
The Dynamics of Backfilling: Solving the Mystery
of Why Increased Inaccuracy May Help

Dan Tsafrir∗ Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israel

Abstract— Parallel job scheduling with backfilling requires
users to provide runtime estimates, used by the scheduler to
better pack the jobs. Studies of the impact of such estimateson
performance have modeled them using a “badness factor”f ≥ 0
in an attempt to capture their inaccuracy (given a runtime r, the
estimate is uniformly distributed in [r, (f + 1) · r]). Surprisingly,
inaccurate estimates (f > 0) yielded better performance than ac-
curate ones (f = 0). We explain this by a “heel and toe” dynamics
that, with f > 0, cause backfilling to approximate shortest-job first
scheduling. We further find the effect of systematically increasing
f is V-shaped: average wait time and slowdown initially drop,
only to rise again later on. This happens because higherfs lead
to increased randomness (more long jobs appear as short and
vice versa) and to backfilling of longer jobs, overshadowingthe
“heel and toe” dynamics and limiting the preference for short
jobs. Finally, we show that the badness factor fails to capture the
badness of real estimates, because these are modal and bounded by
a maximal value. Therefore thef model is actually inappropriate
for studying the effect of the inaccuracy of estimates.

I. I NTRODUCTION

The workload on a parallel supercomputer consists of a
sequence of jobs submitted for execution. These jobs are
characterized by their arrival time, size (number of processors
they need), runtime, and a runtime estimate provided by the
user to aid the scheduler in planing ahead. Such estimates are
known to be inaccurate, a fact that prompted many researchers
to check their actual effect on the scheduling. Much of this
research used the “f -model”, in which estimates are assumed to
be some multiple of the real runtime, and led to some surprising
conclusions, such as the claim that inaccurate estimates result in
improved performance. We explain this behavior, and show that
this model is actually inappropriate for such research, as it does
not reflect salient features of user estimates in real workloads.
But we also show that a relatively minor modification improves
the model and enables realistic evaluations.

Backfilling: The EASY backfilling algorithm [13] is currently
the most commonly used method for parallel job scheduling,
supported by all major production schedulers, including IBM’s
LoadLeveler, Cluster Resources’ Moab and Maui, Platform’s
LSF, Altair’s OpenPBS and PBS-Pro, and Sun’s GridEngine
[4]. Upon submittal, users specify the number of processors
required by their jobs, and these are placed in a first-come
first-serve (FCFS) queue. When enough free processors become
available to fill the needs of the first queued job, it is allocated
exclusive use of these processors and runs to completion. The

∗Current affiliation: IBM T. J. Watson Research Center.

FCFS FCFS + Backfilling

P
ro

ce
ss

or
s

Future Time

4
3

4
3

2

1

2

1

Fig. 1. EASY backfilling reduces fragmentation, e.g. by running job4
that is short enough to terminate before the reservation forjob 3.

problem with this approach is that many processors may be left
idle as they accumulate. To solve this problem, the scheduler
makes areservationfor the first queued job, for the earliest
future time at which enough processors are expected to be
available. The scheduler then continues to scan the queue for
smaller jobs (requiring less processors) that can be started
immediately without interfering with the reservation. Theaction
of selecting such jobs for execution before their time is called
backfilling. This is illustrated in Fig. 1.

User Runtime Estimates: Note that backfilling requires the
scheduler to know in advance how long each job will run:
to compute the reservation for the longest-waiting job (need
to know the runtimes of job 1 and job 2 to determine when
their processors will be freed), and to know if smaller jobs
are short enough to be backfilled (need to make sure job 4
will terminate before the reservation of job 3). Therefore,
EASY and other schedulers require users to provide a runtime
estimate for all submitted jobs [13]. Jobs that exceed their
estimates are killed, so as not to violate subsequent reservations.
The assumption was that users would be motivated to provide
accurate estimates, because (1) jobs would have a better chance
to backfill if their estimates are tight, but (2) would be killed
if they are too short. Nevertheless, user estimates are highly
inaccurate [6], [12], [23].

Modeling Inaccuracy: To study the sensitivity of backfilling
to poor estimates, Feitelson and Mu’alem Weil proposed the “f -
model” [6]. Given a jobJ with runtimer, the model postulates
that its estimate is chosen at random from a uniform distribution
in the range[r, (f + 1) · r], wheref ≥ 0 is a predetermined
constant (f is non-negative because jobs are killed if they try
to run beyond their estimate). They termedf the “badness
factor” because estimates become increasingly inaccurateasf
grows, with f = 0 indicating completely accurate estimates.
The f -model has been used when simulating workloads that
lacked estimates data [26], [8], but much more importantly,the

SDSC
w

ai
t [

m
in

]

280

320

360
real

realX2

perfect

perfectX2

CTC

17

20

23
KTH

85

100

115
BLUE

100

115

130
bo

un
de

d
sl

ow
do

w
n

70

85

100

3

4

5

65

80

95

25

30

35

Fig. 2. Average performance usually improves if replacing user
estimates (“real”) by actual runtimes (“perfect”;f=0). But in both
cases, making estimates less accurate (by doubling) tends to help.

model and its variants have been extensively used to study the
impact of inaccurate estimates on backfilling algorithms [20],
[14], [18], [27], [16], [9]. One simple variant of interest is the
“deterministicf -model”, in which there is no randomness and
estimates are a direct multiple of the runtime and the badness
factor plus one: (f + 1) · r [28], [1], [3].

The Inaccuracy Mystery: A very surprising result repeatedly
reported by most of the aforementioned papers was that, in
terms of performance, inaccurate estimates are usually prefer-
able over accurate ones. This is illustrated in Fig. 2 that shows
average wait time and slowdown of jobs when simulating
the run of four different workloads with various estimates.
Evidently, performance improves when deliberately making
estimates less accurate by doubling them. This is true both
when doubling perfectly accurate estimates and when doubling
the original inaccurate user estimates [28], [14].

