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Abstract—This paper places itself in the realm of anticipatory 
systems and envisions monitoring and control methods being 
capable of making predictions over system critical parameters. 
Anticipatory systems allow intelligent control of complex systems 
by predicting their future state. In the current work, an 
intelligent model aimed at implementing anticipatory monitoring 
and control in energy industry is presented and tested. More 
particularly, a set of support vector regressors (SVRs) are 
trained using both historical and observed data. The trained 
SVRs are used to predict the future value of the system based on 
current operational system parameter. The predicted values are 
then inputted to a fuzzy logic based module where the values are 
fused to obtain a single value, i.e., final system output prediction. 
The methodology is tested on real turbine degradation datasets. 
The outcome of the approach presented in this paper highlights 
the superiority over single support vector regressors. In addition, 
it is shown that appropriate selection of fuzzy sets and fuzzy rules 
plays an important role in improving system performance. 
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I. INTRODUCTION 
Complex systems are characterized as those systems that 

cannot be modeled by just a single and simple equation, but 
they rather require a more complicated description. Therefore, 
control of complex systems is challenging and requires 
thorough and careful actions to be taken by the system 
operator. Even an initially insignificant error may propagate 
throughout the system and finally cause huge damage, if not 
detected and handled properly. 

An example of an engineered complex system is nuclear 
power plants, which are comprised of many interconnected 
systems and subsystems [1]. Hence a nuclear plant operator is 
ought to monitor a large number of operational parameters and 
observe their evolution before making any decision and/or take 
any action. Action planning and in-time decision contributes to 
reliable power plant operation, enhances plant’s safety [2], and 
minimizes costly repairs and maintenance. 

Control of complex energy systems is an active research 
area and a plethora of methodologies have been proposed or 
are under development. For instance, predictive control has 
been applied in a complex system in [3], while the method of 
transition logic based control is introduced in [4]. Other 
methods include feedback control with structural 
decomposition [5], piece-wise linear controllers [6], and neural 
network based proportional-integral-derivative (PID) controller 
[7]. Furthermore, intelligent tools have also been widely 
adopted for controlling complex systems, such as fuzzy logic 
[8-10], neurofuzzy systems [11-13], ensemble-based 
controllers [14], and multi-agent systems [15]. 

Anticipatory monitoring and control are based on the 
assumption that anticipation of future system states or future 
operational variable values can be part of the overall control 
strategy. So, the operator can make diagnosis or control 
decisions over system behavior by using information of the 
current and anticipated future state/variable values. 
Anticipatory systems are systems that contain a predictive 
model of themselves or their environment; the predictive 
model allows the forecasting of the operational parameter 
evolution i.e., how and when it transits from the current to the 
future state [16, 17]. 

In the current manuscript, a methodology for monitoring 
and controlling complex energy systems within the framework 
of anticipatory systems is presented. A set of support vector 
regressors (SVR) [18, 19] is trained to predict the value of the 
operation variable ahead-of-time. Each prediction is inputted to 
a fuzzy logic inference mechanism [20], which fuses them and 
subsequently provides a single predicted value. During fusion 
the SVR with the closest prediction receives higher 
contribution in the next prediction [1-2]. Control decisions are 
based on the current (current state) and the predicted values 
(anticipated state). The proposed methodology is benchmarked 
against the prediction of a sample mean of SVR.  

In the next sections, the proposed methodology is 
described, including a short introduction to support vector 
regression, and results on monitoring of turbine degradation the 



control decision that should be made with respect to turbine 
maintenance are given. The last section concludes the paper 
and gives future directions. 

II. METHODOLOGY 

A. Introduction 
The proposed approach involves learning and new 

knowledge synergistically through existing experimental 
datasets, data based intelligent models, and first-principles 
formulation. The model output is a set of future predicted 
measurements that are obtained using current observed 
measurements as well as historical datasets. With such a tool 
the operator will be able to monitor the system and make 
control decisions ahead-of-time since he or she knows the 
current and future state of the system [1]. 

The proposed anticipatory approach for monitoring and 
control of complex energy systems is depicted in Fig. 1. 

 

 

Fig. 1. Anticipatory based methodology for complex energy system 
monitoring. 

B. Support Vector Regression 
Initially, a group of system variables should be identified, 

i.e., variables 1 to N in Fig. 1, that are important and represent 
system functionality. Once the variables are identified, 
historical datasets for those variables are retrieved from 
databases. It should be noted that one or more histories may be 
associated with one variable. For instance, for a particular 
component’s degradation, which is the result of many 
unknown factors, there may exist a plethora of historical 
datasets, each one being a recorded degradation for the same 
component. 

Assuming that we have a set of N variables, then the recorded 
histories for each variable are denoted as M1,…,MN 
respectively (e.g. variable 1 has M1 histories). Next, a set of 
support vector regression models is created; one model for 
each available historical dataset. More specifically, the number 
of SVR models is equal to the number of available histories, 
i.e., M1+…+MN. The SVR models are equipped with a 
Gaussian kernel whose analytical formula is given below 

( )2 2
1 2 1 2( , ) exp / 2k x x x x σ= − −       (1) 

where 2 is a hyperparameter evaluated (trained in machine 
learning parlance) by the training datasets [21].  

