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Abstract— Internet of things (IoT) along with big data 

technologies can accrue significant added value in several 

domains and improve people’s everyday life. One of the domains 

that can be benefitted the most by the aforementioned 

technologies is Smart Buildings. This is because, several aspects 

of people’s everyday lives can be improved through IoT services, 

such as energy consumption, health, heating, building security 

and more. IoT services can be divided to near real-time, and 

static based on the time that they require in order to return 

results. Significant amount of research papers has been 

dedicated to the second for services such as energy forecasting, 

while for near real-time services there are not so many 

publications, while, most of the existing ones focusing mostly on 

obtaining meaningful results. In this publication we propose a 

conceptual architecture for building a near real-time Anomaly 

Detection service for smart buildings using the Fog Computing 

paradigm, to achieve scalability and low latency. Moreover, we 

provide a technical glance of the proposed solution, suggesting 

specific technologies for each functionality as well as restrictions 

for each technology. It is worth mentioning that the proposed 

approach can be easily adapted for other near real-time services 

with little modifications. 
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I. INTRODUCTION  

In the last decade, Internet of Things (IoT) has been among 
the most popular trends, towards the digital transformation of 
business and technology. This is because, it can unlock 
significant added value for both customers and companies [1, 
2] and improve the quality of people’s lives by bringing closer 
the digital and the physical world. Specifically, according to 
McKinsey in 2021 [3], the potential economic value that the 
IoT could unlock is large and growing and it is estimated that, 
by 2030, it could enable $5.5 trillion to $12.6 trillion in value 
globally, including the value captured by consumers and 
customers of IoT products and services. Several different 
sectors can be benefitted by IoT technologies, including (but 
not limited to) health, factories, cities, vehicles, and buildings. 

Of course, the tremendous success of the IoT in the last 
few years, goes hand in hand with the rapid advancements of 
Big Data Analytics and Cloud Computing technologies. In 

particular, Big Data Analytics enable the processing of large-
scale volumes of data in a very efficient manner, while 
traditional database technologies fail to provide acceptable 
response times with such large volumes of data. Of course, big 
data do not imply only large volumes of data, instead the term 
implies also high velocity (speed at which new data is 
generated and move around), variety (meaning that data is not 
always structured and cannot be stored directly to relational 
databases), veracity (meaning that data with wrongful values 
are also included), and value meaning that businesses that 
invest to big data technologies should require a return on 
investment (5 Vs of Big Data [4]). 

On the other hand, cloud computing provides a set of 
network enabled services, providing scalable, Quality of 
Service (QoS) guaranteed, normally personalized computing 
infrastructures on demand, which could be accessed in a 
simple and pervasive way [5]. Moreover, it provides Software 
as a Service (SaaS) and Platform as a Service (PaaS) 
capabilities, that make the IoT data handling easier and more 
reliable than ever before. 

With the rise of IoT and Big Data Analytics, significant 
value adding services can be unlocked for smart buildings. On 
the one hand, this needs to be done as buildings are 
responsible for a significant amount of energy consumption 
(40% of EU energy consumption), and therefore the building 
sector can play a key role on effective climate policy [6,7] and 
on the other hand residents can be benefited in several aspects 
of their everyday life such as health and security [8]. 

In this context, several services and applications have 
already been developed in order to improve residents’ health, 
energy consumption and security of smart buildings, based on 
both real time and static data. Some examples are clustering 
of electricity consumption [9], occupancy detection (e.g. 
[10]), electrical load forecasting [11] and anomaly or outlier 
detection [12]. However, most of the work that has been 
conducted focuses mostly on processing static data and 
drawing inferences from them. At the same time, the literature 
for services that respond in real time focuses mostly on the 
results and follows a centralized cloud approach that is not 
scalable for a grid of smart buildings.  



In this paper, we deal with the problem of real time 
anomaly detection in smart buildings. Unlike other works, we 
focus mostly on the technological aspect of the solution, 
taking into consideration scalability and response times as the 
utmost priorities of this work. As a result, we propose a 
conceptual architecture that is based on the Fog Computing 
paradigm [13] and provides a scalable approach for solving 
the problem of anomaly detection in real time. With this 
paradigm, the computation is distributed across three different 
layers, the Edge, the Fog and the Cloud. Hence, the 
computation takes place closer to the edge devices instead of 
being performed entirely in the cloud. This results to faster 
computation and hence faster response times and alerts. 
Moreover, we propose several suitable technologies, along 
with explanations of their functionalities and their specific 
role to the proposed solution. 

