
Graph-XLL: a Graph Library for Extra Large Graph Analytics on a Single Machine

by

Jian Wu

B.Eng., Wuhan University, 2010

M.A.Sc., University of Chinese Academy of Sciences, 2013

Ph.D., University of Victoria, 2017

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

c© Jian Wu, 2019

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Graph-XLL: a Graph Library for Extra Large Graph Analytics on a Single Machine

by

Jian Wu

B.Eng., Wuhan University, 2010

M.A.Sc., University of Chinese Academy of Sciences, 2013

Ph.D., University of Victoria, 2017

Supervisory Committee

Dr. Alex Thomo, Co-Supervisor

(Department of Computer Science)

Dr. Venkatesh Srinivasan, Co-Supervisor

(Department of Computer Science)

iii

Supervisory Committee

Dr. Alex Thomo, Co-Supervisor

(Department of Computer Science)

Dr. Venkatesh Srinivasan, Co-Supervisor

(Department of Computer Science)

ABSTRACT

Graph libraries containing already-implemented algorithms are highly desired

since users can conveniently use the algorithms off-the-shelf to achieve fast analyt-

ics and prototyping, rather than implementing the algorithms with lower-level APIs.

Besides the ease of use, the ability to efficiently process extra large graphs is also

required by users. The popular existing graph libraries include the igraph R library

and the NetworkX Python library. Although these libraries provide many off-the-shelf

algorithms for users, the in-memory graph representation limits their scalability for

computing on large graphs. Therefore, in this work, we develop Graph-XLL: a graph

library implemented using the WebGraph framework in a vertex-centric manner, with

much less memory requirement compared to igraph and NetworkX. Scalable analytics

for extra large graphs (up to tens of millions of vertices and billions of edges) can be

achieved on a single consumer grade machine within a reasonable amount of time.

Such computation would cause out-of-memory error if using igraph or NetworkX.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

Acknowledgements xi

Dedication xii

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 3

1.3 Publications . 4

2 Background 5

2.1 Vertex-Centric Model . 5

2.2 Scalability . 6

2.3 WebGraph . 6

2.4 igraph and NetworkX . 7

2.5 Summary . 7

3 Algorithms Implementation 8

3.1 Centrality Measures . 8

3.1.1 Eigenvector Centrality . 8

3.1.2 Hub Centrality . 10

v

3.1.3 Authority Centrality . 12

3.1.4 PageRank . 14

3.1.5 Betweenness Centrality . 16

3.2 Diameter . 21

3.2.1 Exact Computation . 21

3.2.2 Approximate Computation . 21

3.3 Truss Decomposition . 25

3.3.1 Preliminaries . 27

3.3.2 Initial Support Computation 29

3.3.3 Serial Edge Peeling . 31

3.3.4 Asynchronous h-index updating 32

3.3.5 Memory Optimization . 34

3.4 Summary . 36

4 Experiments 37

4.1 Centrality Measures . 38

4.1.1 Eigenvector Centrality . 38

4.1.2 Hub Centrality . 39

4.1.3 Authority Centrality . 40

4.1.4 PageRank . 41

4.1.5 Betweenness . 42

4.2 Diameter . 45

4.3 Truss Decomposition . 46

4.3.1 Performance Results . 46

4.4 Summary . 49

5 Evaluation, Analysis and Comparisons 50

5.1 Centrality Measures . 50

5.1.1 Eigenvector, Hub, Authority, and PageRank 50

5.1.2 Betweenness . 52

5.2 Diameter . 53

5.3 Core Decomposition . 53

5.4 Truss Decomposition . 55

5.5 Summary . 56

6 Conclusions 57

vi

Bibliography 58

vii

List of Tables

Table 4.1 Summary of Datasets . 37

Table 4.2 Runtime and Memory Consumption for Eigenvector 39

Table 4.3 Runtime and Memory Consumption for Hub 40

Table 4.4 Runtime and Memory Consumption for Authority 41

Table 4.5 Runtime and Memory Consumption for PageRank 42

Table 4.6 Runtime and Memory Consumption for Exact Betweenness . . . 43

Table 4.7 Summary of Diameter Results 45

Table 4.8 Runtime and Memory Consumption for Diameter Computation 46

Table 4.9 Summary of Datasets after Removing Self-loops 46

Table 4.10Runtime of Algorithm 11 with Different Implementations 47

Table 5.1 Runtime and Memory Consumption for Exact Betweenness . . . 52

Table 5.2 Runtime and Memory Consumption for Diameter Computation 53

viii

List of Figures

Figure 3.1 (a) An undirected, unweighted simple graph G; (b) the 4-core of

G (no 5-core exists); (c) the 5-truss of G (no 6-truss exists). . . 28

Figure 3.2 Optimized data structures for k-truss decomposition. 35

Figure 4.1 Euclidean distance of eigenvector centrality between two consec-

utive iterations after a certain number of iterations for different

datasets. The Euclidean distance can be viewed as the conver-

gence condition. If we choose 1E-14 as the criterion for conver-

gence, the numbers of iterations required to achieve convergence

are ∼300 for cnr-2000, ∼35 for eu-2005, ∼550 for in-2004, ∼9000

for ljournal-2008, ∼1500 for eu-2015-host, ∼70 for arabic-2005,

and ∼60 for twitter-2010, respectively. 38

Figure 4.2 Euclidean distance of hub centrality between two consecutive it-

erations after a certain number of iterations for different datasets.

The Euclidean distance can be viewed as the convergence con-

dition. If we choose 1E-14 as the criterion for convergence, the

numbers of iterations required to achieve convergence are ∼30 for

cnr-2000, ∼90 for eu-2005, ∼140 for in-2004, ∼300 for ljournal-

2008, ∼400 for eu-2015-host, ∼70 for arabic-2005, and ∼60 for

twitter-2010, respectively. 39

Figure 4.3 Euclidean distance of authority centrality between two consecu-

tive iterations after a certain number of iterations for different

datasets. The Euclidean distance can be viewed as the conver-

gence condition. If we choose 1E-14 as the criterion for conver-

gence, the numbers of iterations required to achieve convergence

are ∼30 for cnr-2000, ∼90 for eu-2005, ∼140 for in-2004, ∼300

for ljournal-2008, ∼400 for eu-2015-host, ∼65 for arabic-2005,

and ∼40 for twitter-2010, respectively. 40

ix

Figure 4.4 Euclidean distance of PageRank centrality between two consec-

utive iterations after a certain number of iterations for different

datasets. The Euclidean distance can be viewed as the conver-

gence condition. If we choose 1E-14 as the criterion for conver-

gence, the numbers of iterations required to achieve convergence

are ∼150 for cnr-2000, in-2004 and arabic-2005, ∼140 for eu-2005

and eu-2015-host, ∼135 for ljournal-2008, and ∼130 for twitter-

2010, respectively. 42

Figure 4.5 Euclidean distance of betweenness centrality between the estima-

tion by uniformly random sampling and the exact computation

as a function of the number of samples. 43

Figure 4.6 Euclidean distance (black curve) of betweenness centrality be-

tween the estimation by adaptive sampling and the exact com-

putation as a function of the constant C (required by the adaptive

sampling algorithm). The blue curve shows the actual number

of samples by adaptive sampling as a function of the constant C. 44

Figure 4.7 Runtime of initial support computation, optimized serial, and

optimized parallel k-truss decomposition for different datasets. . 47

Figure 4.8 Trussness distributions for different datasets. 48

Figure 5.1 Runtime comparison of computing PageRank for different datasets

using igraph, Graph-Xll and NetworkX. Graph-XLL is able to

process large graphs up to twitter-2010 while the largest graph

that igraph can process is ljournal-2008 and in-2004 for NetworkX. 51

Figure 5.2 Memory consumption comparison of computing PageRank for

different datasets using igraph, Graph-Xll and NetworkX. Graph-

XLL is able to process large graphs up to twitter-2010 while the

largest graph that igraph can process is ljournal-2008 and in-2004

for NetworkX. 51

Figure 5.3 Runtime comparison of computing k-core for different datasets

using igraph, Graph-Xll and NetworkX. Graph-XLL is able to

process large graphs up to twitter-2010 while the largest graph

that igraph and NetworkX can process is ljournal-2008. 54

x

Figure 5.4 Memory consumption comparison of computing k-core for differ-

ent datasets using igraph, Graph-Xll and NetworkX. Graph-XLL

is able to process large graphs up to twitter-2010 while the largest

graph that igraph and NetworkX can process is ljournal-2008. . 54

xi

ACKNOWLEDGEMENTS

I would like to express my great gratitude to:

my supervisors, Dr. Alex Thomo, and Dr. Venkatesh Srinivasan, for their

meticulous supervision on my Master’s thesis, their generosity of supporting

my research, and their inspirational leadership, aptitude, and enthusiasm for

scientific research;

my colleagues, Fatemeh Esfahani, Yudi Santoso, and Diana Popova, for pro-

viding insightful discussions and assistance to my research;

my parents, for their unconditional love and support all along.

xii

DEDICATION

To my parents,

and

everyone who offered the help

along the way.

Chapter 1

Introduction

1.1 Motivation

Graph analytics are becoming increasingly important since graphs are a proper ab-

straction for complex systems and thus can be used in many areas such as social

network analysis, neural network analysis, public transportation routing, epidemi-

ology [1–4], etc. Notably, the Best-Paper-Award of VLDB 2018 was given to the

work of Sahu et al. [5], which conducted a thorough study of the needs of industry

practitioners working with graph data. Some of their most important findings, which

motivate our work, were as follows:

1. Many graphs are quite large, often containing more than a billion edges. Namely,

they found that these graphs represent an enormously wide range of entities

and are used by organizations from small businesses to large enterprises. They

emphasize that this finding runs counter to a common assumption that large

graphs are problematic only for large organizations such as Google, Facebook,

and Twitter.

2. The survey also found that scalability is the most pressing challenge faced by

users and the ability to process very large graphs efficiently is among the biggest

limitation of existing software.

3. The most common request they found was the addition of algorithms that users

could use off-the-shelf. Most of software products provide lower-level program-

ming APIs using which users can compose graph algorithms. However, they

2

found that users of these software products find more value in directly using an

already-implemented algorithm than implementing the algorithms themselves.

The igraph R library [6] and the NetworkX Python library [7] are some of the

most popular existing graph libraries due to their easy-to-use off-the-shelf feature.

Both libraries have implemented important algorithms which can be used with simple

function calls. However, they do not scale to large graphs. The main reason for this is

their assumption that the graphs and their auxiliary data structures must fit in main

memory. This unfortunately is not true for large graphs. Such large graphs cannot

be processed by igraph or NetworkX on commodity machines which are ubiquitous

among researchers and small to medium businesses.

In this thesis, we develop Graph-XLL (https://graph-xll.github.io), a graph li-

brary written in Java, with emphasis on the scalability for extra large graph analytics.

To address the large memory footprint issue faced by igraph and NetworkX, we use

the WebGraph framework [8] for the underlying graph representation. WebGraph is a

highly efficient graph compression framework. Instead of loading the complete graph

into the memory, WebGraph stores a memory-mapped compressed graph on the hard

drive. Furthermore, in Graph-XLL, we implement the algorithms in a vertex-centric

manner. The vertex-centric method performs the graph computation from the per-

spective of a single vertex and represents graph algorithms as a sequence of iterations,

or supersteps [9]. Vertices can be processed independently, such as updating the val-

ues by receiving the messages from the previous superstep and “broadcasting” the

values or messages for the next superstep. In this computation model the compu-

tation can be performed locally and does not require global information. Moreover,

vertices can be processed in parallel within each superstep, which can greatly improve

the performance.

While a multitude of algorithms have been implemented in Graph-XLL, we fo-

cus, in this thesis, on graph centrality measures, diameter and truss-decomposition.

Namely, we showcase our implementations for eigenvector, hub, authority, PageRank,

betweenness centralities, diameter, and truss-decomposition using the vertex-centric

model. Other scalable algorithms in Graph-XLL computing triad-enumeration, core-

decomposition, feedback-arc-set, influential-users, and importance-based-communities

have been implemented by our previous works [10–16]. There are no algorithms

yet implemented for the truss-decomposition, feedback-arc-set, influential-users, and

importance-based-communities in igraph or NetworkX despite them being immensely

popular concepts in graph analytics. On the other hand, Graph-XLL still misses

3

a few algorithms for computing cliques and closeness. While igraph and NetworkX

have algorithms for them, they are not scalable. The quest for scalable algorithms

for computing cliques and closeness is part of our future work.

The contributions of this thesis are summarized as follows:

1. We implement various graph algorithms for centrality analysis (e.g., eigen-

vector, hub and authority, PageRank and betweenness), diameter, and truss-

decomposition with the emphasis on the scalability to achieve extra large graph

processing up to tens of millions of vertices and billions of edges.

2. We perform a thorough experimental study to investigate the scalability using

different datasets and compare Graph-XLL with igraph and NetworkX in terms

of runtime and memory consumption.

3. We prove that Graph-XLL is capable of efficiently analyzing extra large graphs

on a single consumer-grade machine.

1.2 Outline

The topic of the thesis is implementing, engineering, and evaluating various important

and popular graph algorithms with a focus on scalability.

Chapter 1 introduces the motivation and the outline of the thesis.

Chapter 2 serves as the background chapter, discussing the vertex-centric model,

scalability, the WebGraph framework, igraph, and NetworkX.

Chapter 3 details the implementation of graph algorithms for computing centrality

measures (eigenvector, hub and authority, PageRank and betweenness), diameter, and

truss-decomposition.

Chapter 4 shows the experimental results of using graph algorithms implemented

in this work for computing on different datasets ranging from small graphs to extra

large graphs with a number of edges up to one billion.

Chapter 5 compares the performance of Graph-XLL with igraph and NetworkX

in terms of runtime, memory consumption, and scalability.

Chapter 6 summarizes the thesis and discusses the future work.

4

1.3 Publications

The publications during the Master’s program are listed below:

1. “Graph-XLL: a Graph Library for Extra Large Graph Analytics on a Single

Machine”, Jian Wu, Venkatesh Srinivasan, and Alex Thomo, IISA 2019.