In the next step, each SVR model is trained using the 
respective historical dataset (i.e., training data in Fig. 1). Once 
the training phase is over, the regression models are used for 
prediction making of ahead-of-time values. The length of the 
ahead-of-time prediction horizon depends on the modeler and 
may contain several steps (from 1 up to k steps). 

In addition to the available histories, the proposed 
anticipatory system implements a real time feedback 
mechanism by utilizing recently arrived measurements to 
update its predictions. More specifically, when a new 
measurement is obtained, it is incorporated to the historical 
training datasets. In other words each training test is 
augmented with the recently measured value. Therefore, each 
SVR model is retrained using the respective augmented dataset 
and new predictions are obtained regarding the ahead-of-time 
predictions. Hence, new anticipated values are obtained and 
decision strategy may be altered accordingly. Overall, it should 
be noted, that each regressor provides an individual prediction 
with respect to a system variable. 

C. Fusion of Support Vector Regressors 
Once the individual predictions are collected, they are 

inputted to the next module where they are fused as per 
equation below  

# #11 11 M M... N NFP A P A P= + +                 (2) 

where FP denotes the final prediction, Anm is the linear 
coefficient and Pnm is the predicted value of SVR for variable 
n=1,..,N and dataset m=M1,…MN respectively (as shown in Fig. 
1). The value obtained with (2) consists of the final prediction 



of the system. However, prior to final prediction, evaluation of 
linear coefficients ought to take place. 

D. Fuzzy Inference 
Linear coefficients in (2) are evaluated through a fuzzy 

inference system as shown in Fig. 2. More particularly, a fuzzy 
inference system equipped with a set of fuzzy sets and 
associated fuzzy rules is adopted for evaluating linear 
coefficients. 

 

Fig. 2. Block diagram of fuzzy inference mechanism for linear coefficient 
evaluation. 

The inference engine uses the most recent predicted value for 
which the respective measurement has been observed. For 
instance assume at timepoint 1t − predictions are made for 
timepoint t, and at timepoint t a measurement is observed, the 
inference engine will make a prediction for timepoint t+1 by 
‘comparing’ measured value at timepoint t with predictions 
made for t (i.e., predictions at t-1).  The input to fuzzy 
inference module is a set of values denoting the absolute error 
between an SVR’s recent prediction and the respective 
measurement: 

t tError O P= −                (3) 

with Ot being the observed value at step t, and Pt the respective 
prediction. The error in (3) is computed for every SVR. Next, 
all errors are fed into the fuzzy rule system whose output is a 
set of values that consist of the linear coefficients in (2). It 
should be noted that coefficients are in the range [0, 1]. In other 
words the inference mechanism assesses the most recent 
predictions and provides appropriate weight contribution to 
each SVR model. Fig. 3 presents the fuzzy sets used for the 
fuzzification of input error values while Fig. 4 presents the 
output sets used in the tested case in the next section. The 
output sets expresses the quality of predictions based on the 
error. The inference mechanism implements the following 
fuzzy rules for the input variable Error and the output variable 
Quality: 

 

- If Error is VERY SMALL, then Quality is VERY GOOD. 

- If Error is SMALL, then Quality is GOOD. 

- If Error is MEDIUM, then Quality is MEDIUM. 

- If Error is LARGE, then Quality is BAD. 

- If Error is VERY LARGE, then Quality is VERY BAD. 

E. Final Prediction and Decision Making 
Once all linear coefficients are evaluated, then the final 

prediction is computed by (2). In other words, the final 
predicted value is the weighted sum of the support vector 
regressors’ individual predictions. 

At last, the final predicted value is used to design a series of 
actions that can be taken based on that value. For instance:  

- If output belongs to [a, b], then take action 1. 

- … 

- If output belongs to [y, z], then take action S. 

Therefore, based on the anticipated value, respective 
control decisions can be taken.  

 

 

Fig. 3. Fuzzy sets for fuzzifyng absolute error (Eq. (3)) (used in section III). 

 

 

Fig. 4. Fuzzy sets for expressing quality of prediction (used in section III), 
where 0 denotes the worst and 1 denotes the best quality. 

III. RESULTS ON MONITORING TURBINE DEGRADATION 
The presented anticipatory system is applied on a simple 

case of monitoring turbine degradation [22]. Datasets contains 
five different real measured histories of turbine blade 
degradation and can be found on Reliasoft Corp. website [23]. 
The datasets include measurements obtained with regard to 
crack length of a turbine blade. The turbine fails at the time the 



blade crack is 30mm long. Turbine is an essential component 
in energy industry and its 24/7 monitoring is essential for safe 
and reliable energy production. In addition, its ahead-of-time 
maintenance or replacement is economical. Thus, by predicting 
the crack length evolution ahead-of-time (i.e., anticipate next 
measurements), the operator can make control decisions ahead-
of-time and minimize operational or maintenance cost. 