This work has been conducted under the context of the EU 
funded research project I-NERGY [14] that aims at evolving, 
scaling up and demonstrating innovative AI-as-a-Service 
(AIaaS) Energy Analytics Applications and digital twins 
services that will be validated along 9 pilots, which a) span 
over the full energy value chain, ranging from optimized 
management of grid and non-grid Renewable Energy Sources 
(RES) assets, improved efficiency and reliability of electricity 
networks operation, optimal risk assessment for energy 
efficiency investments planning, optimizing local and virtual 
energy communities involvement in flexibility and green 
energy marketplaces; and b) delivers other energy and non-
energy services to realize synergies among energy 
commodities (district heating, buildings) and with nonenergy 
sectors (i.e., e-mobility, personal safety/security, AAL), and 
with non- or low-technical domains end users (i.e., elderly 
people). 

The rest of the paper is organized as follows: In Section II, 
we provide a brief overview of works that relate to this 
publication, along with a brief overview of the basic concepts 
and technologies that are proposed. Section III presents the 
proposed conceptual architecture for anomaly detection in 
smart buildings, based on the Fog Computing paradigm. 
Furthermore, several technologies that are proposed to be used 
are discussed. Section IV discusses the advantages of the 
proposed approach, as well as several aspects that are not 
covered by the proposed solution. Last but not least, section V 
concludes the paper and provides several issues that will be 
addressed in future extensions of this work. 

II. RELATED WORK 

The work that has been conducted in the context of this 
publication has its roots on several scientific fields. 
Specifically, it combines IoT technologies, with big data and 
stream processing along with the fog computing paradigm, in 
order to facilitate scalable and near real time anomaly 
detection, for smart buildings. There are plenty of scientific 
publications in these fields, however, at the time of writing 
this article, an approach that serves as an end-to-end scalable 
solution for anomaly detection in citizen behavior in smart 
buildings was missing from the literature. In this section, 
several related publications are presented in a nutshell. 

The proposed architecture is based on the Fog Computing 
paradigm, which is an implementation of Edge Computing 
[15], as it provides distributed computing, storage, control and 
networking capabilities closer to the user (edge). However, it 
is not yet another implementation of Edge Computing but 

rather the highest evolution of Edge Computing principles, 
providing a structured intermediate layer that fully bridges the 
gap between IoT and Cloud computing [16]. 

There are several publications that use the Fog Computing 
paradigm. For instance, [17] proposes an algorithm for 
efficient utilization of resources in the network infrastructure. 
The approach is generic and the results can be used as a micro-
benchmark in studies related to Edge and Fog Computing 
applications. Abbasi et al. [18], studied the resources 
management and allocation as well. They developed two 
methods to balance the power consumption at the edge of the 
network and reduce delays in the processing of workflows, 
resulting to minimized communication delay between the 
cloud and fog nodes. Moreover, Mohamed et al. [19] studied 
the utilization of a Service-Oriented Middleware (SOM) for 
Cyber-Physical Systems (CPS), which is compatible with 
systems based on Cloud and Fog Computing. 

Apart from optimal resource allocation applications, 
several services based on the Fog Computing paradigm have 
been developed. First of all, Cheng et al. [20], developed a 
programming model named FogFlow for IoT smart city 
platforms, utilizing the fog computing paradigm to overcome 
the scalability issues that arise in smart city infrastructures.  
FogFlow focuses on interoperability and openness, to enable 
IoT service developers to program elastic IoT services easily 
over cloud and edges. Moreover, it supports standard 
interfaces to share and reuse contextual data across services. 
Finally, a use case for anomaly detection of energy 
consumption in smart cities is presented. 

In addition, Wang et al. [21], presented an IoT service 
architecture that is based on cloud and edge computing and 
focuses on security. Their experiments showcased that this 
edge-based architecture can improve both the security and 
efficiency of IoT-Cloud systems. 

Regarding Smart buildings and smart grids, among the 
most popular services in the literature are the ones for Energy 
Forecasting. For instance, [11] provides an overview of the 
proposed load forecasting approaches in smart buildings, 
presenting the results of several methods. Furthermore, 
several models for energy consumption prediction are 
examined at [22], and several Machine Learning models were 
deployed and tested in a real-world Smart Building testbed, 
with modest results due to the small size of the dataset that 
was used. Of course, there exists a much larger number of 
studies related to energy forecasting than the ones that were 
already presented [23-27]. 

