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Abstract— As x86-64 processors become the CPU of choice for
the personal computer market, it becomes increasingly important
to understand the performance we can expect by migrating ap-
plications from a 32-bit environment to a 64-bit environment. For
applications that can effectively exploit a larger memory address
space (e.g., commercial databases and digital content authoring
tools), it is not surprising that x86-64 can provide a performance
boost. However, for less-demanding desktop applications that can
fit in a 32-bit address space, we would like to know if we can
expect any performance benefits by moving to this platform.

In this paper, we report on a range of performance character-
istics for programs compiled for both 32 bits and 64 bits and run
directly (32-bit binaries are run in compatibility mode1; 64-bit
binaries are run in 64-bit mode) on a single x86-64 based system.
In this study we utilize the integer benchmarks from the newly
released SPEC CPU2006 suite.

We have observed that for the SPEC CPU2006 integer bench-
marks, 64-bit mode offers a sizable performance advantage over
32-bit mode (7% on average). However, the advantages vary from
benchmark to benchmark, and for a handful of programs, 64-bit
mode is significantly slower than 32-bit mode (in this subset of
benchmarks, performance is reduced by more than 16% when
running in 64-bit mode.) We further analyze 5 benchmarks
that exhibit significant differences in performance between these
two modes. For this set of CPU2006 integer programs, we
present a range of performance characteristics that illustrate
the impact of moving to a 64-bit environment. Our results and
analysis can be used by performance engineers and developers
to better understand how to exploit the capabilities of the x86-64
architecture.

I. INTRODUCTION

AMD x86-64 technology builds on top of the legacy 32-bit
x86 architecture and provides backward compatibility for the
existing x86 code base. It provides a number of new features
including 64-bit addressability, 8 new 64-bit general-purpose
registers and 8 new 128-bit SSE registers [1], as well as 64-bit
extension of the existing general-purpose registers. The change
of programming model embodied in these extensions helps
increase the performance of applications that need to address
a large amount of memory or that are register constrained [2].
Some notable examples of such applications include server
applications (e.g., commercial databases) and professional
multimedia content authoring applications.

Meanwhile, there has been a growing demand for 64-bit
capability in the consumer computing market to overcome the

1In this paper we will call this mode 32-bit mode to emphasize the 32-bit
vs. 64-bit comparison.

4GB addressing limit, as experienced on 32-bit x86 architec-
tures [3]. In practice, the majority of user-level applications
are limited by the 2GB virtual address space in mainstream
32-bit consumer operating systems, unless some hand-tuned
hardware or operating system tricks are employed [4].

Since a single x86-64 platform can provide an environment
to run both legacy 32-bit x86 code and new 64-bit code
directly, we would like to investigate the potential benefits of
making this move. Our goal will be to study a set of popular
applications in both modes. One outcome will be to identify
some program characteristics that benefit or don’t benefit the
performance when making the move to 64 bits. We mostly
target the integer benchmarks taken from the latest SPEC CPU
suite, CPU2006 [5], in this study. We also revisit the integer
benchmarks in the SPEC CPU2000 [12] suite and investigate
the impact of moving to a 64-bit environment on this suite as
well as the difference between these two suites.

As a number of x86-64 based 64-bit processors have re-
cently been introduced, we want to understand if 64-bit mode
provides significant performance advantages, and where. From
this analysis, we hope to learn how to take better advantage
of the benefits available in 64-bit mode (e.g., more general-
purpose registers and native 64-bit arithmetic support), as well
as to what extent some concerns (e.g., larger code size and
larger data size) impact these workloads.

Figure 1 presents the speedup obtained running the
CPU2006 integer benchmarks in 64-bit mode versus in 32-
bit mode, both run with the reference inputs in the suite. The
programs were run on an AMD Athlon

TM
64 processor, which

is based the AMD-K8
TM

microarchitecture (an implementation
of x86-64 architecture). All programs were compiled with the
GCC 4.1.1 C/C++ compiler [8]. As we can see, 64-bit mode
provides a 7% performance boost over 32-bit mode on average.