2. “K-Truss Decomposition of Large Networks on a Single Consumer-Grade Ma-

chine”, Jian Wu, Alison Goshulak, Venkatesh Srinivasan, and Alex Thomo,

ASONAM 2018.

3. “Fast Truss Decomposition in Large-scale Probabilistic Graphs”, Fatemeh Es-

fahani, Jian Wu, Venkatesh Srinivasan, Alex Thomo, and Kui Wu, EDBT 2019.

5

Chapter 2

Background

In this chapter, we introduce the concepts of the vertex-centric model and scalability,

the WebGraph framework, the igraph library and the NetworkX library.

2.1 Vertex-Centric Model

The vertex-centric model, as its name suggests, is a programming model for graph

processing which is centered around the vertices [9]. The vertex-centric model per-

forms the graph computation from the perspective of a single vertex (some people

call it “thinking like a vertex”) and represents graph algorithms as a sequence of

iterations, or supersteps. Vertices are processed independently by a vertex program,

such as updating the values by receiving the messages coming from its neighbors from

the previous superstep and “broadcasting” the values or messages to its neighbors for

the next superstep. For each vertex, the only information it has is its neighbor list

and its own properties. A vertex-centric program runs iteratively. In each iteration,

the vertex program is executed by each vertex and messages are exchanged between

vertices. The program stops when there are no messages sent from any vertex.

There are many advantages using the vertex-centric programming model for graph

processing. The main advantage is that it becomes very easy to parallelize the al-

gorithm using the vertex-centric model. In each iteration, each vertex executes the

vertex program independently. Therefore, in each iteration, the vertex program can

be executed in parallel for different vertices. Besides the ease to parallelize, the

vertex-centric model is also suitable for distributed systems. It makes implementing

a distributed graph algorithm much easier and simpler.

6

2.2 Scalability

Scalability of a program can be defined in two ways: the ability to handle increased

workload without adding resources to a system; the ability to handle increased work-

load by repeatedly applying a cost-effective strategy for extending a systems capac-

ity [17].

The first definition for scalability assumes that the computing system is a fixed

system. An algorithm is classified as scalable if it continues to run properly and

accurately as the computation workload increases. The second definition is more

complex. The focus is on whether the algorithm can improve the performance or

not when, for example, more processors are added. If the algorithm is not able

to coordinate work among the added processors properly, eventually, adding more

processors will lose the benefit, which will not be cost-effective for extending a system’s

capacity.

In this thesis, we use the first definition of scalability for an algorithm: the ability

to continue to perform properly and accurately as the computation workload in-

creases. We investigate the scalability of an algorithm by increasing the computation

workload gradually. We define an algorithm fails to scale if the algorithm is not us-

able for large computation (e.g., takes too much time), or if the algorithm demands

excessive resources (e.g., large memory) to run.

2.3 WebGraph

WebGraph is a highly efficient graph compression framework that allows random ac-

cess to a memory-mapped compressed graph stored on the hard drive. WebGraph

uses lazy techniques that delay the decompression until it is actually necessary when

accessing a compressed graph. WebGraph also supports thread-safe operations on an

immutable graph, facilitating parallel computation. The documentation and the pack-

age can be obtained from the WebGraph home page (http://webgraph.di.unimi.it).

For the compression techniques used in WebGraph, please refer to [8]. We choose

WebGraph because WebGraph can provide efficient operations (e.g., obtaining the

neighbors of a node).

7

2.4 igraph and NetworkX

The igraph R library [6] and the NetworkX Python library [7] are some of the most

popular existing graph libraries due to their easy-to-use off-the-shelf feature. Both li-

braries use in-memory graph representation, but with different implementations. The

igraph library is written in C and provides interfaces for R and Python programming

languages. In terms of graph representation, the igraph library uses indexes and

vectors for vertices and edges to achieve fast access and iterations over vertices and

edges, which is beneficial to the performance. However, such graph data structure is

memory consuming and not flexible to make changes to the graph, such as adding or

deleting vertices and edges. NetworkX, on the other hand, focuses on the flexibility

by using hash tables (dictionaries in Python) as the underlying graph data structure,

which would inevitably cause a large memory footprint and a slower speed due to the

overhead cost. In short, both libraries have large memory footprints, which limits the

scalability to process large graphs efficiently.

2.5 Summary

In this chapter, we briefly introduced the concepts (the vertex-centric model and

scalability) and the tools (WebGraph, igraph and NetworkX) used in the thesis.

In Graph-XLL, we implement a multitude of graph algorithms using WebGraph in

a vertex-centric manner. Scalability is investigated by increasing the computation

workload gradually. Transverse comparison in terms of runtime and memory con-

sumption among Graph-XLL, igraph and NetworkX will be made in chapter 5.

8

Chapter 3

Algorithms Implementation

This chapter describes the graph algorithms computing centrality measures (eigen-

vector, hub, authority, PageRank and betweenness), diameter, and truss decompo-

sition implemented in Graph-XLL. We implement the algorithms in a vertex-centric

manner. To reduce the memory footprint of the algorithms, we use the WebGraph

framework, a highly efficient graph compression framework. Computations are bro-

ken down to vertex level and are independent between different vertices, facilitating

parallel processing.

3.1 Centrality Measures

The centrality measures are used to identify the most important vertices within a

graph, including eigenvector, hub, authority, PageRank, betweenness, closeness, etc.

Centrality measures are widely used in social network analysis, i.e., to identify the

most influential person or people in a social network. In Graph-XLL, we will cover

eigenvector, hub, authority, PageRank and betweenness. Other centrality measures

(i.e., closeness) will be part of our future work.

3.1.1 Eigenvector Centrality

Eigenvector centrality [18] is the measure of the influence of a vertex in a graph.

Relative scores are assigned to all vertices in the graph based on the intuition that a

vertex will have high score if it is pointed to by many other vertices with high scores.

That is to say, important nodes have important friends. The formal definition of

eigenvector centrality is defined as follows.

9

Eigenvector Centrality (EC) of a vertex vi in a graph G = (V,E) is defined as

EC(vi) =
1

λ

∑
vj∈IN(vi)

EC(vj), (3.1)

where IN(vi) is the set of v′is in-neighbours (vertices points to vi) and λ is a constant.

In the matrix form, the eigenvector centrality for all vertices

~EC = [EC(v1), EC(v2), · · · , EC(vn)] (3.2)

can be viewed as the principal left eigenvector of adjacency matrix of the graph. ~EC

is the solution to the equation

λ ~EC = ~EC · ~A = ~EC

a(v1, v1) a(v1, v2) · · · a(v1, vn)

a(v2, v1)
. . .

...
... a(vi, vj)

a(vn, v1) · · · a(vn, vn)

 (3.3)

where λ corresponds to the largest eigenvalue and ~A is the adjacency matrix of the

graph: a(vi, vj) is 0 if vi does not link to vj and 1 if vi links to vj.

Algorithm 1 shows the major steps of computing the eigenvector centrality scores.

We use two arrays (ECprev and ECcurr) to store the eigenvector centrality scores of all

vertices for the previous and current supersteps. At the beginning of the algorithm,

the scores are initialized to 1 for all vertices. We use MAX ITER and tolerance to

control the iteration. MAX ITER is the maximum value for the superstep. residual

is the Euclidean distance between ECprev and ECcurr, which can be used as the

criterion for convergence. In each superstep, each vertex updates its score by summing

up the scores of its neighbors pointing to the vertex from the previous superstep, as

shown in steps 7 to 11. We normalize the score array by its magnitude. Steps 16

and 17 update ECprev using ECcurr, which will be used in the next superstep. The

program stops if the residual is smaller than the tolerance orMAX ITER is reached.

We implement the program in Java 8 with the WebGraph framework. WebGraph

provides APIs which allow random access to a memory-mapped compressed graph

stored on a hard drive (step 9), decreasing the main memory footprint significantly.

For each vertex, steps 7 to 11 are independent between different vertices. We use

Java 8 parallel stream to parallelize steps 7 to 11 for different vertices. ECprev and

10

Algorithm 1 Eigenvector Centrality Compute Function

1: function compute(G)
2: if superstep = 0 then
3: for v ∈ V do
4: ECprev[v] ← 1

5: while superstep < MAX ITER and residual > tolerance do
6: superstep← superstep+ 1
7: for v ∈ V do
8: sum← 0
9: for u ∈ IN(v) do
10: sum← sum+ ECprev[u]

11: ECcurr[v]← sum

12: norm← ‖ECcurr‖
13: for v ∈ V do
14: ECcurr[v]← ECcurr[v]/norm

15: residual← ‖ ~ECcurr − ~ECprev‖
16: for v ∈ V do
17: ECprev[v]← ECcurr[v]

ECcurr are shared among threads. WebGraph can also provide a flyweight copy of

the graph for parallelization, which can minimize the overhead memory consumption

induced by the parallel process.

3.1.2 Hub Centrality

Hub and authority are two attributes for a vertex introduced by Jon Kleinberg for his

work on the Hyperlink-Induced Topic Search (the HITS algorithm) which rates web

pages [19]. If a vertex is a hub, it means that it knows where to find information on

a given topic. In other works, a good hub represents a vertex which has many links

to other vertices. The mathematical definition is defined as follows.

Hub Centrality (HC) of a vertex vi in a graph G = (V,E) is defined as

HC(vi) =
1

λ

∑
vj∈ON(vi)

∑
vk∈IN(vj)

HC(vk), (3.4)

where ON(vi) is the set of v′is out-neighbours (vertices with links from vi), IN(vj) is

the set of v′js in-neighbours (vertices with links to vj), and λ is a constant.

11

Algorithm 2 Hub Centrality Compute Function

1: function compute(G)
2: if superstep = 0 then
3: for v ∈ V do
4: HCprev[v] ← 1

5: while superstep < MAX ITER and residual > tolerance do
6: superstep← superstep+ 1
7: /∗ ~AT ~HC ∗/
8: for v ∈ V do
9: sum← 0
10: for u ∈ IN(v) do
11: sum← sum+HCprev[u]

12: HCcurr[v]← sum

13: for v ∈ V do
14: HCprev[v]← HCcurr[v]

15: /∗ ~A ~AT ~HC ∗/
16: for v ∈ V do
17: sum← 0
18: for u ∈ ON(v) do
19: sum← sum+HCprev[u]

20: HCcurr[v]← sum

21: norm← ‖HCcurr‖
22: for v ∈ V do
23: HCcurr[v]← HCcurr[v]/norm

24: residual← ‖ ~HCcurr − ~HCprev‖
25: for v ∈ V do
26: HCprev[v]← HCcurr[v]

In the matrix form, the hub centrality for all vertices

~HC = [HC(v1), HC(v2), · · · , HC(vn)]T

can be viewed as the principal right eigenvector of ~A ~AT , where ~A is the adjacency

matrix of the graph. ~HC is the solution to the equation

λ ~HC = ~A ~AT · ~HC, (3.5)

where λ corresponds to the largest eigenvalue.

Algorithm 2 shows the major steps of computing the hub centrality scores. We use

12

two arrays (HCprev and HCcurr) to store the hub centrality scores of all vertices for

the previous and current supersteps. At the beginning of the algorithm, the scores

are initialized to 1 for all vertices. We use MAX ITER and tolerance to control

the iteration. MAX ITER is the maximum value for the superstep. residual is the

Euclidean distance between HCprev and HCcurr, which can be used as the criterion

for convergence. In each superstep, each vertex first updates its score by summing

up the scores of its neighbors pointing to the vertex from the previous superstep, as

shown in steps 8 to 12. Then each vertex updates its score by summing up the scores

of its neighbors which are pointed to by the vertex from the previous superstep. We

normalize the score array by its magnitude. Steps 25 and 26 update ECprev using

ECcurr, which will be used in the next superstep. The program stops if the residual

is smaller than the tolerance or MAX ITER is reached. We use the WebGraph

framework to achieve random access to the compressed graph (steps 10 and 18) and

Java 8 parallel stream to parallelize steps 8 to 12 and steps 16 to 20.

3.1.3 Authority Centrality

Authority score [19] is another attribute for a vertex in a graph. It measures how

much knowledge, information, etc. held by the vertex on a topic. If a vertex is a

good authority, it means that it is linked by many different hubs. The mathematical

definition is defined as follows.

Authority Centrality (AC) of a vertex vi in a graph G = (V,E) is defined as

AC(vi) =
1

λ

∑
vj∈IN(vi)

∑
vk∈ON(vj)

AC(vk), (3.6)

where IN(vi) is the set of v′is in-neighbours (vertices with links to vi), ON(vj) is the

set of v′js out-neighbours (vertices with links from vj), and λ is a constant.

In the matrix form, the authority centrality for all vertices

~AC = [AC(v1), AC(v2), · · · , AC(vn)]T (3.7)

can be viewed as the principal right eigenvector of ~AT ~A, where ~A is the adjacency

matrix of the graph. ~AC is the solution to the equation

λ ~AC = ~AT ~A · ~AC, (3.8)

13

Algorithm 3 Authority Centrality Compute Function

1: function compute(G)
2: if superstep = 0 then
3: for v ∈ V do
4: ACprev[v] ← 1

5: while superstep < MAX ITER and residual > tolerance do
6: superstep← superstep+ 1
7: /∗ ~A ~AC ∗/
8: for v ∈ V do
9: sum← 0
10: for u ∈ ON(v) do
11: sum← sum+ ACprev[u]

12: ACcurr[v]← sum

13: for v ∈ V do
14: ACprev[v]← ACcurr[v]

15: /∗ ~AT ~A ~AC ∗/
16: for v ∈ V do
17: sum← 0
18: for u ∈ IN(v) do
19: sum← sum+ ACprev[u]

20: ACcurr[v]← sum

21: norm← ‖ACcurr‖
22: for v ∈ V do
23: ACcurr[v]← ACcurr[v]/norm

24: residual← ‖ ~ACcurr − ~ACprev‖
25: for v ∈ V do
26: ACprev[v]← ACcurr[v]

where λ corresponds to the largest eigenvalue.

Algorithm 3 shows the major steps of computing the authority centrality scores.

