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Abstract— A significant problem of using deep learning
techniques is the limited amount of data available for training.
There are some datasets available for the popular problems like
item recognition and classification or self-driving cars, however,
it is very limited for the industrial robotics field. In previous
work, we have trained a multi-objective Convolutional Neural
Network (CNN) to identify the robot body in the image and
estimate 3D positions of the joints by using just a 2D image,
but it was limited to a range of robots produced by Universal
Robots (UR). In this work, we extend our method to work with
a new robot arm - Kuka LBR iiwa, which has a significantly
different appearance and an additional joint. However, instead
of collecting large datasets once again, we collect a number of
smaller datasets containing a few hundred frames each and use
transfer learning techniques on the CNN trained on UR robots
to adapt it to a new robot having different shapes and visual
features. We have proven that transfer learning is not only
applicable in this field, but it requires smaller well-prepared
training datasets, trains significantly faster and reaches similar
accuracy compared to the original method, even improving it
on some aspects.

I. INTRODUCTION
Industrial robotics has been associated with structured and

well-defined environments for many years and robot arms
have achieved great performance in areas like manufactur-
ing. It comprises of hard-coded repetitive motions, where a
machine can do a better job compared to a person in terms
of no fatigue, precision and non-stop operation. However,
with developing hardware, computing power and advancing
algorithms, the same systems are becoming more adaptive.
Nowadays, instead of fencing off the robots, environment
understanding and adaptive behaviour is a part of the Industry
4.0 concept, where robots and people can share the same
workspace and collaborate [1].

There are numerous approaches to sense the environment:
laser scanners, stereo vision, RGB-D cameras, camera arrays,
ultrasound sensors, motion capture systems. Each one has its
own pros and cons, often either needing additional markers
or calibrated devices or having a high price-tag. Very often
there is still a significant amount of work needed to set up
a new robustly working system.

Inspiration of the environment understanding comes from
biology - how animals and especially humans are able to
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understand the environment. We are capable of learning
what objects are, how they move, their functionality and the
way we should interact with them by looking at example
situations. Furthermore, after we know how it works in some
situation, it is very likely that next time we see similar
conditions, we will be able to find parallels between the
two and figure out how we should act by simply using our
previously gained knowledge. That is the motivation of the
transfer learning method, which uses a previous well-trained
neural network and adjusts it to new conditions using limited
amount of training data and significantly shorter training time
compared to the full training of the neural network.

Transfer learning has been used in a variety of fields. In
many cases, the whole or part of the CNN trained on Ima-
geNet is taken as a base network and then adjusted to a spe-
cific application [2]. This has been proven to work for mid-
level image representations in object classification, using the
pre-trained network on natural images to adapt for medical
image recognition and even emotion recognition [3] [4] [5].
Another interesting application of transfer learning is to use
a fully trained network on night-time satellite imagery of
poverty areas and adapt it to recognise poverty areas from
daytime satellite imagery [6]. Furthermore, detailed analyses
of the transfer learning approaches were made with surveys
of the techniques used and various CNN structures [7] [8].

The proof that generalised visual features can be trans-
ferred to new systems has motivated to use it to extend
our previous work of recognising the robot and estimating
its 3D position of the joints by using a simple 2D color
camera image [9]. Instead of using ImageNet or any other
well known pre-trained network, we take our previously fully
trained multi-objective CNN on Universal Robots and use it
to adapt to a new Kuka LBR iiwa robot arm. Additionally,
the new dataset adds new unseen backgrounds making the
network even more robust.

The main goal of identifying the robot in a 2D camera
image is to remove the need for fully calibrated camera-
robot systems allowing for more dynamic environments,
while still ensuring safe operations. It is crucial for shared
workspaces between humans and robots. There are many
good methods of real-time dynamic obstacle and people
avoidance, but most of them require a fully-calibrated robot-
camera system [10] [11]. Despite some efficient Hand-Eye
calibration methods, it is still a cumbersome process when
the operation of the robot has to be halted until the calibration
is completed [12]. Furthermore, it can simplify the task
of having mobile robots moving around the floor without
any special markings. By identifying other fixed robots it
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Fig. 1. Samples from the collected robot datasets. It consists of a line of Universal Robots (silver-blue) as well as Kuka LBR iiwa (silver-orange). The
data was collected with a variety of backgrounds and light conditions to provide more robustness.

can both avoid possible collisions and localise itself to
known fixed-base robots. By identifying other robots and
knowing their exact position, the setup could be expanded
to prediction of the behaviour of other machinery in the
surrounding environment without having the direct commu-
nication channel between them. This would be a very useful
approach in swarm robotic applications.