In Table I we list five benchmarks from this suite that
exhibited significant performance differences between these
two modes; three of them performed better in 64-bit mode and
two of them performed better in 32-bit mode. This set provides
a good medium for discussion of the trade-offs associated with
moving from a 32-bit to a 64-bit environment.

The remainder of this paper is organized as follows. Sec-
tion II describes the experimental system that was used for
this study. Section III describes the performance characteristics
obtained during the execution of each benchmark. Section IV
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Speedup of CPU2006 Int: 64-bit mode vs. 32-bit mode
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Fig. 1. Speedup of SPEC CPU2006 integer benchmarks running in 64-bit mode vs. in 32-bit mode of x86-64 architecture

presents a performance analysis using the five benchmarks
in Table I that showed significant performance difference
between these two modes. We also identify some typical
program characteristics that favor 64-bit mode over 32-bit
mode and vice versa. Section V summarizes our comparison
and gives some suggestions about how better to take advantage
of the capabilities of x86-64 architecture. Section V also
briefly describes the performance difference between these two
modes for the previous generation of the SPEC CPU suite
and compares these two suites against each other. Section VI
concludes the paper.

Benchmark Speedup of 64-bit mode over 32-bit mode
mcf -26.35%
hmmer 34.34%
libquantum 35.38%
h264ref 35.35%
xalancbmk -13.65%

TABLE I
FIVE SPEC CPU2006 INTEGER BENCHMARKS SHOWED SIGNIFICANT

PERFORMANCE DIFFERENCE BETWEEN 64-BIT MODE AND 32-BIT MODE.

II. EXPERIMENTAL SYSTEM SETUP

Our characterization study was performed on an AMD
Athlon

TM
64 X2 4400+ dual-core microprocessor. The system

was populated with 2x1GB DDR400 memory chips (two
PC3200 DIMMs). The AMD Athlon

TM
64 X2 microproces-

sor integrates two cores on the single chip. The two cores

share a single on-chip memory controller as a memory in-
terface to the on-board memory chips, and a single on-chip
HyperTransport

TM
link as an I/O interface to the on-board I/O

bus. Both cores were clocked at 2.2 GHz. The on-chip memory
controller provides a dual-channel 128-bit wide interface to
main memory. In this system setting the memory interface
gave a peak memory bandwidth of 6.4 GB/sec.

Fig. 2. A block diagram of the AMD Athlon 64 processor

Figure 2 shows a block diagram of an AMD Athlon
TM

64
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single-core chip, which is essentially duplicated on the dual-
core chip used in this system. The exceptions are the crossbar,
the memory controller and the HyperTransport

TM
link. These

units are all shared between the two cores in the dual-core
chip. The memory interface in the single-core chip is 64 bits
wide while it is 128 bits wide in the dual-core chip.

Each CPU core has the following major components [6]:
(1) separate L1 instruction and data caches - each 64 KB, 2-
way associative with a 64 byte line size; (2) unified 1 MB
L2 cache sized, 16-way set associative with a 64 byte line
size; (3) separate fully-associative L1 instruction and L1 data
TLBs, 32-entries each (each entry indexes to a 4 KB page);
(4) separate 4-way set-associative L2 instruction and L2 data
TLBs, 512 entries each (each entry indexes to a 4 KB page);
(5) 16K-entry 2-bit global history branch counters; (6) 2K-
entry branch target buffer; (7) 12-entry return address stack.

The major features of the pipeline includes: (1) a 3-wide
instruction decoder; (2) 72-entry reorder buffer; (3) 44-entry
load/store queue; (4) 3 fully-pipelined integer execution units;
each has an 8-entry reservation station; (4) 3 fully-pipelined
floating-point execution units; they share a 36-entry scheduler.

The operating system used was SUSE R© Linux R© Profes-
sional 9.3 x86-64 edition [7]. The operating system was run
in level 3 mode while all the performance data was collected.
This was to minimize the overhead introduced by concurrent
running processes on the system, especially removing the
impact of some heavy-weight processing such as the X win-
dowing system and GUI applications. In our experiments, we
observed less than 1% run-to-run variations for each individual
benchmark across the entire suite.