We use two arrays (ACprev and ACcurr) to store the authority centrality scores of all

vertices for the previous and current supersteps. At the beginning of the algorithm,

the scores are initialized to 1 for all vertices. We use MAX ITER and tolerance to

control the iteration. MAX ITER is the maximum value for the superstep. residual

is the Euclidean distance between ACprev and ACcurr, which can be used as the

criterion for convergence. In each superstep, each vertex first updates its score by

summing up the scores of its neighbors which are pointed to by the vertex from the

previous superstep, as shown in steps 8 to 12. Then each vertex updates its score

14

by summing up the scores of its neighbors pointing to the vertex from the previous

superstep. We normalize the score array by its magnitude. Steps 25 and 26 update

ACprev using ACcurr, which will be used in the next superstep. The program stops

if the residual is smaller than the tolerance or MAX ITER is reached. We use the

WebGraph framework to achieve random access to the compressed graph (steps 10

and 18) and Java 8 parallel stream to parallelize steps 8 to 12 and steps 16 to 20.

3.1.4 PageRank

PageRank [20] is an algorithm used by Google to measure the importance of web pages

and to rank web pages in their search engine results. The algorithm considers two

factors when measuring the importance of a web page: the number of links pointing

the page and the quality of the links. If a page is linked to by many other pages with

high PageRank scores, the page itself will receive a high rank. The mathematical

definition is defined as follows.

PageRank (PR) of a vertex vi in a graph G = (V,E) is defined as

PR(vi) =
1− d
n

+ d
∑

vj∈IN(vi)

PR(vj)

D(vj)
, (3.9)

where d is the damping factor (around 0.85), n is the total number of vertices, IN(vi)

is the set of v′is in-neighbours (vertices with links to vi), and D(vj) is the out-degree

for vj.

In the matrix form, the PageRank vector

~PR = [PR(v1), PR(v2), · · · , PR(vn)] (3.10)

can be viewed as the principal left eigenvector of the modified adjacency matrix. ~PR

is the solution to the equation

~PR =[
1− d
n

,
1− d
n

, · · · , 1− d
n

]

+ d · ~PR

d(v1, v1) d(v1, v2) · · · d(v1, vn)

d(v2, v1)
. . .

...
... d(vi, vj)

d(vn, v1) · · · d(vn, vn)

(3.11)

15

Algorithm 4 PageRank Compute Function

1: function compute(G)
2: if superstep = 0 then
3: for v ∈ V do
4: PRprev[v] ← 1

n

5: while superstep < MAX ITER and residual > tolerance do
6: superstep← superstep+ 1
7: for v ∈ V do
8: sum← 0
9: for u ∈ IN(v) do
10: sum← sum+ PRprev[u]/out degree[u]

11: PRcurr[v]← 1−d
n

+ d · sum
12: residual← ‖ ~PRcurr − ~PRprev‖
13: for v ∈ V do
14: PRprev[v]← PRcurr[v]

where d(vi, vj) is 0 if vi does not link to vj, and each row is normalized such that for

each i
N∑
j=1

d(vi, vj) = 1. (3.12)

Equation 3.9 shows the intrinsic vertex-centric feature of the PageRank algorithm.

The score of a vertex is only influenced by its neighbors close to it. We present the

pseudocode for PageRank computation in Alg. 4. All vertices are initialized with

the value of 1/n at superstep 0. n is the total number of vertices in the graph.

The initial value will not affect the final score distribution. We assign the same

score to each node with the assumption that at first each node does not know any

information about other nodes. As the iteration continues, each node will gradually

collect information from other nodes and the score distribution will gradually stabilize.

For the subsequent supersteps, each vertex will sum all the messages (score divided by

out-degree) received from its neighbours and update its value by Eq. 3.9. We maintain

two arrays to record the vertex values for the previous and current supersteps in the

program. We first update the current vertex score as shown in Step 10. Then Step

13 calculates the Euclidean distance between the two arrays as the residual. Lastly,

Steps 14 and 15 update the previous vertex score using the current value, which

will be read for the next superstep. The program stops if the residual is below the

predefined tolerance or MAX ITER is reached.

16

3.1.5 Betweenness Centrality

Betweenness centrality [21] is a measure of a vertex’s centrality based on shortest

paths. The measure quantifies, for each vertex, the number of shortest paths passing

through the vertex; in other words, the number of times the vertex acting as a bridge

along the shortest path between two other vertices. The betweenness centrality score

represent the degree to which vertices stand between each other. For example, vertices

with high betweenness scores are more central in the network and would have more

control over the network, since more information will pass through those vertices.

The formal definition of betweenness centrality is defined as follows.

Betweenness Centrality (BC) of a vertex v in a graph G = (V,E) is

BC(v) =
∑

s,t∈V,s 6=t6=v

δst(v), (3.13)

where δst(v) is called pair-dependency of vertex v given a pair (s, t), and is defined

as

δst(v) =
σst(v)

σst
, (3.14)

in which σst(v) denotes the total number of the shortest paths from s to t that pass

through v, and σst denotes the total number of the shortest paths from s to t.

3.1.5.1 Exact Computation

Brandes’ algorithm [22] is currently the fastest algorithm for exact BC computation,

which bases on the dependency of a source vertex on a given vertex.

Given a graph G = (V,E), the dependency of a source vertex s ∈ V on a vertex

v ∈ V is

δs(v) =
∑

t∈V,s 6=t6=v

δst(v). (3.15)

Based on the above equation, the BC value of vertex v can be rewritten as

BC(v) =
∑
s 6=v

δs(v). (3.16)

Brandes presented a recursive way to calculate the BC value of v, by introducing

predecessors of v.

Given a graph (V,E), the predecessors of a vertex v ∈ V on a shortest path

17

from s to v is a subset Ps(v) ⊆ V s.t.

t ∈ Ps(v)⇒
(
d(s, v) = d(s, t) + 1

)
∧ (t, v) ∈ E, (3.17)

where d(s, t) denotes the length of a shortest path from s to t.

Brandes’ algorithm is based on the following theorem:

Given a graph (V,E), for any s, v ∈ V , we have

δs(v) =
∑

t∈V s.t.v∈Ps(t)

σsv
σst

(1 + δs(t)). (3.18)

The basic idea of Brandes’ algorithm can be summerized as follows:

1. For each vertex s ∈ V , we calculate the shortest paths from s to all the other

vertices, i.e., using breadth-first search for unweighted graphs, the running time

is bounded by O(|E|+ |V |); or using Dijkstra’s algorithm for weighted graphs,

which takes at least O(|E|+ |V | log |V |) time.

2. For each vertex s ∈ V , traverse the vertices in descending order of their distances

from s, and accumulate the dependencies by Eq. 3.18. Each traversal takes

O(|E|) time.

The total time complexity T (n,m) for Brandes’ algorithm, where n = |V | and

m = |E|, is therefore

T (n,m) = O(n(m+ n) + nm) = O(nm) (3.19)

for unweighted graphs, and

T (n,m) = O(n(m+ n log n) + nm) = O(nm+ n2 log n) (3.20)

for weighted graphs.

Equation 3.16 shows that betweenness score can be obtained by summing up the

dependency values. The computation can be broken down to two stages: single-source

shortest-path (SSSP) computation to count the number of shortest paths from the

source to other vertices and the accumulation computation to obtain the dependency

values. We present the pseudocode for betweenness computation in Alg 5. Supersteps

are delimited by the minimum step distance from the source vertex. For example,

18

Algorithm 5 Betweenness Compute Function

1: function compute(G)
2: for v ∈ V do BC[v] = 0

3: for s ∈ V do
4: /∗ single-source shortest-path ∗/
5: if depth = 0 then
6: dist[s]← 0;σ[s]← 1
7: for t ∈ V, t 6= s do
8: dist[t]← −1;σ[t]← 0; δ[t]← 0

9: while does not reach the farthest vertex do
10: for v at depth away from s do
11: for w ∈ ON(v) do
12: /∗ path discovery∗/
13: /∗ w visited for the first time ∗/
14: if dist[w] = −1 then
15: dist[w]← depth+ 1

16: /∗ path counting∗/
17: /∗ edget(v, w) on a shortest path ∗/
18: if dist[w] = depth+ 1 then
19: σ[w]← σ[w] + σ[v]

20: depth← depth+ 1

21: /∗ accumulation ∗/
22: while depth > 0 do
23: depth← depth− 1
24: for w at current depth do
25: for v ∈ IN [w] do
26: /∗ v is a predecessor of w ∗ /
27: if dist[v] = depth− 1 then

28: δ[v]← δ[v] + σ[v]
σ[w]
· (1 + δ[w])

29: if w 6= s then BC[w]← BC[w] + δ[w]

30: /∗ rescaling ∗/
31: scale← 1/((n− 1) · (n− 2))
32: for v ∈ V do BC[v]← BC[v] · scale

superstep 2 means we are processing vertices that are 2 steps away from the source

vertex. The total number of superstpes is limited by the longest shortest path of the

graph. Betweenness is initialized to 0. We use a dist array to record the distance

between the source and other vertices and a σ array to record the number of shortest

paths from the source vertex to the target vertex. The SSSP process (steps 5 – 20)

19

starts from the source vertex and traverses the graph layer by layer until reaching

the farthest vertices. Along the way, we count the number of shortest paths from the

source to a certain vertex. The accumulation process (steps 22 – 29) starts from the

farthest vertices and traverses vertices in the descending order of their distances from

the source, and accumulates the dependency values along the way. For each source

vertex, the computation will contribute a summand to betweenness array. The final

betweenness array will be obtained after executing such computation (SSSP with

accumulation) on all vertices. We perform SSSP and accumulation processes for each

vertex, which are independent among different vertices. We use parallel stream in

Java 8 to process individual vertices (step 3) in parallel.

Although Brandes’ algorithm is the fastest algorithm on computing the exact BC

values, the time complexity can be extremely high for large graphs. This motivates us

to investigate the BC approximate computation by implementing two approximation

algorithms: uniformly random sampling [23] and adaptive sampling [24].

3.1.5.2 Approximate Computation

Uniformly Random Sampling The exact computation consists of solving n

single-source shortest-paths (SSSP) problems, one for each vertex, and each SSSP

contributes one summand to the result. This contribution is the one-sided dependency

of the source δs(v) for betweenness. The vertices for which an SSSP is solved are called

pivots. The basic idea for approximate computation is that the exact centrality value

can be estimated by extrapolating the contributions obtained from just a few SSSP

computations, i.e. from a small set of pivots.

If pivots are selected uniformly at random, the contributions of different SSSP

computations to the BC value of a single vertex can be considered the result of a

random experiment Xi. Therefore, the error bound for the estimated BC value of

a single vertex (the average of the contributions from the randomly selected pivots)

can be obtained by Hoeffding’s inequality:

Pr[

∣∣∣∣(X1 + · · ·+Xk)

k
− E

(
X1 + · · ·+Xk

k

) ∣∣∣∣ ≥ ξ] ≤ e−2k(
ξ
M

)2 , (3.21)

with 0 ≤ Xi ≤M(i = 1, · · · , k) and an arbitrary ξ ≥ 0. Setting

M = n(n− 2), (3.22)

20

Algorithm 6 Betweenness (Uniformly Random Sampling)

1: function compute(G)
2: P ← sample k vertices as pivots uniformly at random
3: for s ∈ P do
4: single-source shortest-path (same as Alg. 5)
5: accumulation (same as Alg. 5)

6: /∗ rescaling ∗/
7: scale← n/((n− 1) · (n− 2) · k)
8: for v ∈ V do BC[v]← BC[v] · scale

Algorithm 7 Betweenness (Adaptive Sampling)

1: function compute(G)
2: k ← 0
3: while k < cuttoff do
4: s← sampling a vertex as the pivot
5: single-source shortest-path (same as Alg. 5)
6: accumulation (same as Alg. 5)
7: k ← k + 1
8: count← number of vertices with betweenness larger than cn
9: if count > topK then End While

10: /∗ rescaling ∗/
11: scale← n/((n− 1) · (n− 2) · k)
12: for v ∈ V do BC[v]← BC[v] · scale

ξ = ε(n− 2), (3.23)

we can obtain an error bound from about ξ with probability of 2e−k(
ε
n
)2 . The pseu-

docode for uniform random sampling is shown in Alg. 6.

Adaptive Sampling Instead of setting the number of pivots k as one of the in-

put parameters, the adaptive sampling technique determines the actual number of

sampling k through each sampling. There is no need to predefine k′s value.

The basic idea is to repeatedly sample a vertex vi ∈ V , perform SSSP from vi,

and maintain a running sum S of the dependency scores δvi(v). Sample until S is

greater than cn for some constant c ≥ 2. Let the total number of samples to be k.

The estimated centrality score of v,BC(v) is given by nS
k

.

In the practical implementation, we only focus on the vertices v with the high

centrality scores (BC(v) ≥ cn). Therefore, we need to specify the number of the top-

score vertices topK as one input parameter. We use cutoff to specify the maximum

21

number of samples. The pseudocode for adaptive sampling is shown in Alg. 7.

3.2 Diameter

Diameter and effective diameter computation is the basic problem for graph analyt-

ics. Diameter is defined as the longest shortest path length in the graph. Effective

diameter is defined as the minimum number of steps in which 90% of all connected

pairs of nodes can reach each other. Diameter and effective diameter are important

properties of a graph for studying the interesting phenomena such as the famous “six

degrees of separation” problem [25].

3.2.1 Exact Computation

We implement the exact computation of diameter based on its definition: the longest

shortest path length. Shown in Alg. 8, for each node, we can perform a single-source

shortest-path calculation using BFS starting this node. This is exactly the same

process used in the exact betweenness computation algorithm. Therefore, we do not

repeat the narration of the algorithm here. At the end of BFS, we can obtain the

longest shorted path length from this node. This quantity is defined as the radius.

Then we need to perform BFS on every node and find the maximum radius to get the

diameter D. The BFS method only requires O(nD) memory. But the time complexity

is O(nm). For large graphs, the time complexity is too high .

3.2.2 Approximate Computation

To reduce the time complexity, we can use dynamic programming. For example, for

each node, we maintain a set to store its all reachable nodes within t steps. For t+ 1

step, the set for a node u can be obtained by taking the union of the sets of u’s

neighbors from the previous step t. The program runs iteratively (t = 0, t = 1,. . .)

until the set for each node doesn’t change, meaning we have arrived at the diameter.