This paper is organized as follows. We present the system
setup and dataset collection in Section II. Then, we explain
the proposed method and CNN structure and configuration in
Section III and the transfer learning procedure in Section IV.
We provide experiments and results in Section V, followed
by relevant conclusions and future work in Section VI.

II. SYSTEM SETUP AND DATASET COLLECTION

Training a deep learning network typically requires a large
amount of diverse training data. The main problem lies in the
necessity to have precise ground-truth information, which is
given as a correct answer.

Our setup consisted of a vision sensor, in this case, a
Kinect V2 camera, placed in arbitrary positions overlooking
the robot and perform Hand-Eye calibration at each of the
positions [13]. The calibration is done by placing a known
marker on the end-effector of the robot and performing a
number of movements until the calibration accuracy reaches
the necessary precision. The result is a coordinate frame
transformation between the camera and the robot base [14].

Given a precise coordinate frame transformation, the robot
model is used together with the live information from its joint
encoder readings to create a simplified mesh model defining
the robot shape. Then it is transformed to the coordinate
frame of the camera and depth image estimated from the
viewpoints of the camera. The result is a precise mask of the
robot body in the camera image, which can be overlayed with
a color image and used as a ground truth data for teaching the
CNN. The main benefit is that this process is fully automated
by using ROS with MoveIt! package [15]. The robot model
is taken from the Unified Robot Description Format (URDF)
files provided by the robot manufacturers [16].

In our experiments, we use an already trained multi-
objective CNN from the previous project [9], which was
trained from scratch on three robot models from Universal
Robots: UR3, UR5 and UR10. In order to test the capabilities
of transfer learning, new datasets using Kuka LBR iiwa
were used. For comparison reasons, relatively large datasets,
summarised in Table I, were collected for all the robots.
These datasets consist of multiple recordings, each one with
the camera placed at different angles and distances relative
to the robot as well as having various backgrounds.

TABLE I. Dataset summary describing a number of samples collected for
each type of the robot.

Robot Type Number of Datasets Total Number of
Samples

Universal Robots 9 4350
Kuka LBR iiwa 14 1837

Robot movements included a large variety of joint config-
urations resulting in many viewpoints of the robot. Further-
more, lighting conditions were varied for each of the record-
ings to allow for more robustness regarding the brightness
and reflections.

The new datasets with the Kuka robot also included more
dynamic background with people moving around and even
another Kuka robot placed further away and not being used
in experiments. Furthermore, in some cases, the robot went
out of bounds of the color image. In total, 9 datasets of
Universal Robots and 14 datasets of Kuka robot were used.
Each recording had different camera placement, changing
distance between the robot and the camera, varying lighting
conditions and new background. During each of the record-
ings, the robot was moving to give a large variety of joint
configurations in the dataset.

At the completion of each movement, a trigger signal was
sent in order to save the color image, depth model, cartesian
and joint coordinates of each of the robot joint and ground-
truth mask model of the robot. All this information was later
used to train the neural network. However, depth information
was used only for training, while the recognition part of the



(a) Color image from the dataset
used as an input.

(b) Ground truth model of the robot
mask.

(c) Ground truth data of the robot
base 3D position.

(d) Ground truth data of the 3D
position of robot joints.

Fig. 2. Dataset, mask and ground truth value examples of the Kuka LBR
iiwa robot.

system relies only on the color camera image as an input.
In order to normalise the input data, internal camera

calibration was used to ensure a perfect overlap between
color and depth images. All the input images are also
rectified and have the resolution of 512×424 pixels. Testing
and validation sets were divided by the ratios of 80% and
20% respectively based on random sampling.

III. CNN STRUCTURE AND CONFIGURATION

The base of a multi-objective CNN is taken from previous
work, where it was trained on a line of robots made by
Universal Robot [9]. The network simultaneously optimises
for multiple heterogeneous outputs by using just a single
image as an input.

The network in this paper is trained on four objectives:
• Robot mask in the image
• Robot type
• 3D Robot base position in relation to the camera
• 3D Position of the robot joints
The structure of the CNN is shown in Figure 3. The

network shares a number of common convolutional layers
and then branches for more objective-specific optimisation.
Having a single training process, it means that the features
in common layers are reused.

A. Loss Functions

Loss functions are used to evaluate the training progress
and the achieved accuracy compared to the ground truth data.
Our system optimises for four objectives simultaneously,
resulting in four loss functions, which are later combined into
one for the training process. First, each of the loss functions
will be described separately followed by the explanation of
how they are all connected into one.