However, Energy forecasting services in most cases are 
not real time and therefore services for Occupancy Detection 
and Anomaly Detection and Identification are closer to the 
subject of this publication, as they require near real-time 
response at a very low latency. Both the aforementioned types 
of services have been examined in the literature. For instance, 
regarding Occupancy Detection, Oldewurtel et al. [28] 
examined the potential of using occupancy information to 
realize a more energy efficient building climate control. They 
developed a Model Predictive Control framework, in order to 
evaluate the energy savings potential, in comparison to other 
strategies. Elkhoukhi et al. [10] combined occupants’ 
information, with sensor data to achieve better results and 
real-time responses. Other publications that focus on 
Occupancy detection are [29,30]. 



Concerning anomaly detection and identification, most of 
the studies focus either on people’s daily life and health or on 
security. Regarding people’s daily life, Yahaya et al. [31] 
introduced a new approach of creating an ensemble of novelty 
detection algorithms based on the concept of internal and 
external consensus. The results of the study showed that the 
proposed approach can successfully identify anomalous 
instances. Novak et al. [32], identified and addressed several 
weaknesses of the existing approaches (inactivity, detection 
only on a daily basis). This approach was based on semi-
supervised clustering models of Self Organized Maps (SOMs) 
and the results were evaluated in both synthetic and real data 
for a two-month period. Other publications regarding anomaly 
detection in people’s behavior are [33-37].  

Concerning Anomaly detection focused on security, 
Dahmen et al. [38] introduced an activity-aware approach to 
security monitoring and threat detection in smart buildings. 
The proposed method was evaluated against the CASAS 
smart home dataset [39]. Other publications for anomaly 
detection that focus on security are [40, 41]. 

Other IoT applications and services for smart buildings 
and smart grids that have been reported in the literature, are 
focusing on predictive maintenance [42], demand response 
[43], indoor location identification [44], fire and smoke 
detection [45], intrusion detection [46]. However, they will 
not be presented further in the context of this publication.   

It is worth mentioning that there are several existing 
specifications for data-driven initiatives and underlying B2B 
reference architectures at the interplay among smart buildings, 
AI, IoT, Big Data, smart energy grids, industry / 

manufacturing, including IFC [47], OGC CityGML [48], 
BDVA SRIA4.0 [49], COSMAG [50], FIWARE Smart 
Energy Reference Architecture [51], IDSA data sovereignty 
conceptual architecture [52] and IoT/edge AIOTI [53] High 
Level Architecture, towards a living Reference Architecture 
specifically tailored to the buildings value chain. Moreover, 

indicative architectures and frameworks for AI and data 
democratization for intelligent energy management are 
presented at [54-57]. However, all the aforementioned 
initiatives are too generic including many components that are 
not useful for the specific use case. Of course, with future 
extensions of our work the alignment with already existing 
standards and specifications will be examined thoroughly. 

III. PROPOSED APPROACH FOR ANOMALY DETECTION IN 

CITIZEN PATTERNS IN SMART BUILDINGS 

In this section a conceptual architecture based on the Fog 
Computing paradigm is proposed, in order to address the 
problem of anomaly detection in citizen patterns in smart 
buildings efficiently in terms of both scalability and low 
latency. This is achieved by distributing the computation to 
edge and fog nodes instead of the cloud and leads to faster 
results and lower network traffic as well as lower cloud 
workload. The proposed architecture is accompanied by 
several underlying technologies that can contribute to a more 
efficient solution. 

In Figure 1, the proposed conceptual architecture is 
illustrated. In particular, it consists of three layers, the Edge 
layer, the Fog layer and the Cloud layer. The Cloud layer is 
the centralized high-performance infrastructure, where 
centralized computationally intensive processes take place. It 
is connected with several fog instances of the fog layer, which 
are responsible for less computationally intensive tasks. 
Finally, each Fog instance, is connected to one or more edge 
instances, that have little to no computational resources. 

 

A. Edge Layer 

The edge layer consists of several sensors and actuators 

including lighting, appliances and energy smart meters as well 

as sensors for activity tracking, temperature etc. that are 

monitored by a gateway device (Data Accumulator and 

Fig. 1.  Conceptual Architecture for Anomaly detection in smart buildings 



Dispatcher) that notices any changes on the state of the former 

and sends a message to a message queuing engine, in order to 

let the related fog and cloud applications know about the 

changes. Moreover, it can receive messages for configuration 

by its related fog in order to update the edge devices 
accordingly. 