The method can reduce the time to O(nD). But it requires to maintain an explicit

set for each node. Thus, the space complexity is O(n2). For large graphs, the space

complexity is too high.

The set is used to keep track of the number of nodes reachable within t steps as

well as to do the union operation. For example, we can use a n-bit bit vector to

22

Algorithm 8 Diameter Compute Function

1: function compute(G)
2: for s ∈ V do
3: /∗ single-source shortest-path ∗/
4: if depth = 0 then
5: dist[s]← 0;σ[s]← 1
6: for t ∈ V, t 6= s do
7: dist[t]← −1;σ[t]← 0

8: while does not reach the farthest vertex do
9: for v at depth away from s do
10: for w ∈ ON(v) do
11: /∗ path discovery∗/
12: /∗ w visited for the first time ∗/
13: if dist[w] = −1 then
14: dist[w]← depth+ 1

15: /∗ path counting∗/
16: /∗ edget(v, w) on a shortest path ∗/
17: if dist[w] = depth+ 1 then
18: σ[w]← σ[w] + σ[v]

19: depth← depth+ 1

20: radius[s] = max{dist}
21: diameter = max{radius}

encode the set. To reduce the space complexity, we can resort to the Flajolet-Martin

probabilistic counters [26]. The probabilistic counters can estimate the cardinalities

of the sets with logn bits.

3.2.2.1 Neighborhood Function

In this section, we define the neighborhood function, the cumulative distribution

function of distances (distance cdf), and the effective diameter for a given graph

G = (V,E) [27].

(ball of radius r). The ball of radius r centered at vertex u is the set

B(u, 0) = {u} (3.24)

B(u, r) =
⋃

(u,v)∈E

B(v, r − 1) (3.25)

that contains all vertices reachable from u within r steps.

23

The neighborhood function is defined based on the ball set:

(neighborhood function). The neighborhood function NG(t) is the number of node-

pairs that can reach each other in at most t steps:

NG(t) =
∑
v∈V

|B(v, t)| (3.26)

The cumulative distribution of distances (distance cdf) is defined as follows:

(distance cdf). The cumulative distribution function of distances HG(t) is the

fraction of reachable node-pairs at distance t:

HG(t) =
NG(t)

NG(tmax)
(3.27)

The diameter D of the graph (the longest shortest path) is the minimum t such

that HG(t) = 1.

(effective diameter). The effective diameter Deff of a graph is defined as the

minimum number of steps in which 90% of all connected pairs of nodes can reach

each other:

Deff = min{t} such that HG(t) ≥ 0.9 (3.28)

3.2.2.2 Flajolet-Martin Counters

To approximate the diameter, we can use the Flajolet-Martin (FM) counters to count

the number of distinct elements in a multiset since FM counters can give an unbi-

ased estimate of the cardinality of a multiset and an O(logn) bound for the space

complexity. The following briefly describes how FM counters work.

We can assume that there is a mapping function that maps the elements of the

set V into the set of bit strings of length L

mapping : V → {0, 1}L (3.29)

We can observe that if the output of the mapping function is uniformly distributed,

the probability of getting a bit string with the pattern 0k1 is 2−k−1.

We define function bit(b, k) return the k-th bit in the bit string b. We also define

24

a function ρ(b) returns the position of the least significant 1-bit in the bit string b:

ρ(b) = min
k≥0
{bit(b, k) = 1} (3.30)

We can use a bit vector BITMAP of length L as the FM counter to keep track of

the occurrences of such patterns. The procedure of adding an element u of the set V

to the FM counter goes like this:

• Use the mapping function to obtain the bit string map(u).

• Obtain the position of least significant 1-bit i = ρ(map(u)).

• Set the i-th bit of BITMAP to 1: BITMAP [i] = 1.

The basic idea is that BITMAP [0] will be accessed approximately n/2 times,

BITMAP [1] will be accessed approximately n/4 times and so on. At the end of

execution, we could expect that BITMAP [i] will be 0 if i >> logn and 1 if i << logn.

i ≈ logn will be the border of 0 and 1. If we let R be the position of the leftmost 0,

we can use

n =
1

φ
2R (3.31)

to be the estimate of n, where φ ≈ 0.77351. If we use K BITMAPs and stochastic

averaging, the estimate of n will be:

A =
R1 +R2 + · · ·+RK

K
(3.32)

n =
1

φ
2A (3.33)

We can use bias and standard error to evaluate the quality of the estimation. The

bias is the ratio between the estimate of n and its exact value. The standard error is

the quotient of the standard deviation of the estimate of n by the value n.

The quality of the FM counters is [26]:

bias = 1 +
0.31

K
(3.34)

standard error =
σ

n
=

0.78√
K

(3.35)

Shown in Alg. 9, we maintain K FM bitstrings b(t, i) for each node i and current

iteration number t. b(t, i) encodes the number of nodes reachable from node i within t

25

Algorithm 9 Diameter Approximating Function

1: function compute(G)
2: for i = 1 to n do
3: b(0, i)← NewFMBitstring()

4: for t = 1 to MaxIter do
5: Changed← 0
6: for i = 1 to n do
7: for l = 1 to K do
8: for j ∈ i′s neighbor do

9: bl(t, i)← bl(t− 1, i) BIT-OR bl(t− 1, j)
10: if bl(t, i) 6= bl(t− 1, i) then Changed← Changed+ 1

11: NG(t)←
∑

iNG(t, i)
12: if Changed = 0 then tmax ← t and break

13: diameter ← tmax
14: diametereff ← smallest t where NG(t) ≥ NG(tmax)

steps. The bitstrings b(t, i) are iteratively updated until all bitstrings stabilize. Steps

6–9 show each node i updates its bitstring by performing bitwise OR on all bitstrings

of its neighbors handed over from the previous iteration. The neighborhood function

NG(t, i) for node i after t steps can be estimated by:

NG(t, i) =
1

0.77351
2

1
K

∑K
l=1 bl(i) (3.36)

where bl(i) is the position of leftmost ‘0’ bit of the lth bitstring of node i. The iteration

stops when the bitstrings of all nodes stabilize (step 12). Then tmax is the diamter of

the graph. We can calculate the effective diameter which is the smallest t such that

NG(t) ≥ 0.9 ·NG(tmax).

3.3 Truss Decomposition

Identifying various cohesive subgraphs in a massive network is crucial to the efficient

and effective analytics of the network [28–31]. k-truss is an important kind of cohesive

subgraphs of a network that has received growing attention in the recent years [32–36].

Motivated by the need to find a structure that is a relaxation of a clique [37] and is

efficiently computable, k-truss finds applications in social network visual analysis [38],

community search [39], maximum clique finding [40], etc. The k-truss of a graph

is defined as the largest subgraph in which each edge is contained in at least k − 2

26

triangles within the subgraph [41]. Given a graph, the k-truss decomposition problems

aims to find the k-trusses of the graph for all k.

The definition of k-truss is similar to k-core [11, 42–45], which is defined as the

largest subgraph in which every vertex has a minimum degree of k within the sub-

graph. The k-truss focuses on the edges of a graph while the k-core focuses on the

vertices. We can make an analogy that the edge in k-truss is similar to the vertex in

k-core while the number of triangles for an edge to be contained in is similar to the

degree for a vertex. However, the definition of k-truss is more rigorous than k-core

since k-truss is based on triangles, which have higher dimensionality than edges that

k-core is based on.

There are mainly two types of algorithms for efficiently computing the k-trusses:

the serial algorithm suited for medium-sized graphs and the parallel algorithm suited

for large-scale graphs. The serial algorithm is based on the concept of edge peeling

proposed by J. Wang and J. Cheng [41]. Their algorithm iteratively eliminates edges

at each stage based on their support value until all edges in the graph are removed.

In their implementation, a hash table was used to check whether two vertices form

an edge or not. The endpoints of each edge were hashed as the keys for the hash

table. The hash table can work well for moderate-sized graphs. However, for large

graphs, the hash table is expensive to use and designing an optimum hash function is

not a trivial problem. The second type of algorithms use more advanced paralleliza-

tion techniques on high-performance multi-core machines to significantly reduce the

runtime [46–49]. Memory usage is not the major concern for these parallel programs

since they are designed for high-performance machines, which are usually capable of

keeping the whole graph as well as the hash table in the main memory. However,

the cost for the hardware is high. For algorithms that avoid using the hash table

(e.g., [46] uses an array-based alternative), we can still find room for optimization on

the data structure design to use the memory more efficiently. In short, both the serial

and the parallel algorithms have limitations. For the serial algorithm, the inefficient

and cumbersome data structure design (e.g., the use of a hash table) hinders its use

for large graphs. For the parallel algorithms, besides the same problem that the serial

algorithm suffers, the other problem is the high hardware cost, as the focus of the

parallel algorithms is to reduce the runtime on powerful machines.

Different from the algorithms proposed in the IEEE HPEC static graph challenge

using high performance CPU or GPU to boost performance [50], our focus is to

investigate if it is viable to efficiently and economically compute the k-trusses of

27

large networks on a single consumer-grade machine. Therefore, the memory usage

by the program is our major concern. We aim to engineer two algorithms: the

serial edge-peeling algorithm [41] and the parallel asynchronous h-index-updating

algorithm [48], with the goal to minimize the memory usage compared to the original

implementations, but still with high time efficiency. We target these two algorithms

because of their efficiency and relatively small memory footprints. For example, the

edge-peeling algorithm optimizes Cohen’s very first k-truss decomposition algorithm

[32] with improved time complexity. The asynchronous h-index-updating algorithm

has a relatively smaller memory footprint compared to other parallel algorithms. A

concrete example would be: for a graph with 41 million vertices and 1.2 billion edges,

the h-index-updating algorithm needs around 24 GB memory while the memory-

efficient parallel algorithm in [46] needs around 34 GB memory.

For the k-truss problem, or any graph-related problem, keeping the complete graph

representation in the main memory is commonly the most memory-consuming com-

ponent. To significantly reduce the graph’s footprint in the main memory, we resort

to WebGraph [8], a highly efficient graph compression framework that allows random

access to a memory-mapped compressed graph stored on the hard drive. WebGraph

also supports thread-safe operations on an immutable graph, facilitating parallel com-

putation. The other memory-consuming component in the k-truss program is the use

of a hash table to check whether two vertices form an edge or not. The hash table

has a total number of entries equal to the number of edges of the graph. The purpose

of using a hash table is to achieve constant-time querying in an optimum scenario.

However, it is expensive to use for large graphs in practice. Therefore, in our imple-

mentation, we avoid using a hash table. We carefully design an array-based structure

with a small memory footprint and its corresponding operations to achieve the same

functionality that a hash table can provide. With our optimized implementation, we

can efficiently compute the k-trusses of large networks (up to 1.2 billion edges) on a

consumer-grade machine.

3.3.1 Preliminaries

For the k-truss decomposition problem, we consider undirected, unweighted simple

graphs. For a given graph G, the vertex set is denoted by V and the edge set is

denoted by E. Therefore, the number of vertices is n = |V | and the number of

edges is m = |E|. The set of neighbors of a vertex u is denoted by neighbor(u) such

28

that neighbor(u) = {v : (u, v) ∈ E}. The degree of u is defined as degree(u) =

|neighbor(u)|.
Each vertex in the graph is assigned an unique vertex ID from 0 to n − 1. The

order of vertices is based on their vertex IDs. For example, we say u is ordered before

v if u < v. Based on this ordering, we define a triangle as follows:

(triangle). A triangle in G is defined as a cycle of three vertices {u, v, w ∈
V }, denoted by 4uvw, such that u < v < w and all three edges exist in G (i.e.,

(u, v), (v, w), (u,w) ∈ E).

With the notion of triangles, we introduce the definition for support of an edge:

(support). The support of an edge e ∈ E, denoted by support(e), is defined as

the number of triangles in G that contain e. k-truss is defined based on the notion

of support: (k-truss). The k-truss of G, denoted by Tk, where k ≥ 2, is defined as

the largest subgraph of G, such that every edge e in Tk has support(e) ≥ (k − 2).

Figure 3.1: (a) An undirected, unweighted simple graph G; (b) the 4-core of G (no
5-core exists); (c) the 5-truss of G (no 6-truss exists).

k-truss has close connections with the well known concept of k-cores. The k-core

of G, denoted by Ck, where k ≥ 0, is defined as the largest subgraph of G, such

that each vertex u in Ck has degree(u) ≥ k. Fig. 3.1(a) shows a simple undirected

and unweighted graph G. By definition, the 2-truss is simply G itself. Fig. 3.1(b)

shows the 4-core of G in which every vertex has a degree of at least 4. No 5-core of

G exists. Fig. 3.1(c) shows the 5-truss of G in which every edge has a support of at

least 3. No 6-truss of G exists. It is interesting to note that the 5-truss also satisfies

the requirement of a 4-core by definition. However, it is not true vice versa. This

29

example shows that the k-truss can further filter out those marginal vertices and can

better represent the core part of a graph than the k-core.

We introduce other two important notions related to k-truss: trussness and k-

class.

(trussness). The trussness of an edge e, denoted by φ(e), is defined as the maxi-

mum k such that e belongs to Tk but does not belong to Tk+1.

The maximum trussness of any edge in G is denoted by tmax. Based on the

trussness, we can define the k-class of G as follows: (k-class). The k-class of G

is defined as the set of edges with same trussness of k, denoted by Φk = {e : e ∈
E, φ(e) = k}.

For the k-truss decomposition problem, our task is to find the k-trusses of G for

all 2 ≤ k ≤ tmax. The k-truss can be obtained by taking the union of k-classes of G

by Tk = Φk ∪ Φk+1 ∪ · · · ∪ Φtmax . For the graph shown in Fig. 3.1(a), the 2-class Φ2

is an empty set. The 3-class Φ3 has 6 edges: {(0, 1), (0, 4), (1, 5), (2, 5), (3, 10), (4,

10)}. The 4-class Φ4 has 6 edges: {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. The

5-class Φ5 has 14 edges: {(5, 6), (5, 7), (5, 8), (5, 9), (5, 10), (6, 7), (6, 8), (6, 9), (6,

10), (7, 8), (7, 9), (7, 10), (8, 9), (9, 10)}. Therefore, from the k-classes above, we

can obtain that T2 and T3 is G itself. T4 is (Φ4 ∪ Φ5) and T5 is Φ5. We can easily

verify that for 2 ≤ k ≤ 5, each edge e in Tk is contained in at least (k − 2) triangles,

meaning that support(e) ≥ (k − 2).