The kernel version of this Linux R© distribution is 2.6.11.4,
with SMP support enabled. In order to reduce the variation
introduced by the operating system’s process scheduling over
multiple cores, we ran the benchmark programs exclusively on
a single core during the experiment by wrapping the bench-
marking invocation command inside the operating system’s
process CPU-binding command.

Both the CPU and the operating system used can support
direct execution of both 64-bit x86-64 binary and 32-bit x86
binary. All of our experiments were performed on this same
system (no multiple-booting).

All programs except perlbench were compiled using the “-
O3”, “-ffast-math”, “-funroll-all-loops” and “-march=k8” flags
to generate both 32-bit and 64-bit binaries, where 64-bit
binaries were generated by adding the “-m64” mode switch
flag and 32-bit binaries were generated by adding the “-
m32” mode switch flag. Since perlbench in CPU2006 cannot
compile successfully on our experimental system with “-O3”
and “-funroll-all-loops” flags, we instead used the optimization
flags “-O2”, “-ffast-math” and “-march=k8” to compile this
benchmark along with the mode switch flags. The binary of
the compiler itself was 64-bit. This compiler is able to generate
both 64-bit binaries and 32-bit binaries, depending on which
mode switch flag is used. In our experiments, we used the
same compiler and the same optimization switches to generate
both 64-bit and 32-bit binaries. All the performance data was

collected from hardware counters available on this processor
using AMD internal tools and OProfile [9].

III. SYSTEM-WIDE PERFORMANCE CHARACTERISTICS

In this section we characterize the system-wide (including
both CPU pipeline and memory subsystem) performance of the
SPEC CPU2006 integer benchmarks. Our goal is to obtain a
general understanding of the performance differences between
64-bit mode and 32-bit mode. The five benchmarks that
showed significant performance differences between these two
modes are listed in Table I. They will be the target of our
discussion in Section IV.

A. Static Code Size and Dynamic Instruction Count

One of the major concerns when migrating to 64-bit x86-64
computing is that the size of the generated binary increases
due to the increased length of instructions (10% on average
as reported in [10]), and the sizes of some data types (e.g.,
pointers and long integers) get doubled The increased binary
size may reduce the efficiency of the instruction cache and the
increased length of instruction may introduce extra pressure
on the bandwidth of the decoder. The doubling in the sizes of
pointer and long data types may increase the runtime memory
footprint, especially those programs that heavily utilize these
data types [10].

Figure 3 shows the code (text section of the generated bi-
nary) size increase of 64-bit mode versus 32-bit mode. Figure 4
shows the increase in the size of the steady-state runtime
memory footprint observed during the program lifetime from
32-bit mode to 64-bit mode. Note that both versions of binaries
are dynamically linked. Therefore, in our comparison of the
runtime memory footprint, the observed difference in memory
footprint can be attributed to both the different application
codes and the library codes executed in these two modes.

Code size increase: 64-bit vs. 32-bit
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Fig. 3. 64-bit binary is larger than 32-bit binary by the amount of 21% on
average for the CPU2006 integer benchmarks.

It is interesting to note that two benchmarks, bzip2 and
sjeng, exhibit little if any differences in their runtime memory
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Memory footprint increase: 64-bit vs. 32-bit 
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Fig. 4. 64-bit mode execution has a larger runtime memory footprint than
32-bit mode by 25.1% on average for the CPU2006 integer benchmarks.

footprints between 64-bit mode and 32-bit mode. One bench-
mark, gcc, even shows a decrease in the size of its runtime
memory footprint in 64-bit mode.

Compared to x86, x86-64 architecture doubles the number
of general-purpose and SSE registers, and doubles the width
of all the general-purpose registers. The x86-64 architecture
also provides a flat 64-bit address space. All these features
are enabled in 64-bit mode but not in 32-bit mode. We expect
that these features will increase code density. Figure 5 shows
the decrease in the dynamic instruction count in 64-bit mode,
which confirms our expectation. On average, the dynamic
instruction count is decreased by 12% across the CPU2006
integer benchmarks.