B. Fog Layer 

The fog layer has more computational resources than the 

edge layer but significantly less than the cloud one. Therefore, 

this layer can be used for tasks that are not computationally 

and memory intensive. It has a small workload, only receiving 
messages for specific edge instances and limited power for 

computations. Such tasks include data filtering, counting 

distinct elements and other simple operations. In addition, it is 

close to the edge and can provide immediate responses for 

simple operations. 

In this context, it is capable of executing rule-based 

anomaly detection operations, for instance identify as outliers 

data points that deviate significantly from the majority of data 

points. Of course, anomalies can be identified also through 

ML/AI models, however a complex model that needs 

significant amount of memory to be stored or run is not 
appropriate for the fog layer. On the other hand, simple 

models can be stored and run in the fog easily. 

Another operation that can be executed in the fog layer is 

Anomaly identification. This can be done after recognizing an 

anomaly data point. As a next step, at fog level, it is feasible 

to calculate the distance between the identified anomaly and 

the centroid of each type of anomaly and select the nearest 

neighboring centroid as the type of anomaly for the specific 

data point.  

Apart from filtering and anomaly type identification, it is 

useful and feasible to apply some kind of blacklisting for 

reoccurring anomalies. This can be done by storing the type of 
anomaly along with the instance id that caused the anomaly. 

However, in case there is a big number of anomalies and 

limited memory, this can be done also through bloom filters 

[58]. A bloom filter is a mechanism that enables to quickly test 

if an item is part of a set, without storing the set items. It 

guarantees that if an item was not found in the set by the bloom 

filter then it is not a member of the set, while if an item is 

found in the set it will be a member of the set with high 

probability. In the case of anomaly detection if the bloom filter 

decides that a data instance is not in the list of anomalies then 

it certainly is not. While, in case the bloom filter decides that 
the instance is in the list of anomalies then it is with high 

probability. Of course, the list of anomalies should be 

reinitialized periodically (e.g. once a day) as an anomaly 

should not be considered as reoccurring if a long time period 

has passed. 

On top of the Anomaly detection, Anomaly Identification 

and reoccurring anomalies blacklisting services an alerts 

service can also be part of the fog layer. This alerting service 

is responsible for sending alerts to the subscribed user once an 

anomaly is identified, along with its type. Moreover, if the 

anomaly is reoccurring, it can send alerts to more interested 

parties, or increase the severity of the alert. 

C. Cloud Layer 

The cloud layer is the centralized computation layer that 

has tremendous computational power and memory compared 

to the other layers. Also, it is accompanied by heavy network 

traffic as it receives data and requests from several fog 

instances as well as from numerous edges. Therefore, it cannot 

guarantee quick responses for the services that provides. 

Instead, it is suitable for tasks that are computationally or 
memory intensive, such as batch processing or storing the 

data. Thus, the proposed conceptual architecture includes 

services like sensor and anomalies data storage, batch data 

processing, analytics and data aggregations, exploration and 

visual analytics in data, as well as AI models training and 

evaluation. Of course, in a grid of smart buildings more 

services than anomaly detection are expected to be deployed 

both in the cloud and the fog, which means that the conceptual 

architecture would be much more complex if all the potential 

smart building services were added. 

D. Technical Implementation 

From a technical point of view, each layer should follow a 

different approach for its services. Specifically, the edge layer 

includes the sensors and actuators of the smart building as well 

as an IoT gateway device. IoT gateways bridge devices and 

sensors of a smart building to the internet. In order to select an 

IoT gateway device, the user should make sure that it is 
compatible with the devices that are intended to be connected 

as well as the supported communication protocols [59]. Most 

cloud service providers have their own IoT gateway devices.  

Regarding the communication protocols for the edge layer, 

it is of utmost important to select a proper one in order for the 

system to work effectively. The most usual choices for IoT 

applications are the protocols AMQP and MQTT. However, 

the selection of a protocol should be decided according to the 

application needs as concluded also at [60]. 