To summarize, if we can compute the trussness for each edge in G, we can obtain

the k-classes of G, and then we can obtain the k-trusses of G by taking the union

of the k-classes. Therefore, the k-truss decomposition of a graph is equivalent to

computing the trussness of each edge in the graph.

3.3.2 Initial Support Computation

We engineer two existing efficient k-truss decomposition algorithms: the serial algo-

rithm based on edge peeling [41] and the parallel algorithm based on asynchronous

h-index updating [48]. Both algorithms start with computing the initial support for

each edge since the initial support is the upper bound of the trussness. Since the

memory usage is our major concern, we surely do not want to load the whole graph

into the main memory during computation, especially for large networks. Therefore,

we use WebGraph [8], a graph compression framework with high compression ratio

that enables random access to the compressed graph, to make the graph’s footprint

30

Algorithm 10 Initial Support Computation

1: function supportCompute(G)
2: for each edge e ∈ E do support[e]← 0

each edge e ∈ E
3: u, v ← two endpoints of e
4: for each w ∈ neighbor+(u) ∩ neighbor+(v) do
5: euw ← get edge ID of (u,w)
6: evw ← get edge ID of (v, w)
7: atomicAdd(support[e], 1)
8: atomicAdd(support[euw], 1)
9: atomicAdd(support[evw], 1)

10: return support

as small as possible. We also design an array-based structure and corresponding

operations to achieve the equivalent functionality of a hash table, but with a much

smaller footprint. We introduce our memory optimization on the two k-truss decom-

position algorithms using WebGraph and our carefully engineered data structures in

the following sections.

The initial support is the upper bound on the trussness of each edge. Its compu-

tation is based on triangle enumeration [46]. This algorithm visits each edge in the

graph, finds all triangles starting with the edge, and updates the support for all edges

contained in those triangles.

Since we define a triangle 4uvw based on the ordering of the three vertices (u <

v < w), to find triangles starting with edge (u, v), we do not need the complete

neighbor sets of u and v. We define the set of u’s neighbors with vertex ID > u to

be the upper neighbor set of u, denoted by neighbor+(u) = {v : (u, v) ∈ E, v > u}.
To find all triangles starting with (u, v), we take the intersection of neighbor+(u) and

neighbor+(v). uvw forms a triangle 4uvw if w ∈ {neighbor+(u) ∩ neighbor+(v)}.
The initial support computation can be parallelized easily since the procedure of

triangle enumeration is independent on different edges. Algorithm 10 summarizes the

major steps of the initial support computation. For each edge e ∈ E, step 4 obtains

the two endpoints u and v of the edge. Step 5 takes the intersection of u and v′s

upper neighbor sets. The size of the intersection is the number of triangles starting

with edge (u, v). Steps 6 and 7 obtain the edge IDs for (u,w) and (v, w) according

to the endpoints. The original program [41] uses a hash table to store the edge IDs.

The pair of two endpoints of an edge is used as the key for the hash table. The hash

table is also used to check whether two vertices form an edge or not. Although it

31

is convenient to use, for large graphs, the hash table is expensive to use in practice.

Instead, we implement these two steps using binary search in the adjacency list of the

graph. We use an auxiliary array to label the starting positions of each segment in

the adjacency list. Therefore, we can perform binary search in a small range (not in

the whole adjacency list), which can be very efficient. Steps 8–9 atomically increment

the support of the three edges constituting the triangle 4uvw by 1.

3.3.3 Serial Edge Peeling

Algorithm 11 Serial K-Truss Decomposition

1: function k-truss-serial(G, support)
2: k ← 2
3: sort all the edges in ascending order of their support [1] and store them in
sortedEdge array

4: for each edge e ∈ E such that support[e] ≤ k − 2 do
5: e← edge with the lowest support
6: u, v ← two endpoints of e
7: if degree[u] > degree[v] then swap u and v

8: for each w ∈ neighbor(u) do
9: euw ← get edge ID of (u,w)
10: if (v, w) ∈ E then
11: evw ← get edge ID of (v, w)
12: if support[evw] > support[e] then
13: support[evw]← support[evw]− 1
14: reorder sortedEdge

15: if support[euw] > support[e] then
16: support[euw]← support[euw]− 1
17: reorder sortedEdge

18: remove e from G.
19: if not all edges in G are removed then
20: k ← k + 1
21: goto step 4

22: for edge e ∈ E do
23: trussness[e]← support[e] + 2

24: return trussness

The serial edge-peeling algorithm uses the output from Algorithm 10 to initialize

the support for each edge. Algorithm 11 iteratively removes edges based on their

support until all edges in the graph are removed.

32

Step 3 sorts the edges in ascending order of their support using a linear-time

sort (e.g., bin sort) and stores them (edge IDs) in the sortedEdge array. Edges are

processed exactly once under the ascending-order configuration. Step 5 obtains the

edge e (not removed) with the lowest support from sortedEdge. Step 7 ensures that

u has a smaller degree than v. The removal of edge (u, v) affects the support of all

edges that can constitute triangles with (u, v). To find all triangles containing edge

(u, v), step 8 iterates u′s each neighbor w. If (v, w) is an edge, then u, v, and w form

a triangle. Step 10 checks whether (v, w) is an edge or not. We implement this step

by binary search in the adjacency list of the graph without a hash table, similar to the

operation of obtaining an edge ID. If (v, w) is an edge, then steps 13 and 16 decrement

the support of edges (v, w) and (u,w) by 1, respectively. It should be noted that the

decrement only applies to edges with support larger than edge e′s support. Since the

support has been changed, steps 14 and 17 reorder the sortedEdge array to maintain

the ascending order with regard to the edge support. Constant-time reordering can

be achieved using a method similar to the one used in the k-core decomposition [42].

After all triangles containing edge (u, v) are processed, step 18 removes the edge (u, v)

from the graph. We do not physically delete the edge from the graph. Instead, we

use a bit set to label each edge’s state. After removing all edges in the current bin

(containing edges with support equal to k − 2), the program moves to the next bin

(incrementing k by 1). The program continues removing edges until all edges in the

graph are removed. Step 23 adds 2 to the final support to obtain the trussness for

each edge.

3.3.4 Asynchronous h-index updating

The edge-peeling method requires processing edges in ascending order of their sup-

port, which makes the algorithm inherently sequential since each step depends on

the result from the previous step. The asynchronous h-index updating algorithm [48]

relaxes the “ascending order” requirement and processes edges in a random order,

which makes the parallelization possible. The main idea of the algorithm is the it-

erative h-index computation on the support of the edges. h-index is a measure to

quantify the impact and productivity of researchers by the number of citations of

their publications. For a set of real numbers, the h-index of the set is defined as the

largest number h such that there are at least h elements in the set that are at least h.

For example, the h-index of {2, 2, 3, 3, 3} is 3. The algorithm extends the definition

33

Algorithm 12 Parallel K-Truss Decomposition

1: function k-truss-parallel(G, support)
2: for each edge e ∈ E do
3: h[e]← support[e], scheduled[e]← TRUE

4: updated← TRUE . TRUE if any h[e] is updated
5: while updated do
6: update← FALSE each edge e ∈ E
7: if scheduled[e] is FALSE then continue

8: L← empty list, N ← empty list
9: for each 4 contains e do
10: e′, e′′ ← the two edges in 4 other than e
11: N.add(e′), N.add(e′′)
12: ρ← min{h[e′], h[e′′]}
13: L.add(ρ)

14: H ← h-index of L
15: if h[e] 6= H then
16: updated← TRUE
17: for each edge eN in N do
18: if H < h[eN] ≤ h[e] then
19: scheduled[eN]← TRUE

20: h[e]← H
21: scheduled[e]← FALSE

22: for each edge e ∈ E do
23: trussness[e]← h[e] + 2

24: return trussness

of neighbors and defines an edge’s neighbors to be the edges that can form triangles

with it. The h-index of an edge is fundamentally the same as the support of an edge

and is upper bounded by the h-index of the edge’s neighbor set. The algorithm iter-

atively updates an edge’s h-index by computing the h-index of its neighbor set until

achieving convergence when no updates would happen. The updating scheme is asyn-

chronous, meaning the h-index of an edge is updated instantly and the computation

of the h-index of the neighbor set always uses the up-to-date h-index values.

The major steps of the parallel algorithm are summarized in Algorithm 12. Step

3 initializes the h-index of each edge by the edge’s initial support. We use a boolean

indicator updated to check the convergence and to terminate the program. updated

stays true if any edge’s h-index is changed. The program processes each edge in

parallel. For each edge e, step 10 finds all triangles containing the edge e. We use the

34

same implementation as steps 8 and 10 of Algorithm 11, which uses binary search in

the adjacency list of the graph without a hash table. Steps 12–14 collects the h-indices

of e’s neighbor edges by choosing the smaller one. Step 15 computes the h-index of

the neighbor set as the new h-index for edge e. If the new h-index is smaller than e′s

current h-index, it means e′s h-index will be updated and step 17 sets updated to be

true. The algorithm uses a notification mechanism to achieve faster convergence. The

scheduled array notifies the program to process the scheduled edges only. Steps 18–20

decide whether a neighbor edge of e is scheduled to be processed in the next iteration.

If the neighbor edge’s h-index is between e’s new h-index and e′s current h-index, it

means that updating e′s h-index will affect the upper bound of the neighbor edge’s

h-index. The neighbor edge’s h-index may have a chance to change. Therefore, it is

scheduled to be processed in the next iteration. The program terminates when each

edge’s h-index achieves convergence. Step 24 adds 2 to the final h-index to obtain

the trussness for each edge.

3.3.5 Memory Optimization

The original implementations for Algorithms 11 and 12 keep the entire graph (i.e.,

the adjacency list representation) in the main memory and use a hash table for check-

ing the existence of an edge and querying for the edge ID, which is expensive and

inefficient for large graphs. To eliminate the necessity of keeping the entire graph in

the main memory, we use the WebGraph framework. In this section, we detail our

data structure design to avoid using the hash table but still can achieve the equivalent

functionality without any performance degradation.

Fig. 3.2 shows our optimized data structures for k-truss decomposition. We use a

small simple graph as an example. For the example graph, n = 6 and m = 9. The

edges of the graph can be stored in edgeHead and edgeTail arrays both with size

m. Vertices in edgeHead and edgeTail are sorted in ascending order. edgeID in the

original programs is a hash table with m entries. We show that we can remove the

redundant edgeID and edgeHead without affecting any computation.

We introduce an offset array with size n in our implementation. The offset array

summarizes the edgeHead information by recording the start position of each vertex

in edgeHead. For example, vertex 0 starts at position 0, vertex 1 starts at position 1,

and vertex 2 starts at position 3 in edgeHead. Therefore, offset [0] = 0, offset [1] = 1,

and offset [2] = 3, respectively. The hash table has two functionalities: given two

35

Figure 3.2: Optimized data structures for k-truss decomposition.

vertices u and v, check if (u, v) is an edge; given an edge (u, v), get the edge ID. We

show that only by edgeTail and offset, we can still achieve the two functionalities.

For checking if (u, v) is an edge, we assert that u < v. Then we perform binary search

in edgeTail for v in the range of [offset[u], offset[u+ 1]), which is neighbor+(u). If we

can find v in this range, then (u, v) is an edge. For example, if we want to check if (2,

5) is an edge, we can search for 5 in range [3, 6) in edgeTail. The other functionality

is to get the edge ID given the two endpoints. The process is similar since the binary

search would return the target index.

sortedEdge is used to store edges in ascending order of their support. edgePos

is used to store the index of an edge in sortedEdge. For example, edgePos[5] = 8,

meaning that edge 5 is at position 8 in sortedEdge (sortedEdge[8] = 5). For Step 10

in Algorithm 11 and Step 11 in Algorithm 12, we still need the full neighbor set of a

vertex. Since we cannot get the complete neighbor set from edgeTail, we therefore

use WebGraph for random access to the compressed graph to retrieve the complete

neighbor set of a vertex. Since Algorithm 12 processes edges in a random order, there

is no need to keep sortedEdge and edgePos. However, the scheduled needs another

m-sized array.

By eliminating edgeID and edgeHead, we optimize the memory usage down to

(4m+2n) for Algorithm 11 and (3m+2n) for Algorithm 12, compared to the original

programs’ (6m+n) and (5m+n) memory usage (no offset needed). Since m is usually

36

very large, the memory reduction would be significant for large graphs. For example,

for a graph with 41 million vertices and 1.2 billion edges, the original programs for

Algorithm 2 and 3 would consume at least 29.0 GB and 24.1 GB memory, if we

assume the unit is an integer. Our optimized programs only need 19.5 GB and 14.7

GB memory, respectively. It should be noted that an m-entry hash table usually

has a larger memory footprint than an m-length array. Therefore, in practice, the

memory reduction should be larger than the theoretical calculation.

WebGraph plays an important role in reducing the memory usage. Without Web-

Graph, we have to keep the complete graph (i.e., the adjacency list representation) in

the memory to retrieve the neighbor set of a vertex. By the WebGraph’s API, we can

efficiently get access to the compressed graph stored on the hard drive. Therefore,

WebGraph eliminates the necessity of maintaining the complete graph in the main

memory, allowing us to remove the edgeHead array.

3.4 Summary

This chapter details the implementation of graph algorithms computing centrality

measures (eigenvector, hub, authority, PageRank and betweenness), diameter, and

truss-decomposition in Graph-XLL. For betweenness and diameter, besides the ex-

act computation, we also implement the approximate calculation with reduced time

and space complexity, while neither igraph nor NetworkX provides such approximate

algorithms. For truss decomposition, we implement both sequential and parallel algo-

rithms while neither igraph nor NetworkX provides truss decomposition programs. In

next chapter, we will present the performance results using Graph-XLL on different

datasets.