Furthermore, the fuzzy sets and the fuzzy rules were 
implemented. In general, the fuzzy part of the methodology 
depends on modeler’s expertise and/or experience on the 
operation of the complex system. The latter is one of the big 
advantages of the methodology since it can incorporate human 
experience in the model. SVR parameters ([18, 19]) were taken 
equal to C=10 and v=0.5 after a trial and error method; for 
more information on SVR models, refer to [18, 19]. 

In the current work the results are obtained as follows: the 
four out of five histories are used to train four support vector 
regressors respectively (i.e., N=1 and M1=4 in Fig. 1). The 
single SVR models are used for making individual predictions 
that are fed to the fuzzy inference system (Figs. 3 and 4), and 
therefore, a final prediction is provided regarding the next 
crack length measurement (i.e., one step ahead-of-time 
prediction). Then, we consider that a measurement is obtained 
and compared to the final prediction. It should be mentioned 
that prediction results are given with respect to absolute error 
(see (3)). 

Results are given in Table I for five timepoints, i.e., five 
single ahead-of-time predictions. To make it clearer, Table I is 
populated as follows: four historical datasets are used to train 
four SVRs, while the fifth is used for testing the methodology. 
In the first step, a prediction is made regarding the first 
measurement (prediction for timestep 1); then we assume that 
the first measurement is obtained (measurement at timestep 1), 
compare measured values to predicted values and compute 
error. This procedure is followed for all five timesteps and at 
each time the respective error is recorded with respect to all 
tested methods (i.e., Table I). It should be highlighted that 
Table I provides the absolute error in prediction of one and 
only one measurement; this is the reason that there is no 
particular trend in error as prediction process goes on. 

It should be noted that Table I presents, for benchmark 
purposes, the results taken with a simple mean SVR estimation. 
More specifically, the mean value of single SVR predictions is 
computed and used as a next measurement predictor. In 
addition Table II presents indicative control decisions that the 
operator makes after a prediction is made. 

Overall, we observe in Table I that the proposed 
anticipatory system provided low error in all cases. However, it 
was not the best predictor since at each step an individual 
support vector regressor provided a lower error. We observe 
that the lowest error is provided by a different regressor at each 
step, and not consistently from the same model at all steps. 
Therefore, we conclude that the methodology exhibits a degree 
of robustness and is preferable compared to an individual SVR. 
The latter statement is supported by the fact that we do not 
know a priori which SVR will give the lower error at each step. 
Adoption of the proposed system allows us not to worry about 
the best model at each step. The above conclusion is supported 

by the Fig. 5 as well. The anticipatory approach has an average 
error of 2.99 while error computed for SVR2 is little bit lower, 
i.e., 2.88. However, SVR2 reduced its average error because of 
steps 2 and 4 (small error), while it provided high error in the 
rest steps. So, it is preferable to use the anticipatory system 
which consistently gives low error, than a single regressor 
whose error fluctuates (e.g. very small in one step →  very big 
in the next step). Furthermore, we observe in Table I and Fig. 5 
that the use of the fuzzy inference mechanism improved the 
average error compared to the simple mean SVR estimation. 

 

TABLE I.  ABSOLUTE ERROR RESULTS FOR TESTING DATASET 5 

Model Absolute Error in each Timestep 
 Step 1 Step 2 Step 3 Step 4 Step 5 

SVR 1 8.4144    3.7375 2.6128 4.7067 4.6991 
SVR 2 6.6667    0.7143   2.7635 0.7696 3.1124 
SVR 3 4.1336    5.6234    4.8352 2.3418 2.1364 
SVR 4 5.1667    1.2076     1.4873 3.8796 7.7523 
SVR 

Average 
6.0954    2.2169     0.7993 1.7535 4.4251 

SVR 
Anticipatory 

6.1823 2.1473 0.4800 1.8772 4.2994 

 
 

 

TABLE II.  POSSIBLE CONTROL DECISIONS FOR TESTING DATASET 5 

Model Timesteps 
 Step 1 Step 2 Step 3 Step 4 Step 5 

Anticipatory 
Output 
(mm) 

 
16.1823 

 

 
17.1473 

 

 
20.48 

 

 
24.1228 

 

 
28.7006 

 
Failure 

Threshold 
30 mm 

 
Control 
Decision 

Turbine 
should 

continue 
operating 

Turbine 
should 

continue 
operating 

Turbine 
should 

continue 
operating 

Turbine 
needs 
repair 

 

Turbine 
should be 
replaced - 

Stop 
system 

operation 
 

 
 

 
 
Fig. 5. Average absolute error (steps 1-5) for each method 



IV. CONCLUSION 
A new methodology for monitoring and control of 

complex systems was presented and tested on a set of real 
world measurements. The methodology used synergistically a 
set of support vector regressors and fuzzy logic to implement 
an anticipatory based monitoring and control of complex 
systems. Results demonstrated its potentiality over the use of 
single support vector regressors or mean of SVR predictions. 

Future work will focus on applying the proposed system 
on a higher variety of datasets taken from energy industry, 
while more kernel function will also be adopted for prediction 
making. 
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