two security properties for a large
class of steganography approaches.

This research work is organized as follows. Section II
first recalls the BS context. The new class of algorithms,
which is the first contribution, is firstly introduced in Sec.III.
Section IV shows how secure is our approach: this is
the second contribution of the present paper. Instances of
algorithms guaranteeing that desired properties are presented
in Sec. V. Discussion, conclusive remarks, and perspectives
are given in the final section.

II. B OOLEAN DISCRETE-TIME DYNAMICAL SYSTEMS

In this section, we first give some recalls on Boolean
discrete dynamical Systems (BS). With this material, next
sections formalize the information hiding algorithms based
on chaotic iterations.

Let n be a positive integer. A Boolean discrete-time
network is a discrete dynamical system defined from a
Boolean mapf : Bn → B

n s.t.

x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x)),

and an iteration scheme (e.g., parallel, serial, asyn-
chronous. . . ). With the parallel iteration scheme, the dynam-
ics of the system are described byxt+1 = f(xt) where
x0 ∈ B

n. Let thusFf : J1;nK ×B
n to B

n be defined by

Ff (i, x) = (x1, . . . , xi−1, fi(x), xi+1, . . . , xn),

with the asynchronousscheme, the dynamics of the system
are described byxt+1 = Ff (st, x

t) wherex0 ∈ B
n and

s is a strategy, i.e., a sequence inJ1;nKN. Notice that this
scheme only modifies one element at each iteration.

Let Gf be the map fromJ1;nKN ×B
n to itself s.t.

Gf (s, x) = (σ(s), Ff (s0, x)),

where σ(s)t = st+1 for all t in N. Notice that parallel
iteration ofGf from an initial pointX0 = (s, x0) describes
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the “same dynamics” as the asynchronous iteration off

induced by the initial pointx0 and the strategys.
Finally, let f be a map fromB

n to itself. The asyn-
chronous iteration graphassociated withf is the directed
graphΓ(f) defined by: the set of vertices isBn; for all
x ∈ B

n and i ∈ J1;nK, Γ(f) contains an arc fromx to
Ff (i, x).

III. F ORMALIZATION OF STEGANOGRAPHICMETHODS

The data hiding scheme presented here does not constrain
media to have a constant size. It is indeed sufficient to
provide a function and a strategy that may be parametrized
with the size of the elements to modify. Themodeand the
strategy-adapterdefined below achieve this goal.

Definition 1 (Mode) A mapf , which associates to anyn ∈
N an applicationfn : Bn → B

n, is called amode.

For instance, thenegation modeis defined by the map that
assigns to every integern ∈ N

∗ the function¬n : Bn →
B

n,¬n(x1, . . . , xn) 7→ (x1, . . . , xn).

Definition 2 (Strategy-Adapter) A strategy-adapteris a
function S, from N to the set of integer sequences, that
associates ton a sequenceS ∈ J1, nKN.

Intuitively, a strategy-adapter aims at generating a strategy
(St)t∈N where each termSt belongs toJ1, nK.

Let us notice that the terms ofx that may be replaced by
terms issued fromy are less important than other: they could
be changed without be perceived as such. More generally, a
signification functionattaches a weight to each term defining
a digital media, w.r.t. its positiont:

Definition 3 (Signification function) A signification func-
tion is a real sequence(uk)k∈N.

For instance, let us consider a set of grayscale images
stored into 8 bits gray levels. In that context, we consider
uk = 8− (k mod 8) to be thek-th term of a signification
function (uk)k∈N.

Definition 4 (Significance of coefficients)Let (uk)k∈N be
a signification function,m andM be two reals s.t.m < M .
Then themost significant coefficients (MSCs)of x is the
finite vectoruM , the least significant coefficients (LSCs)of
x is the finite vectorum, and thepassive coefficientsof x
is the finite vectorup such that:

uM =
(

k
∣

∣ k ∈ N and uk
> M and k 6| x |

)

um =
(

k
∣

∣ k ∈ N and uk
6 m and k 6| x |

)

up =
(

k
∣

∣ k ∈ N and uk ∈]m;M [ and k 6| x |
)

For a given host contentx, MSCs are then ranks of
x that describe the relevant part of the image, whereas
LSCs translate its less significant parts. We are then ready
to decompose an hostx into its coefficients and then to
recompose it. Next definitions formalize these two steps.

Definition 5 (Decomposition function) Let (uk)k∈N be a
signification function,B the set of finite binary sequences,
N the set of finite integer sequences,m andM be two reals
s.t.m < M . Any hostx may be decomposed into

(uM , um, up, φM , φm, φp) ∈ N×N×N×B×B×B

where

• uM , um, and up are coefficients defined in Definition
4;

• φM =
(

xu1

M , xu2

M , . . . , xu
|uM |

M

)

;

• φm =
(

xu1

m , xu2

m , . . . , xu|um|
m

)

;

• φp =
(

xu1

p , xu2

p , . . . , xu
|up|
p

)

.