37

Chapter 4

Experiments

This chapter presents the experimental results using algorithms in Graph-XLL to

compute centrality measures (eigenvector, hub, authority, PageRank and between-

ness), diameter, truss decomposition for different datasets. Experiments are con-

ducted on a machine with Intel quad-core i7, 2.6 GHz CPU, 32 GB RAM, and 500

GB SSD hard drive, running Ubuntu 17.10. The cost for this machine is less than

1,500 Canadian dollars, thus qualifying as a consumer-grade machine. We perform

experiments on different datasets obtained from http://law.di.unimi.it/datasets.php.

Characteristics of the datasets are summarized in Table 4.1.

Table 4.1: Summary of Datasets
Graph |V | |E|
p2p 62,586 147,892
slashDot 82,168 948,464
cnr-2000 325,557 3,216,152
eu-2005 862,664 19,235,140
dblp-2011 986,324 3,353,618
in-2004 1,382,908 16,917,053
ljournal-2008 5,363,260 79,023,142
eu-2015-host 11,264,052 386,915,963
arabic-2005 22,744,080 639,999,458
gsh-2015-tpd 30,809,122 602,119,716
uk-2005 39,459,925 783,027,125
twitter-2010 41,652,230 1,468,365,182

38

4.1 Centrality Measures

We use 7 datasets of varing sizes (cnr-2000, eu-2005, in-2004, ljournal-2008, eu-2015-

host, arabic-2005, and twitter-2010) to compute the centrality measures. We record

runtime and memory consumption when executing the programs. We present exper-

imental results in this chapter. Further evaluation and analysis will be done in the

next chapter.

4.1.1 Eigenvector Centrality

0 100 200 300 400 500 600 3000 6000 9000
1E-18

1E-15

1E-12

1E-09

1E-06

1E-03

1E+00

1E+03

Eu
cl

id
ea

n
di

st
an

ce
 (a

.u
.)

number of iteration

 cnr-2000 eu-2015-host
 eu-2005 arabic-2005
 in-2004 twitter-2010
 ljournal-2008

Eigenvector

Figure 4.1: Euclidean distance of eigenvector centrality between two consecutive it-
erations after a certain number of iterations for different datasets. The Euclidean
distance can be viewed as the convergence condition. If we choose 1E-14 as the cri-
terion for convergence, the numbers of iterations required to achieve convergence are
∼300 for cnr-2000, ∼35 for eu-2005, ∼550 for in-2004, ∼9000 for ljournal-2008, ∼1500
for eu-2015-host, ∼70 for arabic-2005, and ∼60 for twitter-2010, respectively.

Fig. 4.1 shows the Euclidean distance of eigenvector centrality between two con-

secutive iterations after a certain number of iterations for different datasets. The Eu-

clidean distance can be viewed as the convergence condition. If we choose 1E-14 as the

criterion for convergence, the numbers of iterations required to achieve convergence

are ∼300 for cnr-2000, ∼35 for eu-2005, ∼550 for in-2004, ∼9000 for ljournal-2008,

∼1500 for eu-2015-host, ∼70 for arabic-2005, and ∼60 for twitter-2010, respectively.

To our surprise, the largest dataset twitter-2010 only requires a small number of

iterations to achieve convergence. By contrast, the medium-sized datasets ljournal-

2008 and eu-2015-host converge very slowly. The runtime to achieve convergence and

39

memory consumption for different datasets are summarized in Table 4.2.

Table 4.2: Runtime and Memory Consumption for Eigenvector
Graph Iteration Runtime (s) Memory (GB)
cnr-2000 300 27 0.39
eu-2005 35 19 0.51
in-2004 550 215 0.67
ljournal-2008 9000 18,787 0.78
eu-2015-host 1500 8,556 1.0
arabic-2005 70 796 2.02
twitter-2010 60 3247 3.78

4.1.2 Hub Centrality

0 50 100 150 200 250 300 350 400
1E-18

1E-14

1E-10

1E-06

1E-02

Eu
cl

id
ea

n
di

st
an

ce
 (a

.u
.)

number of iteration

 cnr-2000
 eu-2005
 in-2004
 ljournal-2008
 eu-2015-host
 arabic-2005
 twitter-2010

Hub

Figure 4.2: Euclidean distance of hub centrality between two consecutive iterations
after a certain number of iterations for different datasets. The Euclidean distance
can be viewed as the convergence condition. If we choose 1E-14 as the criterion
for convergence, the numbers of iterations required to achieve convergence are ∼30
for cnr-2000, ∼90 for eu-2005, ∼140 for in-2004, ∼300 for ljournal-2008, ∼400 for
eu-2015-host, ∼70 for arabic-2005, and ∼60 for twitter-2010, respectively.

Fig. 4.2 shows the Euclidean distance of hub centrality between two consecutive

iterations after a certain number of iterations for different datasets. The Euclidean

distance can be viewed as the convergence condition. If we choose 1E-14 as the cri-

terion for convergence, the numbers of iterations required to achieve convergence are

∼30 for cnr-2000, ∼90 for eu-2005, ∼140 for in-2004, ∼300 for ljournal-2008, ∼400

40

for eu-2015-host, ∼70 for arabic-2005, and ∼60 for twitter-2010, respectively. The

medium-sized graphs ljournal-2008 and eu-2015-host still experience the slow conver-

gence issue while the largest dataset twitter-2010 can achieve convergence within a

small number of iterations. The runtime to achieve convergence and memory con-

sumption for different datasets are summarized in Table 4.3.

Table 4.3: Runtime and Memory Consumption for Hub
Graph Iteration Runtime (s) Memory (GB)
cnr-2000 30 9 0.37
eu-2005 90 72 0.52
in-2004 140 117 0.56
ljournal-2008 300 1,160 1.0
eu-2015-host 400 4,226 1.1
arabic-2005 70 1,416 2.72
twitter-2010 60 5,785 3.41

4.1.3 Authority Centrality

0 50 100 150 200 250 300 350 400
1E-18

1E-14

1E-10

1E-06

1E-02

Eu
cl

id
ea

n
di

st
an

ce
 (a

.u
.)

number of iteration

 cnr-2000
 eu-2005
 in-2004
 ljournal-2008
 eu-2015-host
 arabic-2015
 twitter-2000

Authority

Figure 4.3: Euclidean distance of authority centrality between two consecutive it-
erations after a certain number of iterations for different datasets. The Euclidean
distance can be viewed as the convergence condition. If we choose 1E-14 as the cri-
terion for convergence, the numbers of iterations required to achieve convergence are
∼30 for cnr-2000, ∼90 for eu-2005, ∼140 for in-2004, ∼300 for ljournal-2008, ∼400
for eu-2015-host, ∼65 for arabic-2005, and ∼40 for twitter-2010, respectively.

Fig. 4.3 shows the Euclidean distance of authority centrality between two con-

secutive iterations after a certain number of iterations for different datasets. The

41

Euclidean distance can be viewed as the convergence condition. If we choose 1E-14

as the criterion for convergence, the numbers of iterations required to achieve conver-

gence are ∼30 for cnr-2000, ∼90 for eu-2005, ∼140 for in-2004, ∼300 for ljournal-2008,

∼400 for eu-2015-host, ∼65 for arabic-2005, and ∼40 for twitter-2010, respectively.

The medium-sized graphs ljournal-2008 and eu-2015-host still experience the slow con-

vergence issue while the largest dataset twitter-2010 can achieve convergence within

a small number of iterations. The runtime to achieve convergence and memory con-

sumption for different datasets are summarized in Table 4.4.

Table 4.4: Runtime and Memory Consumption for Authority
Graph Iteration Runtime (s) Memory (GB)
cnr-2000 30 9 0.4
eu-2005 90 73 0.51
in-2004 140 121 0.67
ljournal-2008 300 1,140 0.66
eu-2015-host 400 4,204 1.18
arabic-2005 65 1,356 2.74
twitter-2010 40 3,980 3.56

4.1.4 PageRank

Fig. 4.4 shows the Euclidean distance of PageRank between two consecutive iterations

after a certain number of iterations for different datasets. The Euclidean distance

can be used as the convergence condition. If we choose 1E-14 as the criterion for

convergence, the numbers of iterations required to achieve convergence are ∼150

for cnr-2000, in-2004 and arabic-2005, ∼140 for eu-2005 and eu-2015-host, ∼135 for

ljournal-2008, and ∼130 for twitter-2010, respectively. It is interesting to note that

different datasets converge at the similar rate for PageRank. The runtime to achieve

convergence and memory consumption for different datasets are summarized in Table

4.5.

42

20 40 60 80 100 120 140 160 180 200 220
1E-18

1E-14

1E-10

1E-6

Eu
cl

id
ea

n
di

st
an

ce
 (a

.u
.)

number of iteration

 cnr-2000
 eu-2005
 in-2004
 ljournal-2008
 eu-2015-host
 arabic-2005
 twitter-2010

PageRank

Figure 4.4: Euclidean distance of PageRank centrality between two consecutive it-
erations after a certain number of iterations for different datasets. The Euclidean
distance can be viewed as the convergence condition. If we choose 1E-14 as the cri-
terion for convergence, the numbers of iterations required to achieve convergence are
∼150 for cnr-2000, in-2004 and arabic-2005, ∼140 for eu-2005 and eu-2015-host, ∼135
for ljournal-2008, and ∼130 for twitter-2010, respectively.

Table 4.5: Runtime and Memory Consumption for PageRank
Graph Iteration Runtime (s) Memory (GB)
cnr-2000 150 25 0.5
eu-2005 140 92 0.57
in-2004 150 111 0.65
ljournal-2008 135 677 0.7
eu-2015-host 140 2,618 1.11
arabic-2005 150 2,846 2.42
twitter-2010 130 18,883 3.71

4.1.5 Betweenness

4.1.5.1 Exact Computation

Due to the high time complexity for large graphs, we compute the exact betweenness

centrality for small and medium-sized graphs (cnr-2000, eu-2005 and in-2004). Table

4.6 summarizes the runtime and memory consumption for exact betweenness compu-

tation. The exact betweenness centrality is compute-intensive. For example, using

Graph-XLL, the runtime of computing the exact betweenness takes 5 h for cnr-2000.

To address the time-consuming issue, in Graph-XLL, we provide two approximation

algorithms (uniformly random sampling and adaptive sampling), which can reduce

43

the runtime significantly. Neither igraph nor NetworkX provides such approximation

algorithms.

Table 4.6: Runtime and Memory Consumption for Exact Betweenness
Graph Runtime (h) Memory (GB)
cnr-2000 5 4.9
eu-2005 112 7.1
in-2004 141 7.8

4.1.5.2 Uniformly Random Sampling

102 103 104 105
1E-3

0.01

0.1

1

Eu
cl

id
ea

n
di

st
an

ce
 (a

.u
.)

namber of samples

 cnr-2000
 in-2004
 eu-2005

uniformly random sampling

Figure 4.5: Euclidean distance of betweenness centrality between the estimation by
uniformly random sampling and the exact computation as a function of the number
of samples.

Fig. 4.5 shows the Euclidean distance of betweenness centrality between the es-

timation by uniformly random sampling and the exact computation as a function of

the number of samples. Sampling is without replacement. If the number of samples

equals the number of vertices in the graph, the approximation computation becomes

the exact computation. The idea of the random sampling is to approximate the be-

tweenness score distribution for all vertices by using a randomly sampled small subset

of vertices. More accurate approximation can be achieved by increasing the number

of samples. However, the runtime will increase as the number of samples increases.

Choosing an appropriate number of samples can achieve both high accuracy and low

runtime. We investigate the accuracy as a function of number of samples plotted in

44

2 4 6 8 10
0.008

0.012

0.016

0.020

c

E
uc

lid
ea

n
di

st
an

ce
 (a

.u
.)

2000

4000

6000

8000

10000

12000

 num
ber of sam

ples

in-2004
adaptive sampling
topk = 1000

Figure 4.6: Euclidean distance (black curve) of betweenness centrality between the
estimation by adaptive sampling and the exact computation as a function of the
constant C (required by the adaptive sampling algorithm). The blue curve shows the
actual number of samples by adaptive sampling as a function of the constant C.

Fig. 4.5. If we choose the difference of the Euclidean distance below 0.01 to be the

criterion of good approximation, the number of samples should be larger than 104.

The runtime can be reduced to 488 s, 2804 s and 5781 s, for cnr-2000, in-2004 and

eu-2005, respectively. The memory consumption for the uniformly random sampling

program is the same as the exact computation program.

4.1.5.3 Adaptive Sampling

The adaptive sampling algorithm does not require the predefined number of samples.

The algorithm itself determines when to stop the program and the actual number

of samples needed. In Fig. 4.6, the black curve shows the Euclidean distance of

betweenness centrality between the estimation by adaptive sampling and the exact

computation as a function of the constant C for in-2004. The blue curve shows

the actual number of samples by adaptive sampling as a function of the constant

C. Since the adaptive algorithm does not specify the number of samples to run,

constant C balances the approximation accuracy, which is shown by the Euclidean

distance difference, with the runtime which is affected by the number of samples

to run. Choosing a proper value for C can avoid excessive computation and can

still achieve good approximation of betweenness. According to Fig. 4.6, 6 might

be a heuristic value for C, with which the actual number of samples needed can be

reduced to 6000 with 1728 s runtime and the Euclidean distance difference can still

45

be maintained around 0.013. The memory consumption for the adaptive sampling

program is the same as the exact computation program.

4.2 Diameter

The exact diameter and effective diameter were calculated using the BFS method

described in Alg. 8. The BFS method only requires O(nD) space but O(nm) time.

For cnr-2000, computing the exact diameter and effective diameter took 2.3 h. For

larger graphs, using the BFS algorithm to compute the exact diameter and effective

diameter is not practical. If we use dynamic programming and use the exact neigh-

borhood function, it requires O(n2) space, although it only requires O(nD) time. It

is still impossible to compute the exact diameter and effective diameter for larger

graphs since we cannot afford O(n2) memory.

Table 4.7: Summary of Diameter Results
Graph Exact D Approx. D error Exact Deff Approx. Deff error
p2p 31 23± 3.7 -25.8% 11.75 11.86± 0.83 0.9%
slashDot 13 10± 0.4 -23.1% 4.81 4.82± 0.09 0.2%
cnr-2000 84 78± 0.9 -7.1% 25.53 25.41± 0.45 -0.5%
ljournal-2008 - 39± 1.0 - - 6.85± 0.15 -
eu-2015-host - 25± 0.7 - - 6.85± 0.12 -
gsh-2015-host - 23± 0.1 - - 5.71± 0.11 -
twitter-2010 - 26 - - 5.36 -

Table 4.7 compares the diameter estimation results by Alg. 9 using the Flajolet-

Martin counters with the exact results by Alg. 8 using BFS. We ran the estimation

program 10 times for each dataset and calculated the mean and standard deviation.