Dynamic instruction count decrease: 64-bit vs. 32-bit
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Fig. 5. The number of instructions dynamically executed is is 12% less in
64-bit mode than in 32-bit mode.

B. Comparison of CPU Utilization

Figure 6 shows the instructions-per-cycle (IPC) for the
CPU2006 integer benchmarks run in 64-bit mode versus 32-

bit mode. We have already showed the impact on the number
of dynamically executed instructions in Figure 5. From these
figures, we can get a first-order understanding about which
component(s) is responsible for the observed performance
difference. This will guide us in the investigation of individual
benchmarks in Section IV.

IPC: 64-bit vs. 32-bit
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IPC
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Fig. 6. The IPC observed in 64-bit mode decreases by 7.8% on average
versus that in 32-bit mode across the CPU2006 integer benchmarks.

Dispatch stall rate decrease: 64-bit vs. 32-bit
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Fig. 7. The dispatch stall rate (dispatch stall cycles per one thousand retired
instructions) observed in 64-bit mode decreases by 10% on average versus
that in 32-bit mode across the CPU2006 integer benchmarks.

To evaluate the increased pressure placed on instruction
fetch and decode unit due to the factor of longer opcodes and
the longer instructions in 64-bit mode, we compare the total
decode stall cycles in both modes. The decode unit can be
stalled in a number of situations: 1) when reservation stations
are fully occupied, 2) when the reorder buffer is fully occupied,
3) when the load store buffer is fully occupied, 4) when fetched
instructions are depleted, and 5) when branches are squashed.
This comparison will give us a better understanding if these
concerns are present in these applications.
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We normalize decode stall cycles by dividing this number
by the number of committed instructions and compare the
resulting decode stall rate between the two modes. In Figure 7
we find that for the CPU2006 integer benchmarks, the antici-
pated adverse effect that 64-bit computing has on the efficiency
of the instruction front-end is not substantiated. We find that
the average dispatch stall rate across all the CPU2006 integer
benchmarks decreases by 10% in 64-bit mode. The libquantum
benchmark is especially interesting since it is running more
than 35% faster in 64-bit mode than in 32-bit mode (as shown
in Figure 1), yet it is the only benchmark in this suite that
experiences a significant increase in the dispatch stall rate in
64-bit mode. We study this benchmark further in Section IV-C
to attempt to explain this phenomenon by inspecting various
program characteristics in both 32-bit and 64-bit modes.

C. Memory Subsystem Performance

In this section we continue to investigate differences be-
tween these two modes in terms of their demands placed on
the memory subsystem, as well as how the memory subsystem
responds to the added load in 64-bit mode. We can see
from Figure 3 and Figure 4 that 64-bit mode and 32-bit
mode present significantly different binary sizes and memory
footprints in nearly half of the CPU2006 integer benchmarks.

We first look at instruction cache request rates and in-
struction cache miss rates to see whether we can explain the
observation we made in Figure 7 that 64-bit mode (versus
32-bit mode) does not place added pressure on the pipeline
front-end.

Figure 8 and Figure 9 show comparisons of the instruction
cache request rate and the instruction cache miss rate in these
two modes, respectively.

Instruction cache request rate increase:

64-bit vs. 32-bit 
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Fig. 8. The instruction cache request rate observed in 64-bit mode increases
by 14% on average versus that in 32-bit mode across the CPU2006 integer
benchmarks.

Although the relative difference of instruction cache miss
rates between these two modes is very high (on average, an
83% increase from 32-bit mode to 64-bit mode across these
benchmarks), the instruction cache miss rate is very small in

Instruction cache miss rate: 64-bit vs. 32-bit 
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Fig. 9. The instruction cache miss rates observed in both 64-bit mode and
32-bit mode are very small for all the CPU2006 integer benchmarks. Note
that the Y axis is the number of misses per 1,000 retired instructions.

both modes for all the CPU2006 integer benchmarks. This fact
can help to explain the phenomenon we observed in Figure 7,
which would otherwise suggest 64-bit mode had a higher
dispatch stall rate because of its higher instruction cache miss
rate.