The function that associates the decomposed host to any
digital host is thedecomposition function. It is further
referred as dec(u,m,M) since it is parametrized byu, m
andM . Notice thatu is a shortcut for(uk)k∈N.

Definition 6 (Recomposition) Let
(uM , um, up, φM , φm, φp) ∈ N×N×N×B×B×B s.t.

• the sets of elements inuM , elements inum, and
elements inup are a partition ofJ1, nK;

• |uM | = |ϕM |, |um| = |ϕm|, and |up| = |ϕp|.

One may associate the vector

x =

|uM |
∑

i=1

ϕi
M .eui

M
+

|um|
∑

i=1

ϕi
m.eui

m
+

|up|
∑

i=1

ϕi
p.eui

p

where (ei)i∈N is the usual basis of theR−vectorial
space

(

R
N,+, .

)

. The function that associatesx to any
(uM , um, up, φM , φm, φp) following the above constraints
is called therecomposition function.

The embedding consists in the replacement of the values
of φm of x’s LSCs byy. It then composes the two decom-
position and recomposition functions seen previously. More
formally:

Definition 7 (Embedding media) Let dec(u,m,M)
be a decomposition function,x be a host content,
(uM , um, up, φM , φm, φp) be its image by dec(u,m,M),
and y be a digital media of size|um|. The digital media
z resulting on the embedding ofy into x is the image of
(uM , um, up, φM , y, φp) by the recomposition function rec.

Let us then define thedhCI information hiding scheme:

Definition 8 (Data hiding dhCI) Let dec(u,m,M)
be a decomposition function,f be a mode, S
be a strategy adapter, x be an host content,
(uM , um, up, φM , φm, φp) be its image by dec(u,m,M), q
be a positive natural number, andy be a digital media of
sizel = |um|.

The dhCI dissimulationmaps any(x, y) to the digital
mediaz resulting on the embedding of̂y into x, s.t.



• We instantiate the modef with parameterl = |um|,
leading to the functionfl : Bl → B

l.
• We instantiate the strategy adapterS with parameter

y (and some other ones eventually). This instantiation
leads to the strategySy ∈ J1; lKN.

• We iterateGfl with initial configuration(Sy, φm).
• ŷ is theq-th term.

To summarize, iterations are realized on the LSCs of
the host content (the mode gives the iterate function, the
strategy-adapter gives its strategy), and the last computed
configuration is re-injected into the host content, in placeof
the former LSCs.

Figure 1. The dhCI dissimulation scheme

We are then left to show how to formally check whether
a given digital mediaz results from the dissimulation ofy
into the digital mediax.

Definition 9 (Marked content) Let dec(u,m,M) be a de-
composition function,f be a mode,S be a strategy adapter,
q be a positive natural number, andy be a digital media,
(uM , um, up, φM , φm, φp) be the image by dec(u,m,M) of
a digital mediax. Thenz is markedwith y if the image
by dec(u,m,M) of z is (uM , um, up, φM , ŷ, φp) whereŷ is
the right member ofGq

fl
(Sy, φm).

Various decision strategies are obviously possible to deter-
mine whether a given imagez is marked or not, depending
on the eventuality that the considered image may have been
attacked. For example, a similarity percentage betweenx

andz can be computed, and the result can be compared to
a given threshold. Other possibilities are the use of ROC
curves or the definition of a null hypothesis problem. The
next section recalls some security properties and shows how
the dhCI dissimulationalgorithm verifies them.

IV. SECURITY ANALYSIS

Stego-security [8] is the highest security class in
Watermark-Only Attack setup. LetK be the set of embed-
ding keys,p(X) the probabilistic model ofN0 initial host
contents, andp(Y |K) the probabilistic model ofN0 marked
contents s.t. each host content has been marked with the
same keyK and the same embedding function.

Definition 10 (Stego-Security [8]) The embedding func-
tion is stego-secureif ∀K ∈ K, p(Y |K) = p(X) is
established.

Let us prove that,

Theorem 1 Let ǫ be positive, l be any size of LSCs,
X ∼ U

(

B
l
)

, fl be an image mode s.t.Γ(fl) is strongly
connected and the Markov matrix associated tofl is doubly
stochastic. In the instantiateddhCI dissimulationalgorithm
with any uniformly distributed (u.d.) strategy-adapter which
is independent fromX , there exists some positive natural
numberq s.t. |p(Xq)− p(X)| < ǫ.