The results show that Alg. 9 using the Flajolet-Martin counters can give a good

estimation for diameter and effective diameter.

Table 4.8 compares the runtime and memory consumption between the estimation

program using the Flajolet-Martin counters and the exact computation program using

BFS. The time complexity for the exact computation program is too high. Therefore,

we did not attempt to compute the exact diameter for graphs larger than cnr-2000.

The estimation program has a much less memory footprint due to the Flajolet-Martin

counters. With the dynamic programming paradigm, the estimation program can

scale to compute graphs with more than one billion edges.

46

Table 4.8: Runtime and Memory Consumption for Diameter Computation
Exact Estimation

Graph runtime (s) memory (GB) runtime (s) memory (GB)
p2p 2.2 0.4 1.6 0.1
slashDot 1903 1.6 2.3 0.14
cnr-2000 8260 4.3 15 0.6
ljournal-2008 - - 200 1.8
eu-2015-host - - 463 3.3
gsh-2015-host - - 1042 8.8
twitter-2010 - - 3908 11.2

4.3 Truss Decomposition

For truss decomposition, we consider undirected simple graphs. Directed graphs

are converted to undirected graphs by taking the union with the directed graphs

transposed graph. Self-loops in the graph are removed to ensure the simple graph

prerequisite. Table 4.9 shows the characteristics of different datasets after removing

self-loops. For both the serial and the parallel k-truss decomposition programs, we

allocate 4 GB memory for cnr-2000, dblp-2011, and ljournal-2008, 16 GB for arabic-

2005 and uk-2005. For twitter-2010, we allocate 22 GB memory for the serial program

and 16 GB memory for the parallel program.

Table 4.9: Summary of Datasets after Removing Self-loops
Graph |V | |E| tmax
cnr-2000 325 557 2 738 969 84
dblp-2011 986 324 3 353 618 119
ljournal-2008 5 363 260 49 514 271 414
arabic-2005 22 744 080 553 903 073 3248
uk-2005 39 459 925 783 027 125 589
twitter-2010 41 652 230 1 202 513 046 1998

4.3.1 Performance Results

Fig. 5.3 shows the runtime of the initial support computation, optimized serial, and

optimized parallel k-truss decomposition for different datasets. For small datasets

such as cnr-2000 and dblp-2011, all algorithms can finish in 30 s. For the medium-

sized ljournal-2008, all algorithms can finish in 15 min. However, for large datasets

such as arabic-2005, uk-2005, and twitter-2010, the runtime increases significantly.

47

Figure 4.7: Runtime of initial support computation, optimized serial, and optimized
parallel k-truss decomposition for different datasets.

Especially for twitter-2010, the initial support computation takes 9 h, the serial k-

truss decomposition takes 50 h, and the parallel k-truss decomposition takes 203 h.

Given the large size of the dataset and the limited computation ability of our machine,

the runtime for twitter-2010 is still acceptable. We also notice that in most cases,

the parallel algorithm even runs slower than the serial algorithm. Since the parallel

algorithm processes edges in a random order, it requires many iterations to achieve

convergence. By contrast, the serial algorithm processes edges in ascending order of

their support. Therefore, it can achieve convergence with only one iteration since it

processes each edge for only once. The performance of the parallel algorithm is limited

by the CPU of our machine. The parallel algorithm would eventually outperform the

serial algorithm on a multi-core server (e.g., 24-core).

Table 4.10: Runtime of Algorithm 11 with Different Implementations
Runtime (s) cnr-2000 dblp-2011 ljournal-2008
HashMap 1371 47 OutOfMemoryError
Optimized 10 9 555
Speedup ratio 137.1 5.2 –

We implement Algorithm 11 (serial edge peeling) using HashMap in Java standard

library1 as the baseline to compare the performance with our optimized implementa-

1https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html

48

Figure 4.8: Trussness distributions for different datasets.

tion using array-based data structures and WebGraph. Table 4.10 shows the runtime

comparison. The HashMap implementation takes 1371 s for cnr-2000 and 47 s for

dblp-2011 while our optimized implementation only takes 10 s for cnr-2000 and 9 s

for dblp-2011, showing a significant speedup. It should be noted that it is the use of

array-based structures that contributes to the speedup. The HashMap implementa-

tion encounters “OutOfMemoryError” when computing ljournal-2008 with the same

memory allocation as our optimized implementation (4 GB). The same error occurs

when computing larger graphs such as arabic-2005, uk-2005, or twitter-2010 using

the HashMap implementation under the same memory allocation condition. Results

show the HashMap implementation is neither time nor memory efficient compared to

our optimized implementation. We attribute the inefficiency to the increased lookup

time in the hash map caused by the potential collisions. Algorithm 12 (asynchronous

h-index updating) would suffer the same problem if using the HashMap implementa-

tion. Therefore, we did not specifically implement Algorithm 12 using HashMap for

performance comparison with our optimized implementation.

Fig. 4.8 shows the trussness distributions for different datasets. The maximum

trussness for different datasets are summarized in Table 4.3. The distributions show

49

that for all datasets, edges with high trussness are only a small percentage of the

total edges. The majority of edges have low trussness. For example, in cnr-2000 with

tmax = 84, 50% of edges have trussness less than or equal to 15 and 90% of edges

have trussness less than or equal to 31.

4.4 Summary

This chapter presents the experimental results using Graph-XLL to compute cen-

trality measures (eigenvector, hub, authority and betweenness), diameter, and truss

decomposition for different datasets on a consumer-grade machine. Runtime and

memory consumption are recorded. Performance comparison between different graph

libraries (igraph, NetworkX and Graph-XLL) will be done in the next chapter.

50

Chapter 5

Evaluation, Analysis and

Comparisons

This chapter compares the performance (runtime and memory consumption) of algo-

rithms computing centrality measures, diameter and core decomposition across dif-

ferent graph libraries (igraph, NetworkX and Graph-XLL). For truss decomposition,

neither igraph nor NetworkX provides equivalent programs. Therefore, we investigate

two schemes to further reduce the memory consumption and evaluate their perfor-

mance for truss decomposition programs in Graph-XLL.

5.1 Centrality Measures

5.1.1 Eigenvector, Hub, Authority, and PageRank

Algorithms computing eigenvector, hub, authority and PageRank in Graph-XLL have

similar implementations. For simplicity, we use PageRank as the representative for

these four centrality algorithms to perform the transverse comparison.

Fig. 5.1 compares the runtime of computing PageRank for different datasets using

igrpah, Graph-XLL and NetworkX, respectively. igraph fails to compute eu-2015-host

or any larger graphs due to the out-of-memory error. NetworkX fails to compute

ljournal-2008 or any larger graphs due to the same error. By contrast, Graph-XLL is

able to process extra large graph such as twitter-2010, showing much better scalability

than igraph and NetworkX.

Fig. 5.2 compares the memory consumption of computing PageRank for different

datasets using igraph, Graph-XLL and NetworkX, respectively. NetworkX shows the

51

Figure 5.1: Runtime comparison of computing PageRank for different datasets using
igraph, Graph-Xll and NetworkX. Graph-XLL is able to process large graphs up to
twitter-2010 while the largest graph that igraph can process is ljournal-2008 and
in-2004 for NetworkX.

Figure 5.2: Memory consumption comparison of computing PageRank for different
datasets using igraph, Graph-Xll and NetworkX. Graph-XLL is able to process large
graphs up to twitter-2010 while the largest graph that igraph can process is ljournal-
2008 and in-2004 for NetworkX.

worst scalability as the memory consumption is high even for small-sized graphs. The

largest graph that NetworkX can process is in-2004. igraph shows better scalability

as the slope of the trend is smaller. Even so, igraph fails to process graphs larger

than ljournal-2008. The large memory footprint is caused by the graph representation

52

strategy which fits the complete graph into the memory and the auxiliary data struc-

tures used by these two libraries. Fitting the complete graph into the memory would

inevitably increase the memory footprint as the size of the graph grows, limiting the

scalability of igraph and NetworkX. Besides the graph representation strategy, the

data structures used also affect the memory footprint. For example, NetworkX uses

hash maps (dictionaries in Python) for graph representation. The large overhead of

the auxiliary data structures would increase the memory footprint significantly as

well. Graph-XLL shows the best scalability as the slope of the trend is the smallest.

For computing twitter-2010, the largest graph in the datasets, Graph-XLL only needs

4 GB memory. Compared to the size of twitter-2010 (the edge list file is over 20 GB),

Graph-XLL shows great memory efficiency for processing such large graphs.

5.1.2 Betweenness

Table 5.1: Runtime and Memory Consumption for Exact Betweenness
Graph Graph-XLL igraph NetworkX
cnr-2000 5 h, 4.9 GB 3 h, 0.3 GB not finish in 24 h, 2.9 GB
eu-2005 112 h, 7.1 GB 82 h, 1.1 GB -
in-2004 141 h, 7.8 GB 103 h, 1.3 GB -

For betweenness centrality, igraph and NetworkX only implement the exact com-

putation. Therefore, we compare the exact computation algorithm across igraph,

NetworkX and Graph-XLL. Table 5.1 compares the runtime and memory consump-

tion for exact betweenness computation across igraph, NetworkX and Graph-XLL.

We can see that none of these exact computation algorithms scales. The scalability is

limited by the large time complexity of computing the exact betweenness. Therefore,

it is not feasible to use these programs to compute betweenness for large datasets. It

is interesting to note that for the betweenness algorithm, Graph-XLL shows larger

memory consumption than igraph and NetworkX, which is caused by the extra mem-

ory consumption by the parallel process in Graph-XLL and by the reason that many

resources are not shared among threads (e.g., queues for BFS), while programs in

igraph and NetworkX are sequential.

In Graph-XLL, we implement two betweenness estimation algorithms (uniformly

random sampling and adaptive sampling). Neither igraph nor NetworkX provides

equivalent programs. The estimation algorithms in Graph-XLL show much less run-

53

time compared to the exact computation algorithm. For example, the adaptive sam-

pling only takes 1728 s for in-2004, compared to 103 h using igraph.

5.2 Diameter

Similar to the betweenness program, diameter program is also compute-intensive.

igraph and NetworkX only provide the exact computation programs. These programs

do not scale to large graphs due to the extremely high time complexity. By contrast, in

Graph-XLL, we implement an estimation program using the Flajolet-Martin counters.

Table 5.2 compares the runtime and memory consumption across Graph-XLL, igraph

and NetworkX. Results show that the estimation algorithm in Graph-XLL has much

better performance and scalablity than the exact computation programs in igraph

and NetworkX.

Table 5.2: Runtime and Memory Consumption for Diameter Computation
Graph Graph-XLL igraph NetworkX
p2p 1.6 s, 0.1 GB 0.4 s, 0.1 GB 46 s, 0.1 GB
slashDot 2.3 s, 0.14 GB 314 s, 0.2 GB 37,306 s, 0.7 GB
cnr-2000 15 s, 0.6 GB 1454 s, 0.3 GB not finish in 24 h, 2.8 GB
ljournal-2008 200 s, 1.8 GB not finish in 24 h, 5.2 GB -
eu-2015-host 463 s, 3.3 GB - -
gsh-2015-host 1042 s, 8.8 GB - -
twitter-2010 3908 s, 11.2 GB - -

5.3 Core Decomposition

k-core decomposition is a well-established metric which partitions a graph into layers

from external to more central vertices. Our previous work [11] showed a vertex-centric

implementation for k-core decomposition with great memory efficiency. Both igraph

and NetworkX provide an O(m) program based on [42]. We compare the performance

of the k-core decomposition program across Graph-XLL, igraph and NetworkX.

Fig. 5.3 compares the runtime of computing k-core for different datasets using

igrpah, Graph-XLL and NetworkX, respectively. igraph and NetworkX failed to com-

pute eu-2015-host or any larger graphs due to the out-of-memory error. By contrast,

Graph-XLL is able to process extra large graph such as twitter-2010, showing much

better scalability than igraph and NetworkX.

54

Figure 5.3: Runtime comparison of computing k-core for different datasets using
igraph, Graph-Xll and NetworkX. Graph-XLL is able to process large graphs up to
twitter-2010 while the largest graph that igraph and NetworkX can process is ljournal-
2008.

Figure 5.4: Memory consumption comparison of computing k-core for different
datasets using igraph, Graph-Xll and NetworkX. Graph-XLL is able to process large
graphs up to twitter-2010 while the largest graph that igraph and NetworkX can
process is ljournal-2008.

Fig. 5.4 compares the memory consumption of computing k-core for different

datasets using igraph, Graph-XLL and NetworkX, respectively. igraph and NetworkX

failed to compute eu-2015-host or any larger graphs due to the out-of-memory error.

By contrast, Graph-XLL shows much better scalability. For computing twitter-2010,

55

the largest graph in the datasets, Graph-XLL only needs less than 4 GB memory.

Compared to the size of twitter-2010 (the edge list file is over 20 GB), Graph-XLL

shows great memory efficiency for processing such large graphs.

5.4 Truss Decomposition

In this section, we investigate two schemes to further reduce the memory usage and

evaluate their performance. One is to remove the edgeTail array. The other is to

remove the edgePos array. Both schemes, described in detail, below can reduce the

memory usage from (4m + 2n) to (3m + 2n) for Algorithm 11 and from (3m + 2n)

to (2m+ 2n) for Algorithm 12. However, as we will show, both schemes would result

in a significant performance drop for the runtime and scalability. This suggests that

the data structures proposed in 3.3.4 have the minimum memory requirement for

Algorithms 11 and 12 in order to have good performance, and these are (4m + 2n)

for Algorithm 11 and (3m+ 2n) for Algorithm 12.

The first scheme is to remove edgeTail array shown in Fig. 3.2. We can use Web-

graph’s API to export edgeTail to a new compressed graph in which each vertex only

has neighbors with larger vertex ID. We implement Algorithm 11 using this scheme.