Figure 10 and Figure 11 show comparisons of the data cache
request rate and the data cache miss rate between these two
modes, respectively.

Data cache request rate decrease:

64-bit vs. 32-bit
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Fig. 10. The data cache request rate observed in 64-bit mode decreases
by 28% on average versus that in 64-bit mode across the CPU2006 integer
benchmarks.

An across-the-board decrease in the data cache request rate
in 64-bit mode (as observed in Figure 10) illustrates the power
of having more registers available for the compiler in 64-bit
mode to reduce the number of memory accesses.

However, the significant increase in the data cache miss rate
when moving from 32-bit mode to 64-bit mode indicates that
doubling the size of pointer and long data types does have an
adverse effect on the data cache behavior. Coupled with the

124

Authorized licensed use limited to: Northeastern University. Downloaded on April 20, 2009 at 18:10 from IEEE Xplore.  Restrictions apply.



Data cache miss rate: 64-bit vs. 32-bit 
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Fig. 11. The data cache miss rate observed in 64-bit mode increases
significantly (nearly 40% on average) versus that in 32-bit mode. Note that
the Y axis is the number of misses per 1,000 retired instructions.

fact that the absolute value of the data cache miss rates for
some benchmarks (e.g., mcf and xalancbmk) is already quite
high in 32-bit mode, these benchmarks take a big performance
hit when moving to 64-bit mode.

Again the benchmark libquantum is an interesting case since
the data cache miss rate in 64-bit mode is more than doubling
the data cache miss rate in 32-bit mode, and both miss rates are
quite significant. Even so, the performance of this benchmark
is 35% better in 64-bit mode than in 32-bit mode. We will
investigate the program characteristics of this benchmark in
Section IV-C to better explain this phenomenon.

Memory controller utilization: 64-bit vs. 32-bit 
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Fig. 12. The memory controller utilization observed in 64-bit mode is
nearly 20% higher than that in 32-bit mode. Note that the maximum available
memory controller bandwidth on the experimental system was 6.4GB/s and
the memory controller utilization was calculated by dividing the observed
memory bandwidth by this maximum bandwidth.

Figure 12 gives the overall average memory controller uti-
lization experienced during the program lifetime. Comparing
Figure 12 and Figure 1, we can see that applications that

have higher memory utilization are more likely to suffer
performance degradation when moving to 64 bits. Again,
libquantum is an exception to this general observation. Even
if it commands the highest memory controller utilization in
both 32-bit and 64-bit modes, and even if it has 25% greater
utilization of the available memory controller bandwidth in
64-bit mode than in 32-bit mode, it still obtains a boost in
performance by more than 35% by moving to 64 bits.

IV. INDIVIDUAL BENCHMARK PERFORMANCE
CHARACTERIZATION

In this section we focus our analysis on five selected
benchmarks from this suite: mcf, hmmer, libquantum, h264ref,
and xalancbmk. These five benchmarks showed significant
performance differences between 64-bit mode and 32-bit mode
on our system, as presented in Table I. Three of them (hmmer,
libquantum and h264ref) performed better in 64-bit mode, and
two (mcf and xalancbmk) performed better in 32-bit mode.

A. mcf

mcf is derived from a program used for single-depot ve-
hicle scheduling in public mass transportation. As shown in
Figure 4, mcf has a much larger memory footprint in 64-bit
mode compared to that in 32-bit mode. mcf has two key data
structures, both of which include many elements using the long
data type and the pointer data type. The sizes of long and
pointer data types are doubled in 64-bit mode. As a result,
these two key data structures are much bigger in 64-bit, as
shown in Table II.

struct name 32-bit size 64-bit size number of live instances at
run time

node t 56 bytes 104 bytes 50275
act t 32 bytes 64 bytes >27 million

TABLE II
KEY DATA STRUCTURES IN MCF ARE SIGNIFICANTLY BIGGER IN 64-BIT

MODE THAN IN 32-BIT MODE.

The consequence is evident in the memory footprint, the
data cache miss and the memory controller utilization shown
in Figure 4, Figure 11, and Figure 12, respectively.

