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Abstract—This paper accompanies the keynote speech at IISA-
2020 and describes federally funded workforce development research 
grants and supplements in the area of sensors and machine learning. 
These programs operate under the auspices of the Sensor Signal and 
Information Processing  (SenSIP) center which is also an Industry 
University Cooperative Research Center (I/UCRC) sponsored by the 
National Science Foundation (NSF) and I/UCRC industry members. 
The first program is an NSF REU site which has trained more than 
30 students working on sensor hardware design and machine learning 
algorithm development.  The second program is the NSF IRES site 
which is collaborative with the University of Cyprus and is focused 
on sensors and machine learning for energy systems. The most recent 
program funded by NSF is a Research Experiences for Teachers 
(RET)  program that started in June 2020.  This program embeds 
teachers and community college faculty in SenSIP machine learning 
projects.   Another state funded program in which SenSIP is a partner 
is MedTech ventures.  Our partner MedTech works on training 
medical technology students, entrepreneurs and engineers to create 
smart medical solutions for preventive healthcare.  SenSIP also 
received NSF supplements to train students in using machine 
learning for COVID-19 detection.

I. INTRODUCTION

The Sensor Signal and Information Processing (SenSIP) 
center initiated several workforce research training programs in 
sensors and machine learning supported by a series of grants 
and supplements from the National Science Foundation (NSF). 
SenSIP is an NSF supported Industry-University Cooperative 
Research Center (I/UCRC) with several industry members 
which is on its 11th year. Industry members in the last 10 years 
included Freescale, Intel, LG, Lockheed Martin, National 
Instruments, NXP, ON Semi, Qualcomm, and Sprint. A series 
of small (SBIR size) companies also supported the center as 
associate or in kind members.  The center received a grant 
from NSF, titled Research Experiences for Undergraduates 
(REU) [1], which in the last three years trained more than 30 
undergraduate students (Fig. 1) from several universities in 
sensor devices and machine learning (ML) algorithms.  The 
students produced sensor designs and developed algorithms for 
health and other applications. In 2019, the center received a 
second program titled International Research Experiences for 
Students (IRES) [2] that embeds graduate and undergraduate 
student researchers at the University of Cyprus (UCy) labs. 
This three year program trained six students in 2019 and 2020 
that were co-advised by ASU and UCy faculty.  The most 
recent program, titled Research Experiences for Teachers 
(RET) [3], was awarded by NSF in 2020 and will train 
approximately 30 teachers and community college faculty in 
ML. SenSIP also received a series of REU supplements for 
research on ML including studies on the identification of 
COVID-19 hotspots using networking theory and also
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detection of COVID-19 coughing patterns. In addition, to the 
above programs, SenSIP is partner in the MedTech ventures 
program [4] which has been funded by the Maricopa county. 
MedTech works on training medical technology students, 
entrepreneurs and engineers to create smart medical solutions 
for preventive healthcare.  In this program, SenSIP has 
launched a series of training lectures in ML for health related 
applications. 

Fig. 1 REU and IRES participants on a site visit and 

lecture/demo at the MTW clean room. 

In this paper, we describe each of these programs and we 
briefly cover select projects addressing sensors and machine 
learning research for health applications.  The next section, 
describes basics of machine learning. Section 3 describes the 
REU program and select projects during 2017-2019.  Section 4 
describes the IRES program, and section 5 the RET program. 
Sections 6 and 7 describe research on COVID-19 hotspot 
detection and audio analysis.  Section 7 presents conclusions. 

II. MACHINE LEARNING BASICS 

Machine learning [5-8] is an area within the artificial 
intelligence field and some of the basic work was initiated in 
computer science. A typical signal analysis framework that 
employs  ML is shown in Fig. 2. 

Fig.  2. Basic signal processing / ML framework including pre-

processing, feature extraction and classification.  