Results show that removing edgeTail, the runtime for the k-truss decomposition of

cnr-2000 is significantly increased from 10 s to 1735 s. We do not attempt to run

this implementation on other larger graphs. Removing edgeTail would affect both

procedures of checking the existence of an edge and getting the edge ID since both

procedures depend on the binary search in the neighbor sets contained in edgeTail.

Without edgeTail array, each binary search operation requires random access to the

compressed graph (including the decompression from the compressed graph and disk

I/O), which is very time consuming. Therefore, removing edgeTail is not of practical

use, which also applies to Algorithm 12.

The other scheme is to remove the edgePos array shown in Fig. 3.2. edgePos

is used to store the position of an edge in sortedEdge array (see the explanation in

3.3.4). If we remove edgePos, we have to search for a given edge in sortedEdge since

we lose the convenience of getting the edge position directly from edgePos. Since

the binary search operation requires a sorted array, we have to maintain sortedEdge

sorted with regard to the edge ID in each support segment. Each time when the

support of an edge is decreased, we have to move this edge to the corresponding

support segment in sortedEdge and insert the edge to the right position in order to

56

maintain the support segment sorted. The insertion operation involves moving a large

amount of elements in sortedEdge, which would increase the runtime. We implement

Algorithm 11 using this scheme. Results show that the k-truss decomposition of cnr-

2000 takes 145 s, much faster than the first scheme (1735 s) but still 14× slower than

our optimized implementation (10 s). For larger graphs such as ljournal-2008, the

performance becomes worse as the truss decomposition takes 37496 s (67 × slower

than the optimized implementation of 555 s), showing poor scalability.

In short, results show that any further memory reduction would cause significant

degradation on the runtime and scalability of the k-truss decomposition programs,

which proves that our carefully engineered data structures ((4m+2n) for Algorithm 11

and (3m+ 2n) for Algorithm 12) are indeed the optimum design to be both time and

memory efficient.

5.5 Summary

We performed transverse comparison of algorithms computing centrality, diameter

and k-core among Graph-XLL, igraph and NetworkX in terms of runtime and memory

consumption to investigate the scalability. Results show that programs in igraph

and NetworkX do not scale. For algorithms computing eigenvector, hub, authority,

PageRank and k-core in igraph and NetworkX, the main constraint for scalability is

the memory since igraph and NetworkX require the complete graph should fit in the

main memory, which undoubtedly hinders the scalability to process large graphs. For

algorithms computing betweenness and diameter in igraph and NetworkX, the main

constraint for scalablility is the large time complexity of the algorithms performing

exact computation.

To overcome the time and space constraints, in Graph-XLL, we implement the

algorithms using the WebGraph framework and the approximate computation. With

WebGraph, we carefully engineer the data structures used in the algorithms to mini-

mize the memory footprint, which enables Graph-XLL to process extra large graphs

with more than one billion edges within a reasonable amount of time. To overcome the

large time-complexity constraint, in Graph-XLL, we provide algorithms for approx-

imate computation (betweenness estimation using uniformly random sampling and

adaptive sampling, diameter estimation using the Flajolet-Martin counters). The

approximate algorithms can reduce the runtime significantly, which facilitates the

scalability to process large graphs.

57

Chapter 6

Conclusions

In this thesis, we presented our implementations of various graph algorithms com-

puting centrality measures (eigenvector, hub, authority, PageRank and betweenness),

diameter and truss decomposition as a graph library, Graph-XLL, with the focus on

the scalability. We showed that Graph-XLL can efficiently process extra large graphs

with more than one billion edges on a single consumer-grade machine. Other existing

graph libraries designed for single machine such as igraph and NetworkX cannot pro-

cess computations of such scale, thus demonstrating significantly better scalability of

Graph-XLL.

Graph-XLL also contains algorithms which are popular in graph analytics but can-

not find corresponding implementations in igraph or NetworkX, for example, the truss

decomposition algorithm. In Graph-XLL, we engineered two k-truss decomposition

algorithms. We showed that the use of a hash table suggested by the original paper

is both time and memory consuming in the practical implementation. We optimized

the data structure design by using array-based structures. We also designed corre-

sponding operations on the array-based structures to achieve the same functionality

as a hash table but with a much smaller memory footprint and better performance.

We showed that it is viable to compute the k-truss decomposition of large graphs

(up to 1.2 billion edges) on a consumer-grade machine within a reasonable amount of

time.

On the other hand, Graph-XLL still misses a few algorithms for computing analyt-

ics present in igraph and NetworkX, such as closeness and cliques. Devising scalable

algorithms for computing the closeness and cliques will be part of our future work.

58

Bibliography

[1] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger, C. Harrelson, V. Raychev,

and F. Viger, “Fast routing in very large public transportation networks us-

ing transfer patterns,” in European Symposium on Algorithms, pp. 290–301,

Springer, 2010.

[2] E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis

of structural and functional systems,” Nature reviews neuroscience, vol. 10, no. 3,

p. 186, 2009.

[3] M. V. Marathe and A. K. S. Vullikanti, “Computational epidemiology,” in Pro-

ceedings of the 20th ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pp. 1969–1969, ACM, 2014.

[4] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee,

“Measurement and analysis of online social networks,” in Proceedings of the 7th

ACM SIGCOMM conference on Internet measurement, pp. 29–42, ACM, 2007.

[5] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu, “The ubiquity of

large graphs and surprising challenges of graph processing,” Proceedings of the

VLDB Endowment, vol. 11, no. 4, pp. 420–431, 2017.

[6] G. Csardi, T. Nepusz, et al., “The igraph software package for complex network

research,” InterJournal, Complex Systems, vol. 1695, no. 5, pp. 1–9, 2006.

[7] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics,

and function using networkx,” tech. rep., Los Alamos National Lab.(LANL), Los

Alamos, NM (United States), 2008.

[8] P. Boldi and S. Vigna, “The webgraph framework i: compression techniques,” in

Proceedings of the 13th international conference on World Wide Web, pp. 595–

602, ACM, 2004.

59

[9] J. Lu and A. Thomo, “An experimental evaluation of giraph and graphchi,”

in 2016 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM), pp. 993–996, IEEE, 2016.

[10] Y. Santoso, A. Thomo, V. Srinivasan, and S. Chester, “Triad enumeration

at trillion-scale using a single commodity machine,” in Advances in Database

Technology-EDBT 2019, 22nd International Conference on Extending Database

Technology, Lisboa, Portugal, March 26-29, Proceedings, OpenProceedings. org,

2019.

[11] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core decomposition

of large networks on a single pc,” Proceedings of the VLDB Endowment, vol. 9,

no. 1, pp. 13–23, 2015.

[12] M. Simpson, V. Srinivasan, and A. Thomo, “Efficient computation of feedback

arc set at web-scale,” Proceedings of the VLDB Endowment, vol. 10, no. 3,

pp. 133–144, 2016.

[13] M. Simpson, V. Srinivasan, and A. Thomo, “Clearing contamination in large

networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 28,

no. 6, pp. 1435–1448, 2016.

[14] D. Popova, A. Khot, and A. Thomo, “Data structures for efficient computation

of influence maximization and influence estimation.,” in EDBT, pp. 505–508,

2018.

[15] D. Popova, N. Ohsaka, K.-i. Kawarabayashi, and A. Thomo, “Nosingles: a space-

efficient algorithm for influence maximization,” in Proceedings of the 30th Inter-

national Conference on Scientific and Statistical Database Management, p. 18,

ACM, 2018.

[16] S. Chen, R. Wei, D. Popova, and A. Thomo, “Efficient computation of im-

portance based communities in web-scale networks using a single machine,” in

Proceedings of the 25th ACM International on Conference on Information and

Knowledge Management, pp. 1553–1562, ACM, 2016.

[17] C. B. Weinstock and J. Goodenough, “On system scalability,” 2006.

[18] P. Bonacich, “Some unique properties of eigenvector centrality,” Social networks,

vol. 29, no. 4, pp. 555–564, 2007.

60

[19] J. M. Kleinberg, “Hubs, authorities, and communities,” ACM computing surveys

(CSUR), vol. 31, no. 4es, p. 5, 1999.

[20] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:

Bringing order to the web.,” tech. rep., Stanford InfoLab, 1999.

[21] M. Barthelemy, “Betweenness centrality in large complex networks,” The Euro-

pean physical journal B, vol. 38, no. 2, pp. 163–168, 2004.

[22] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of mathe-

matical sociology, vol. 25, no. 2, pp. 163–177, 2001.

[23] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating between-

ness centrality,” in International Workshop on Algorithms and Models for the

Web-Graph, pp. 124–137, Springer, 2007.

[24] S. Ji and Z. Yan, “Refining approximating betweenness centrality based on sam-

plings,” arXiv preprint arXiv:1608.04472, 2016.

[25] J. Guare, Six degrees of separation: A play. Vintage, 1990.

[26] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base

applications,” Journal of computer and system sciences, vol. 31, no. 2, pp. 182–

209, 1985.

[27] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec, “Ra-

dius plots for mining tera-byte scale graphs: Algorithms, patterns, and obser-

vations,” in Proceedings of the 2010 SIAM International Conference on Data

Mining, pp. 548–558, SIAM, 2010.

[28] G. Zhao and J. Yuan, “Discovering thematic patterns in videos via cohesive sub-

graph mining,” in 2011 IEEE 11th International Conference on Data Mining,

pp. 1260–1265, IEEE, 2011.

[29] Y. Shao, L. Chen, and B. Cui, “Efficient cohesive subgraphs detection in par-

allel,” in Proceedings of the 2014 ACM SIGMOD International Conference on

Management of Data, pp. 613–624, ACM, 2014.

[30] N. Wang, S. Parthasarathy, K.-L. Tan, and A. K. Tung, “Csv: visualizing and

mining cohesive subgraphs,” in Proceedings of the 2008 ACM SIGMOD interna-

tional conference on Management of data, pp. 445–458, ACM, 2008.

61

[31] F. Moser, R. Colak, A. Rafiey, and M. Ester, “Mining cohesive patterns from

graphs with feature vectors,” in Proceedings of the 2009 SIAM International

Conference on Data Mining, pp. 593–604, SIAM, 2009.

[32] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,” National

security agency technical report, vol. 16, pp. 3–1, 2008.

[33] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss commu-

nity in large and dynamic graphs,” in Proceedings of the 2014 ACM SIGMOD

international conference on Management of data, pp. 1311–1322, ACM, 2014.

[34] P.-L. Chen, C.-K. Chou, and M.-S. Chen, “Distributed algorithms for k-truss

decomposition,” in 2014 IEEE International Conference on Big Data (Big Data),

pp. 471–480, IEEE, 2014.

[35] X. Huang, W. Lu, and L. V. Lakshmanan, “Truss decomposition of probabilistic

graphs: Semantics and algorithms,” in Proceedings of the 2016 International

Conference on Management of Data, pp. 77–90, ACM, 2016.

[36] A. M. Katunka, C. Yan, K. B. Serge, and Z. Zhang, “K-truss based top-

communities search in large graphs,” in 2017 Fifth International Conference on

Advanced Cloud and Big Data (CBD), pp. 244–249, IEEE, 2017.

[37] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected

graph,” Communications of the ACM, vol. 16, no. 9, pp. 575–577, 1973.

[38] F. Zhao and A. K. Tung, “Large scale cohesive subgraphs discovery for social

network visual analysis,” Proceedings of the VLDB Endowment, vol. 6, no. 2,

pp. 85–96, 2012.

[39] X. Huang, L. V. Lakshmanan, J. X. Yu, and H. Cheng, “Approximate closest

community search in networks,” Proceedings of the VLDB Endowment, vol. 9,

no. 4, pp. 276–287, 2015.

[40] A. Verma, A. Buchanan, and S. Butenko, “Solving the maximum clique and

vertex coloring problems on very large sparse networks,” INFORMS Journal on

computing, vol. 27, no. 1, pp. 164–177, 2015.

[41] J. Wang and J. Cheng, “Truss decomposition in massive networks,” Proceedings

of the VLDB Endowment, vol. 5, no. 9, pp. 812–823, 2012.

62

[42] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores decomposition of

networks,” arXiv preprint cs/0310049, 2003.

[43] X. Hu, F. Liu, V. Srinivasan, and A. Thomo, “k-core decomposition on giraph

and graphchi,” in International Conference on Intelligent Networking and Col-

laborative Systems, pp. 274–284, Springer, 2017.

[44] B. Tootoonchi, V. Srinivasan, and A. Thomo, “Efficient implementation of an-

chored 2-core algorithm,” in Proceedings of the 2017 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining 2017, pp. 1009–

1016, ACM, 2017.

[45] H. Zhang, H. Zhao, W. Cai, M. Zhao, and G. Luo, “Visualization and cognition

of large-scale software structure using the k-core analysis,” in 2008 International

Conference on Intelligent Information Hiding and Multimedia Signal Processing,

pp. 954–957, IEEE, 2008.

[46] H. Kabir and K. Madduri, “Shared-memory graph truss decomposition,” in 2017

IEEE 24th International Conference on High Performance Computing (HiPC),

pp. 13–22, IEEE, 2017.

[47] S. Smith, X. Liu, N. K. Ahmed, A. S. Tom, F. Petrini, and G. Karypis, “Truss

decomposition on shared-memory parallel systems,” in 2017 IEEE High Perfor-

mance Extreme Computing Conference (HPEC), pp. 1–6, IEEE, 2017.

[48] A. E. Sarıyüce, C. Seshadhri, and A. Pinar, “Parallel local algorithms for core,

truss, and nucleus decompositions,” arXiv. org e-Print archive, https://arxiv.

org/abs/1704.00386, 2017.

[49] C. Voegele, Y.-S. Lu, S. Pai, and K. Pingali, “Parallel triangle counting and

k-truss identification using graph-centric methods,” in 2017 IEEE High Perfor-

mance Extreme Computing Conference (HPEC), pp. 1–7, IEEE, 2017.

[50] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra, P. Montic-

ciolo, A. Reuther, S. Smith, W. Song, et al., “Graphchallenge. org: Raising the

bar on graph analytic performance,” in 2018 IEEE High Performance extreme

Computing Conference (HPEC), pp. 1–7, IEEE, 2018.