B. hmmer

hmmer is an implementation of profile HMM (Hidden
Markov models) software for protein sequence analysis. In
both modes, more than 97% of runtime is spent in a single
function. The hottest loop in this function consumes more
than half of the function’s runtime (line 68 of the function
fast algorithm.c.) Inside this hot loop, elements from
16 different arrays are accessed and therefore this loop places
a great amount of pressure on register allocation. This helps
to explain why 64-bit code performs much better than 32-bit
code.

We can observe that 64-bit code obtains both decreased
dynamic instruction count and lower IPC in Figure 5 and
Figure 6, respectively.
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C. libquantum

libquantum is a library for the simulation of a quantum
computer. The reason this benchmark is so much faster in 64-
bit mode is because it uses 64-bit integer arithmetic intensively
in its algorithm. In the 64-bit mode of x86-64 architecture, the
64-bit arithmetic operations are performed directly in hard-
ware, whereas in 32-bit mode, no 64-bit arithmetic operations
are supported directly in hardware and thus a single 64-bit
arithmetic operation has to be implemented with multiple 32-
bit arithmetic operations.

The effect of 64-bit arithmetic support in 64-bit mode is
evident in the significant decrease of dynamic instruction count
in 64-bit mode, as shown in Figure 5. The dynamic instruction
count is 54% smaller in 64-bit mode than in 32-bit mode. This
also explains why both the dispatch stall rate in Figure 7 and
the data cache miss rate in Figure 11 seem to indicate that this
benchmark will suffer a significant performance degradation
in 64-bit mode, whereas the results turn out otherwise.

D. h264ref

h264ref is a reference implementation of the H.264/AVC
video compression standard [11]. In this benchmark, the loop
starting from line 417 in the file of mv-search.c is the
hottest spot in the code. The loop body is shown in Figure 13.

 for (y = 0; y < 4; y++)

      {

        refptr = PelYline_11 (ref_pic, abs_y++, abs_x, img_height, img_width);

        LineSadBlk0 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk0 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk0 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk0 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk1 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk1 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk1 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk1 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk2 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk2 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk2 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk2 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk3 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk3 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk3 += byte_abs [*refptr++ - *orgptr++];

        LineSadBlk3 += byte_abs [*refptr++ - *orgptr++];

      }

Fig. 13. The body of the hottest loop in the benchmark of h264ref

The interesting thing to note here is that the loop body
calls the function “PelYline 11”. “PelYline 11” is a function
pointer that is set dynamically at run-time, so this function call
cannot be inlined by the compiler. Function calls are much
faster in 64-bit mode since the calling convention allows up
to 8 arguments to be passed through registers (because of the
availability of additional registers). In contrast, arguments are
passed through the stack in 32-bit mode. As a result, there
are more instructions and more memory accesses in the 32-bit
version of h264ref, causing about a 2x slowdown for this loop.

Additional registers also help to minimize the number of
spills in 64-bit code in this and some other hot spots. The
result is a 10% drop in the dynamic instruction count shown

in Figure 5 and a 23% drop in the number of data cache
accesses in the 64-bit mode shown in Figure 10.

E. xalancbmk

xalancbmk is a XSLT processor for rendering XML docu-
ments into other types such as HTML. The parsing-centered
algorithm used in this benchmark makes intensive usage of
linked list data structures and does intensive pointer chasing.
Several heavily used classes have almost all (or all) of their
data elements stored as pointers. The doubling of the size of
the pointer data type in 64-bit mode introduces a performance
hit, which is evident in the runtime memory footprint shown
in Figure 4 and the data cache request rate shown in Figure 10.

V. ANALYSIS SUMMARY AND COMPARISON WITH
CPU2000

In this section we first summarize the analysis of the five
benchmarks as presented in Section IV. We then compare the
performance difference of CPU2000 [12] integer benchmarks
between 32-bit and 64-bit modes.

Table III shows some key performance metrics (32-bit vs.
64-bit differences) of these five CPU2006 integer benchmarks
and a summary of first-order cause that leads to these observed
performance differences. Our analysis demonstrates some of
the major advantages and pitfalls of the 64-bit computing on
x86-64 architecture.