The robot body takes up a relatively small area in the
whole image. The area taken up by the robot body in UR
datasets is between 6 − 17% and for Kuka datasets, it is

between 8 − 18% of the whole image. Given a standard
pixel classification loss function, there would be cases when
an accuracy of over 82% can be reached by classifying the
whole image as a background. That is conceptually wrong,
so the loss function was adjusted by using the foreground
weight wfg , which is calculated in Equation 1. It is based
on the inverse probability of the foreground and background
classes, where Y ∈ {fg, bg}.

wfg =
1

P(Y = fg)
(1)

The background weight wbg is calculated in Equation 2.

wbg =
1

P(Y = bg)
(2)

The loss function for the robot mask is defined by two
steps. First, a per-pixel loss ln is calculated in Equation 3,
where iest is P(Y = fg), (1 − iest) is P(Y = bg) and igt
is the ground truth value from the mask image.

ln(Inest, I
n
gt) =− wfgiest log (igt)

− wbg(1− iest) log (1− igt)
(3)

This is followed by a normalised loss calculation for the
whole image Lmask in Equation 4. A normalisation factor
N , which is the number of pixels in the image, allows us to
keep the same learning parameters independent of the input
image size.

Lmask(Iest, Igt) =
1

N
∑
n

ln(iest, igt) (4)

3D coordinates of the robot base and robot joints are
defined as regression tasks. The loss function is based on
the Euclidean distance between the estimated values and the
ground truth values. For the robot joints estimation, the loss
function LJcoords is described in Equation 5, where Nj is
the number of joints, Ji is the ground truth position of each
joint and Ei is the estimated values by the neural network.

LJcoords =
1

Nj

Nj∑
i=1

‖Ji − Ei‖2 (5)

The loss function for the coordinates of the robot base
LBcoords is calculated in Equation 6. Bxyz is the ground
truth position of the robot base in 3D, and Exyz is the
estimated 3D position of the robot base. These positions are
relative to the coordinate frame of the camera.

LBcoords =
∥∥Bxyz − Exyz

∥∥
2

(6)

Classification of the robot type Ltype is defined as a cate-
gorical cross-entropy problem with multiple classes. Ltype is
calculated in Equation 7, where p is the ground truth labels,
q are the predicted labels and c ∈ R, where R contains all
the available types of robots in the dataset.

Ltype = −
∑
c

p(c) log q(c) (7)
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Fig. 3. Structure of the multi-objective CNN. Input is a 2D color image resulting in four outputs: robot mask, 3D coordinates of robot joints, 3D coordinates
of the robot base and the robot type. The network uses part of common convolutional layers and then branches off for objective-specific training. Fully-
connected (FC) layers, marked by blue area, are the ones being adjusted during the transfer learning process to adapt to the new robot model. Convolutional
layers learn generalised visual features of the image, so their parameters stay frozen during the transfer learning. This allows for quicker adaptation with a
limited number of input images compared to the full training process. The whole CNN is trained for all four outputs simultaneously using a common loss
function. Differently colored arrows represent connections of different branches in multi-objective CNN, each one focused for a certain type of output.

For the training of the multi-objective CNN and optimisa-
tion for all four objectives, a single loss function is needed.
This was achieved by combining the previously defined loss
functions into Lfinal by having a weight element for each
of the losses, as shown in Equation 8. The larger the weight
W , the higher the impact on the corresponding value.

Lfinal =WmaskLmask +WJcoordsLJcoords

+WBcoordsLBcoords +WtypeLtype

(8)

IV. TRANSFER LEARNING AND TRAINING

The benefit of transfer learning technique is that the
parameters contained in so-called frozen layers are copied
from the previously trained network, while only part of layers
is trained during the process. This speeds up the training
process and requires smaller training datasets compared to
the full CNN training. In this work, most of the convolutional
layers had the parameters transferred and frozen with all the
fully connected layers and only the two last convolutional
layers for robot mask estimation being trained to adapt for
specific variation in visual features. They contain more robot-
specific visual features, while the first layers learn more
general visual features, which are more adaptable for any
robot type. The exact setup is explained in Figure 3. By a
layer being frozen it means that after the parameter transfer,
they are fixed and not adjusted at all during the training.

Weights for the loss function are kept identical to the ones
in previous work given good results and ability to compare
the results of the works directly. Selected weight values were
the following:

• Wmask: 1.0
• WJcoords: 1.5
• WBcoords: 1.5
• Wtype: 0.3

One important difference between the UR robots and the
Kuka robot is the number of joints. Universal Robot line has
6 joints, while Kuka has 7 joints. This difference changes
the number of outputs for the 3D position estimation of
robot joints. However, because the fully connected layers,
as well as output layers, are trained, it can be adjusted to
accommodate estimation of an extra joint.