The signal processing block diagram  [5] in Figure 2 shows 
signal acquisition and segmentation using windows such as the 
Hamming window or specialized application-specific 
overlapping windows.  Noise removal and feature extraction 
follow.  Data denoising can be done with several methods 
including wavelet and adaptive techniques [9-11]. The feature 
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extraction stage typically involves parameterization and 
compression of the data into a vector of few parameters.    For 
example in voice processing Mel Frequency Cepstral 
Coefficients (MFCCs) are used to represent the frequency 
spectra of voiced frames [12].  In other applications,  often 
used are parameters from principal component analysis (PCA) 
which are obtained from the autocorrelation matrix of the 
signal.  PCAs are very common as they tend to provide 
information on the properties and dimensionality of the signal 
and also in some frameworks they are optimal in terms of 
compactness.  Following feature extraction, we have the ML 
algorithm which can be trained to cluster features and hence 
identify the signal and its properties.  In Electrical Engineering 
some of the initial efforts have been developed in voice 
compression [13] where vector quantization methods [14,15] 
were used to design codebooks for source coding. 

Machine learning algorithms are typically taxonomized as 
supervised, unsupervised and semi-supervised. Supervised 
algorithms are trained based on labeled data or features.  In 
supervised learning, true labels of the dataset are used to train 
the ML algorithm. Algorithms for training are typically 
iterative and during the training process they optimize a cost 
function. The cost function is typically a measure of the error 
between desired or actual output and the algorithm estimates. 
By minimizing the cost function, we train our model to 
produce estimates that are close to the correct values (ground 
truth). Minimization of the cost function is usually achieved 
using gradient descent techniques [16-20].  

The focus of all the workforce programs described in this 
keynote speech is to embed participants in sensors and ML 
research with the focus on health and sustainability 
applications. In most workforce projects we considered use of 
sensors, signal processing and ML for health diagnostics and 
more recently for COVID-19 detection. In the following we 
describe the ASU SenSIP REU program. 

III. REU  IN SENSORS DEVICES AND ML ALGORITHMS 

One of the goals of this REU workforce program is to embed 
students in sensors and ML research and motivate participants 
to pursue research careers. We recruited students from several 
fields including Electrical and Computer Engineering, 
Physics, Biology, Mathematics and other STEM related 
disciplines. The program attracted participants from 
community colleges and from several universities. The 
students examined several sensor and ML applications 
including health, security, and Internet of Things (IoT).  One 
of the training objectives is for students to understand 
integrated sensing and ML (Fig. 3). An additional objective is 
to create a program where algorithm developers are trained to 
also understand sensor device limitations and sensor designers 
understand basic ML and signal/data analysis algorithms. The 
REU program immersed students in both tasks through sensor 
related lab work and algorithm and software hands-on 
modules.  The program required students to first attend a boot 
camp and receive online training in signal processing, ML and 
sensors. To accelerate learning we started the training in signal 
processing and ML using the object oriented J-DSP software 
[21-24] which has built in modules for k-means (Fig. 4) and 
other clustering methods. Participants came from several 
universities and community colleges.   
 

 
 

Fig. 3.  Integrated sensor device design and ML algorithm 

development for health related applications. 
 

A special effort was made to build awareness in the 
research field and in interdisciplinary application areas.  In the 
last 3 years approximately 30 students have been trained 
through this program. About 30% of the students produced 
publishable results [25-33] and two students participated in 
patent disclosures [34-35]. The recruitment demographics of 
the program were exceptional and details have been reported in 
NSF annual reports [36]. REU projects included sensors for 
cancer detection, audio processing, breathing sensors,  ion 
channel sensors and signal processing,  activity detection, 
object detection [33], Crowd Sourced Environmental 
Monitoring,  and Monitoring Childhood Asthma. 

Several assessments were documented in all three years of 
the REU program [36].  These consisted of assessing the 
effectiveness of the ML modules and the overall research 
experience. The research experience was analyzed in terms of 
problem solving, skill building, creativity and collaboration. 

 

 
 

Fig. 4. Hands-on training sessions in Machine Learning with 
J-DSP [23]. 