Concerning the fog layer, all services should be 

lightweight. In addition, they should consume the messages 

sent by the edge layer, reading the updates in data and 
providing the results to a message broker, in order to be 

received by the cloud layer. They can read the IoT data 

directly from the IoT gateway device, however another 

technology that enables messaging through the publish 

subscribe messaging pattern can be used as well. In specific, 

Apache Kafka [61] is among the most suitable technologies 

for publish subscribe messaging for an end-to-end solution 

such as an entire IoT system using the Fog Computing 

paradigm. This is because it enables performant data 

pipelines, storage of massive amounts of messages and 

integration of different business applications in real time. 
Moreover, Kafka distributes the messages in topics 

(channels). This is very important because services can access 

data only from topics in which they are subscribed. 

Last but not least, the cloud layer is responsible for storing 

and processing the data received from the other layers. 

Different (mostly noSQL) database technologies can be used 

for storage such as MongoDB [62]. Regarding the batch and 

big data processing several technologies can be used such as 

Apache Spark [63] and Hadoop [64]. 

IV. EVALUATION, DISCUSSION AND LIMITATIONS 

Significant amount of research has been dedicated to IoT 
services in smart buildings, while most of the research papers 
are dedicated to static services that depend on historical data. 
On the other hand, near real-time IoT services can unlock 
significant added value. Several near real time IoT services are 



proposed in the literature. However, in most cases they are 
focused on the results of the developed service and not paying 
attention to the response times and the scalability potential of 
the reported services. Moreover, it is worth mentioning that 
the cloud computing paradigm which is the most common 
paradigm on IoT applications, is not suitable for providing 
near real time services due to the fact that the cloud resources 
are shared across different buildings and large numbers of 
edge devices. Hence, even in cases where response times are 
acceptable, the cloud computing solution is not scalable. 

In this context, in the paper at hand we focus on acceptable 
response times as well as scalability of the proposed service 
across the entire network. Moreover, instead of the traditional 
cloud computing paradigm, we present our service under the 
perspective of the Fog Computing paradigm, defining clearly 
the processes executed in each layer (Edge, Fog, Cloud). In 
more detail, we present an end-to-end scalable architecture for 
real time Anomaly Detection in smart buildings, that utilizes 
the fog computing paradigm as the most suitable one for large 
scale IoT applications. Furthermore, the main technologies 
that can be used in each layer are discussed in brief along with 
several restrictions that may pose, in terms of resources 
requirements. 

Of course, the presented architecture is accompanied by 
several limitations. Specifically, security and privacy are not 
taken into consideration, even though they are extremely 
important. Several concerns about privacy and security of the 
proposed architecture have to do with limited network 
visibility, ineffective ways of attack detection, malicious fog 
node issues and more [65]. 

Another important issue that is not discussed in the current 
publication is interoperability. The problem is that 
heterogeneous systems and different service providers do not 
share any common interface in order to understand and 
consume heterogeneous data safely. Although several 
interoperability schemes have been proposed (e.g., SAREF 
[66]), there is no commonly accepted one to be used by all 
service providers and systems.. 

V. CONCLUSION AND FUTURE EXTENSIONS 

This publication provides a scalable end to end approach 
for near real time anomaly detection in smart buildings using 
the Fog Computing paradigm, along with the underlying 
technologies of each computational layer. Up until the 
moment of writing this publication the literature was missing 
such an end-to-end approach for real time IoT services in 
smart buildings.  

Moreover, it is worth mentioning that the current approach 
poses several limitations in terms of security and privacy and 
interoperability. These pillars will be among the first priorities 
for future extensions of this study.  

Of course, the first priority will be to apply the proposed 
approach and its underlying technologies and architecture to a 
real time environment and evaluate the results in terms of 
quality, latency and scalability. Moreover, the provided 
services will be evaluated by actual users. 

As a next step, privacy issues will be addressed. 
Specifically, an identity and access control management 
component that will secure that only authenticated users will 
have access to services and data will be integrated to the 
proposed solution. Furthermore, these users will have access 
only to resources that they are authorized to access. Regarding 

security concerns, several solutions will be examined such as 
data encryption and monitoring of virtual machines. 

Concerning interoperability, several available 
interoperability schemes for smart buildings and cities will be 
examined and extended if needed, according to the project 
needs in terms of the provided data and the pilot requirements. 

Apart from Anomaly detection in citizen patterns in smart 
buildings, I-NERGY project offers a large gamma of energy 
analytics services both static and real time for several different 
EPES stakeholders covering the whole energy value chain. 
Therefore, new services will be developed, including energy 
forecasting, flexibility forecasting and demand response, 
predictive maintenance and more. 
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