Training was done by using datasets of different sizes con-
taining the Kuka robot. Mini-batches were created in order
to make the most out of the available GPU memory and all
the data was randomly shuffled to reduce the biases. Before
starting any training, parameters for the frozen layers were
transferred from the old model fully-trained on UR datasets.
This ensured that each training had an identical configuration
in the beginning. The number of training samples varied by
the experiment and the input size of the images was reduced
by half from the original dimensions, down to 256 × 212
pixels. The pixel intensity values of the input images were
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Fig. 4. Evaluation of the transfer learning method using the test dataset in various categories.

normalised to the range between 0 and 1. The learning rate
was set to 0.001 at the start of the training and then gradually
decreased towards 0.000001 as the training progressed.

V. EXPERIMENTS AND RESULTS

A number of experiments were carried out in order to
determine the effectiveness of the transfer learning process.
In order to find the optimum amount of training samples
needed for transfer learning, each experiment consisted of a
training set with different size, all randomly sampled from
the Kuka dataset. The testing set was identical for all the
experiments.

TABLE II. Summary of the Transfer Learning results (using 312 samples
for training) on the test set of Kuka LBR iiwa robot with a comparison of
a Multi-Objective CNN with just Universal Robots.

Measure Full Training Transfer Learning
Mask Accuracy, % 98% 97.3%
Robot Type Accuracy, % 98.3% —
Joint Pos Error (Median) 2.46cm 2.87cm
Base Pos Error (Median) 2.13cm 2.02cm
Training Time (hours) 60 hours 2 hours

The evaluation was done using a testing set by comparing
the output against the ground truth data. The robot mask
accuracy is defined by counting the number of pixels in the
CNN output image that match the ground truth mask. For the
robot joint and base coordinates, Euclidean distance between
the CNN estimated results and ground truth results was cal-
culated. We compare the results of transfer learning method
trained on the Kuka robot against our previously presented
multi-objective CNN fully trained for UR robots [9]. Results
are summarised in Table II.

Compared to a fully trained system, the transfer learning
results matched closely. As seen in Figure 4(a), the error
in estimating 3D positions of robot joints was 2.87 cm
compared to 2.46 cm in a fully trained system, while the
robot mask accuracy difference was just 0.7% with 97.3%
for transfer learning method and 98% in a fully trained CNN.
Robot base position estimation was actually more accurate in
transfer learning method with an error of 2.02 cm compared
to 2.13 cm. Resulting positions of robot base and joints

Fig. 5. Estimated robot joint position coordinates marked on the images
taken from the dataset. Due to difficulty in visualising 3D coordinates on
printed figures, the estimated joint coordinates were mapped back into 2D
images. Green crosses indicate the ground truth position, red circles indicate
predicted positions of joints and magenta circles indicate the predicted
position for the robot base. In some cases, even when a part of the robot
is out of bounds, positions of visible joints as well as the unseen joint are
predicted with centimeter accuracy.

mapped onto 2D and marked on the example dataset images
are shown in Figure 5. The system was adapted for just one
type of the new robot, so we did not evaluate the accuracy
of robot type detection. The system adapted to an additional
robot joint in the transfer learning method. There can be
seen an increase in the error for Joint 3, and that could be
partly caused by a different structure of the robot, as seen in
Figure 4(b).

However, the main benefit of the transfer learning method
can be seen in training time. By looking at the Figure 4(c),
where loss calculation and training time is shown against the
number of samples used for training, it can be clearly seen
that the optimum result is around 300 training samples. To be



specific, it was the experiment, where 312 training samples
were used. It took a bit under 2 hours of training and the
resulting loss was 0.15. Having more samples, the loss got
down to 0.14, but it took significantly more time to train.
An interesting point was that by using the whole training
dataset, the loss increased back to 0.15 and took around 16
hours of training. The forward propagation time per sample
averaged to 13.5 ms. All the training and testing was done
on Nvidia Geforce GTX 1080 Ti graphics card.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a transfer learning ap-
proach to adapt a previously trained multi-objective CNN to
new types of robots. In general, the system identifies and
localises the robot arm and estimates its base and joints’
positions in 3D. This allows a camera to be placed in any
position and moved around without having to re-calibrate
the camera-robot system with Hand-Eye calibration. In this
work, we have shown that by taking a fully trained system,
a significantly less training data is needed to adapt it for new
robot models, which have a different shape, appearance and
even more degrees of freedom.