IV. THE IRES PROGRAM ON MACHINE LEARNING 

The International Research experiences for students (IRES) 
program also embeds graduate and undergraduate students in 
sensors and ML research for energy applications [2,37,64,65, 
66]. The program is collaborative between the UCy KIOS 
center and the ASU SenSIP center.  The UCy KIOS center 
hosted four students (three undergraduates and one graduate) 
at the KIOS facilities (Fig. 5) in Nicosia Cyprus in 2019.   The 
students were initially pre-trained at ASU by taking modules 
and hands on sessions on ML and signal processing. They 
have also received training in deep leaning techniques [64,67].  
 

V. RESEARCH EXPERIENCES FOR TEACHERS 

Another workforce program on sensors and ML is research 
experiences for teachers [3] which embeds teachers and 



community college faculty in SenSIP research projects.  The 
program has as objectives: a) train teachers in ML and sensors 
for health and other applications, b) advance the science of 
ML for use in health and other systems, c) transition research 
experiences into lesson plans for use in high schools and 
community colleges.  This strategy also contributes to 
attracting more students in the STEM field. Teachers and 
community college faculty have been recruited. Teachers have 
gone through a boot camp in ML that included modules, hands 
on Python software sessions, and daily teleconferencing.   

 
 

Fig. 5. IRES participants at the UCy KIOS center in Nicosia. 

VI. RESEARCH ON COVID-19 HOTSPOT DETERMINATION 

One of the key issues in detecting COVID-19 hotspots is to 
estimate the number of people in a specific location (e.g. a 
church, a shopping mall) and their distance from one another. 
Research in consensus estimation [38-41] has previously been 
successful in estimating network area/size and node locations. 
Such methods rely on distributed processing which leads to 
enhanced accuracy and efficiency in terms of power 
consumption. The research [68] seeks to create high precision 
algorithms for smart phones for COVID-19 hotspot size 
estimation. Mobile devices are used by most people and hence 
locations and network size can be used to estimate the number 
of users and their proximity to each other.  

VII. COVID-19 SOUND SPECTRAL ANALYSIS 

The research is based on the premise that coughing and 
breathing patterns [42] can be used to detect COVID-19. The 
idea is to use databases formed from various conversations on 
cell phones or teleconferencing systems to extract appropriate 
sound features for COVID-19 detection.  Prior research [42] 
has shown promise in terms of determining spectral features 
for COVID-19. This research explores several tools for feature 
extraction and pattern matching. Audio features and related 
methods previously used in speech compression [43-47], voice 
recognition [48-51], and speech disorder detection [52-53] 
will be explored. In addition, a variety of ML approaches [54-
58, 62-63] will be explored with the emphasis on sparse deep 
learning methods including Graph Models and Multi-layer 
Embeddings (GrAMME) [61]. The main advantage of 
GrAMME is that it requires fewer labels to train a neural 
network model.  Another efficient method is the use of sparse 
neural networks including pruned and dropout architectures. 
By posing this problem as a multi-class classification problem, 
we can use the lottery ticket hypothesis [69] method to derive 

a sparse neural network for identifying the different classes of 
features. Efficiency and avoidance of over fitting are 
advantages of these methods.  Pruned and dropout neural 
networks [64] have been used in our previous ML studies 
(Fig. 6) and will be explored with audio features to classify 
sound patterns. Feature classification may require diarization 
pre-processing [59,60]. In addition to the above methods, deep 
attention models will be explored to learn robust audio 
representations.  
 

 
Fig.  6.  Pruned neural network for sound classification. 

VIII.  CONCLUSION 

This paper is associated with the keynote speech at IISA 
2020 and describes research programs that have been 
supported by workforce development grants. All programs 
train students in machine learning for sensor and health related 
applications. Several of the participants in the workforce 
development programs were able to publish some of their 
results and two participants have submitted patent pre-
disclosures. The programs were assessed in terms of: a) 
enablement of the participants to produce new research results, 
b) the skill-building components in terms of ML and its 
applications, c) inclusiveness and diversity.  Communications 
with most program participants have been maintained through 
emails, LinkedIn and social media.  The most recent programs, 
supported through NSF supplements, are on COVID-19 
research addressing networks and on sound analysis. 
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