The common traits of these programs that suggest the
program can benefit most from x86-64 64-bit mode are: (1)
Use of 64-bit integer arithmetic; (2) Presence of loop bodies
that require more than a few registers (note that loop unrolling
as a common compiler optimization that can also increase
register pressure); (3) Many calls to small functions that can
be economically inlined.

The major traits of these programs that suggest potential
pitfalls for x86-64 64-bit mode are: (1) Memory intensive
applications; especially those that have already experienced a
high data cache miss rate in a 32-bit environment; (2) Intensive
use of long and pointer data types in terms of the amount of
memory allocated for such data types and the frequency of
their access.

Figure 14 shows a performance comparison of the CPU2000
integer benchmarks as run in 64-bit mode versus in 32-bit
mode (CPU2000 is the previous generation of SPEC CPU
suite.) The experiment was carried out on the same experimen-
tal system as described in Section II. The compiler utilized was
also GCC 4.1.1. It is interesting to note that for the CPU2000
integer benchmarks, the performance in 32-bit mode is very
close to the performance in 64-bit mode (only lags 0.46%
on average.) This is largely due to a single benchmark (mcf)
which runs 59% faster in 32-bit mode than in 64-bit mode.
In the contrast, CPU2006 revision of mcf obtained “only” a
26% performance advantage when running in 32-bit mode, as
shown in Figure 1.

The reason for the smaller performance gap when moving
from CPU2000 to CPU2006 is that in the CPU2006 revision
of mcf, some fields of the hot data structures node t and
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Benchmark Run time increase Mem footprint in-
crease

Dynamic inst count
decrease

Dcache req rate in-
crease

Cause of performance differ-
ence

mcf 26.35% 100.12% 5.74% 33.40%
Larger memory footprint due to
use of long and pointer data
types in 64-bit mode.

hmmer -34.34% 9.84% 8.72% 15.80% More registers available in 64-
bit mode.

libquantum -35.38% -31.44% 53.71% 62.50% Native 64-bit integer arithmetic
in 64-bit mode.

h264ref -35.35% 5.73% 9.96% 22.94%
Faster calling convention (be-
cause of more registers) in 64-
bit mode.

xalancbmk 13.65% 33.87% 7.60% 28.32% Larger memory footprint due to
pointers in 64-bit mode.

TABLE III
PERFORMANCE DIFFERENCE OF FIVE SPEC CPU2006 INTEGER BENCHMARKS BETWEEN 64-BIT MODE AND 32-BIT MODE (64-BIT MODE RELATIVE TO

32-BIT MODE) IN FOUR METRICS AS WELL AS THE FIRST-ORDER REASONS FOR THESE DIFFERENCES

Speedup of CPU2000 Int: 64-bit mode vs. 32-bit mode
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Fig. 14. Speedup of SPEC CPU2000 integer benchmarks running in 64-bit
mode vs. in 32-bit mode of x86-64 architecture

arc t (as shown in Section II) were changed from ‘long” to
“int”. As a result, the memory footprint in 64-bit was reduced,
which consequently reduced the performance gap between 64-
bit mode and 32-bit mode. This may suggest one way to
restructure applications when porting to a 64-bit environment.

VI. CONCLUSIONS

In this paper, we report and analyze the performance dif-
ferences observed between the 64-bit and 32-bit modes of the
x86-64 architecture. To drive this study, we used the SPEC
CPU2006 integer benchmarks. We presented hardware counter
data that helps to shed light on the program characteristics that
can be exploited by these two modes. We further analyze 5
benchmarks to find the common program traits that benefit
one mode over the other. Our analysis data can be utilized
by developers and performance engineers to optimize their
programs to best exploit the advantages of x86-64 and avoid
the potential pitfalls.

In the future, we would like to extend our analysis to the
floating point benchmarks of the SPEC CPU2006 suite and
some real-world server and desktop applications. Also, we
would like to investigate some compiler optimizations that can
help mitigate the problems encountered by these benchmarks
and applications when running in 64-bit mode.
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