The results have shown that accuracy achieved by using
transfer learning closely matches the results of the fully
trained system and can even improve in some cases. This
means that the system is able to adapt and learn to recognise
new robots with having just limited amount of training
data. Similarly to what we do when learning new skills and
practising them afterwards.

This work can be useful in dynamic environments where
it is difficult to predict where robots, sensors and people
are located, but operational safety has to be established.
By expanding this method to numerous robots, and other
equipment, fixed setups and calibration can be discarded.
Unfortunately, the accuracy is still in centimetre level, and
it is not applicable for precision tasks. However, in many
adaptive human-robot and robot-robot interaction tasks, gen-
eral obstacle avoidance and collaboration movements could
be made possible.

Given a precise robot body detection, another possible
application could be self-inspection for the robot to detect
any unknown and unexpected damage. Similar to new robots
are added using transfer learning, typical damages could be
taught to the system and identified by the robot scanning
itself, observing its own reflection or having another robot
to scan it. This can be very useful in environments, like
disaster areas, where robots have to work autonomously for
long periods of time, or when internal sensors give unusual
readings and hull should be inspected.

For future work, we plan to implement more robots as well
as having robots on mobile platforms in the system. Instead
of training on one new robot model, transfer learning will
be used to expand the CNN to work with a line of robots,
including the originally trained ones. Previously mentioned
robot self-inspection is also of high interest, as well as adding
collaborative tasks with people by tracking their movements
using the latest skeleton tracking methods. Furthermore,

more types of cameras will be tested and transition from
one camera to another analysed.

ACKNOWLEDGMENT

This work is partially supported by The Research Council
of Norway as a part of the Engineering Predictability with
Embodied Cognition (EPEC) project, under grant agreement
240862, and by the Austrian Ministry for Transport, Innova-
tion and Technology (BMVIT) within the project framework
CollRob (Collaborative Robotics).

REFERENCES

[1] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing
Letters, vol. 3, pp. 18–23, 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[3] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and trans-
ferring mid-level image representations using convolutional neural
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2014, pp. 1717–1724.

[4] H. Greenspan, B. van Ginneken, and R. M. Summers, “Guest editorial
deep learning in medical imaging: Overview and future promise of
an exciting new technique,” IEEE Transactions on Medical Imaging,
vol. 35, no. 5, pp. 1153–1159, 2016.

[5] H.-W. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler, “Deep learning
for emotion recognition on small datasets using transfer learning,”
in Proceedings of the 2015 ACM on international conference on
multimodal interaction. ACM, 2015, pp. 443–449.

[6] M. Xie, N. Jean, M. Burke, D. Lobell, and S. Ermon, “Transfer
learning from deep features for remote sensing and poverty mapping,”
arXiv preprint arXiv:1510.00098, 2015.

[7] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, “Deep convolutional neural networks
for computer-aided detection: Cnn architectures, dataset characteristics
and transfer learning,” IEEE transactions on medical imaging, vol. 35,
no. 5, pp. 1285–1298, 2016.

[8] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big Data, vol. 3, no. 1, p. 9, 2016.

[9] J. Miseikis, I. Brijacak, S. Yahyanejad, K. Glette, O. J. Elle, and
J. Torresen, “Multi-objective convolutional neural networks for robot
localisation and 3d position estimation in 2d camera images,” arXiv
preprint arXiv:1804.03005, 2018.

[10] J. Mainprice and D. Berenson, “Human-robot collaborative manipula-
tion planning using early prediction of human motion,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on. IEEE, 2013, pp. 299–306.
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[14] T. Heikkilä, M. Sallinen, T. Matsushita, and F. Tomita, “Flexible hand-
eye calibration for multi-camera systems,” in Intelligent Robots and
Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ Interna-
tional Conference on, vol. 3. IEEE, 2000, pp. 2292–2297.

[15] I. A. Sucan and S. Chitta, “MoveIt!” Online Available:
http://moveit.ros.org, 2013.

[16] W. Meeussen, J. Hsu, and R. Diankov, “Urdf-unified robot description
format,” 2012.


	I INTRODUCTION
	II SYSTEM SETUP AND DATASET COLLECTION
	III CNN STRUCTURE AND CONFIGURATION
	III-A Loss Functions

	IV TRANSFER LEARNING AND TRAINING
	V EXPERIMENTS AND RESULTS
	VI CONCLUSIONS AND FUTURE WORK
	References