Proof: Let deci be the bijection betweenBl and
J0, 2l − 1K that associates the decimal value of any bi-
nary number inBl. The probabilityp(Xt) = (p(Xt =
e0), . . . , p(X

t = e2l−1)) for ej ∈ B
l is thus equal to

(p(deci(Xt) = 0, . . . , p(deci(Xt) = 2l−1)) further denoted
by πt. Let i ∈ J0, 2l−1K, the probabilityp(deci(Xt+1) = i)
is

2
l−1
∑

j=0

l
∑

k=1

p(deci(Xt) = j, St = k, i =k j, fk(j) = ik)

wherei =k j is true iff the binary representations ofi andj
may only differ for thek-th element, and whereik abusively
denotes thek-th element of the binary representation ofi.

Next, due to the proposition’s hypotheses on the strategy,
p(deci(Xt) = j, St = k, i =k j, fk(j) = ik) is equal to
1

l
.p(deci(Xt) = j, i =k j, fk(j) = ik). Finally, sincei =k j

arefk(j) = ik are constant during the iterative process and
thus does not depend onXt, we have

πt+1

i =
2
l−1
∑

j=0

πt
j .
1

l

l
∑

k=1

p(i =k j, fk(j) = ik).



Since 1

l

l
∑

k=1

p(i =k j, fk(j) = ik) is equal toMji where

M is the Markov matrix associated tofl we thus have

πt+1

i =

2
l−1
∑

j=0

πt
j .Mji and thusπt+1 = πtM.

First of all, since the graphΓ(f) is strongly connected,
then for all verticesi andj, a path can be found to reachj
from i in at most2l steps. There exists thuskij ∈ J1, 2lK s.t.
M

kij

ij > 0. As all the multiplesl × kij of kij are such that

M
l×kij

ij > 0, we can conclude that, ifk is the least common
multiple of {kij

/

i, j ∈ J1, 2lK} thus∀i, j ∈ J1, 2lK,Mk
ij > 0

and thusM is a regular stochastic matrix.
Let us now recall the following stochastic matrix theorem:

Theorem 2 (Stochastic Matrix) If M is a regular stochas-
tic matrix, thenM has an unique stationary probability
vector π. Moreover, ifπ0 is any initial probability vector
and πt+1 = πt.M for t = 0, 1, . . . then the Markov chain
πt converges toπ as t tends to infinity.

Thanks to this theorem,M has an unique stationary
probability vectorπ. By hypothesis, sinceM is doubly
stochastic we have( 1

2l
, . . . , 1

2l
) = ( 1

2l
, . . . , 1

2l
)M and thus

π = ( 1

2l
, . . . , 1

2l
). Due to the matrix theorem, there exists

someq s.t. |πq − π| < ǫ and the proof is established.
Sincep(Y |K) is p(Xq) the method is then stego-secure.
Let us focus now on chaos-security properties. An infor-

mation hiding schemeS is said to have such a property if
its iterative process has a chaotic behavior, as defined by
Devaney, on this topological space. This problem has been
reduced in [11] which provides the following theorem.

Theorem 3 Functions f : B
n → B

n such thatGf is
chaotic according to Devaney, are functions such that the
graphΓ(f) is strongly connected.

We immediatly deduce:

Corollary 1 All the dhCI dissimulationalgorithms follow-
ing hypotheses of theorem 1 are chaos-secure.

V. I NSTANTIATION OF STEGANOGRAPHICMETHODS

Theorem 1 relies on a u.d. strategy-adapter that is inde-
pendent from the cover, and on an image modefl whose it-
eration graphΓ(fl) is strongly connected and whose Markov
matrix is doubly stochastic.

The CIIS strategy adapter [10] has the required properties:
it does not depend on the cover, and the proof that its outputs
are u.d. onJ1, lK is left as an exercise for the reader (a u.d.
repartition is generated by the piecewise linear chaotic maps
and is preserved by the iterative process). Finally, [12] has
presented an iterative approach to generate image modesfl
such thatΓ(fl) is strongly connected. Among these maps,

it is obvious to check which verifies or not the doubly
stochastic constrain.

VI. CONCLUSION

This work has presented a new class of information hiding
algorithms which generalizes algorithm [10] reduced to the
negation mode. Its complete formalization has allowed to
prove the stego-security and chaos security properties. Asfar
as we know, this is the first time a whole class of algorithm
has been proven to have these two properties.

In future work, our intention is to study the robustness
of this class of dhCI dissimulation schemes. We are to
find the optimized parameters (modes, stretegy adapters,
signification coefficients, iterations numbers. . . ) givingthe
strongest robustness (depending on the chosen represen-
tation domain), theoretically and practically by realizing
comprehensive simulations. Finally these algorithms willbe
compared to other existing ones, among other things by
regarding whether these algorithms are chaotic or not.
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