While there’s wide agreement that making estimates less ac-
curate by multiplying them by some factor is usually beneficial,
the effect of the chosenf is less obvious. This is illustrated in
Fig. 3. Faced with (usually a small subset of) such results,
researchers claimed that the improvement in performance is
largely “insensitive” tof [28], [26], [3], [9]. Further, England
et al. suggested a new “robustness” metric for the evaluation of
computer systems, and claimed (in a case-study demonstrating
the usefulness of their metric) that [3]

ROBUSTNESSCLAIM

“Our results support those of a previous work and also
indicate that backfilling is robust to inaccurate run time es-
timates in general. It seems that, with respect to backfilling,
what the scheduler doesn’t know won’t hurt it.”

The Failure to Explain the Mystery: The fact nonzero bad-
ness (f > 0) usually improves performance was unanimously
explained by what we call the“holes argument”[6], [28], [14],
[1], [18], as articulated by Chiang et al. [1]:

HOLES ARGUMENT

“We note that for largef (or when multiplying [real]
estimates by two), jobs with long runtimes can have very
large runtime overestimation, which leaves larger ’holes’
for backfilling shorter jobs. As a result, average slowdown
and wait may be lower”

At the same time, the observed “insensitivity” of perfor-
mance to the exact badness value forf > 0, was explained
by what we call the“balance argument”[28], [26], [27], [9],
as articulated by Zhang et al. [26]:

BALANCE ARGUMENT

“We can understand why backfilling is not that sensitive
to the estimated execution time by the following reasoning.
On average, overestimation impacts both the jobs that
are running and the jobs that are waiting. The scheduler
computes a later finish time for the running jobs, creating
larger holes in the schedule. The larger holes can then be
used to accommodate waiting jobs that have overestimated
execution times. The probability of finding a backfilling can-
didate effectively does not change with the overestimation.”

For example, doubling the lengths of all the jobs in Fig. 1
only means the X-axis is scaled by a factor of two, but doesn’t
change anything regarding the backfilling decision: indeed, after
doubling, job 4 looks twice as long in the eyes of the scheduler,
but the same applies to the 2-time-units-hole opened by job 2,
so job 4 can still backfill.

While both arguments seemingly make sense, one obvious
problem with them is that they are contradictory: If the balance-
argument is correct, then there is no benefit in opening those
“larger holes” as suggested by the holes-argument, because
backfilling candidates would become proportionally largerand
cancel the effect. On the other hand, the “holes argument”
implies a performance improvement that is proportional tof ,
in contrast to the balance-argument rationale. Regardlessof the
contradiction, both arguments fail to explain the results shown
in Fig. 3, for example the noisiness of BLUE (performance is
actually quite sensitive tof), or the opposite trends observed
in SDSC/wait vs. CTC/wait (CTC/wait supports the holes-
argument while SDSC/wait contradicts it; both contradict the
balance-argument).

Failure to Capture Users’ “Badness”: The role of a model
is, among other things, to truthfully reflect reality. In this
respect, according to Fig. 3, the popularf -model fails: It
yields unrealistically improved performance results thatare
consistently better than those obtained when real user estimates
are utilized (the only exception is very smallf values in
CTC/wait). Surprisingly, this issue has usually been brushed
aside: In contrast to the other key parameters in parallel
workloads (runtimes, interarrival times, number of processors)
that received a lot of attention in terms of realistic modeling,
the dominant estimate model has been thef -model or simply
using actual runtimes instead of estimates (f=0) [11], [19],
[25], [5], [17]. We conjecture that this can be attributed, to some
extent, to the perception that estimates are unimportant because
“inaccuracy improves performance” and “what the scheduler
doesn’t know won’t hurt it”.

Preview: In this paper we try to solve all the questions raised
above: Why are result so sensitive tof , as seen in Fig. 3?
Why does multiplying the estimate by a factor usually help?

 280

 300

 320

 340

 360

 0 2 4 6 8 10

SDSC

w
ai

t [
m

in
ut

es
]

 16

 18

 20

 22

 24

 0 2 4 6 8 10

CTC

w
ai

t [
m

in
ut

es
]

 90
 95

 100
 105
 110
 115

 0 2 4 6 8 10

KTH

w
ai

t [
m

in
ut

es
]

 90

 100

 110

 120

 130

 0 2 4 6 8 10

BLUE

w
ai

t [
m

in
ut

es
]

 70
 75
 80
 85
 90
 95

 0 2 4 6 8 10

f (badness factor)

b.
 s

lo
w

do
w

n

real
f=0

random
deterministic

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10

f (badness factor)

b.
 s

lo
w

do
w

n

 50

 60

 70

 80

 90

 0 2 4 6 8 10

f (badness factor)

b.
 s

lo
w

do
w

n

 20

 25

 30

 35

 40

 0 2 4 6 8 10

f (badness factor)

b.
 s

lo
w

do
w

n

Fig. 3. Performance as a function off for the random and the deterministicf -model, with a resolution of 0.1 (that is,f = 0, 1

10
, 2

10
, 3

10
, ..., 10).

Except for SDSC, most results associated with positivef values are better (smaller) than the performance associated with f=0 (“real” corresponds
to real user estimates).

Log file CPUs Jobs Duration Util
CTC-SP2-1996-1.1-cln 512 77,222 6/96–5/97 56%
KTH-SP2-1996-1 100 28,490 9/96–8/97 69%
SDSC-SP2-1998-2.1-cln 128 59,725 4/98–4/00 84%
SDSC-BLUE-2000-2.1-cln 1,152 243,314 4/00–6/03 76%

TABLE I

The trace files used to drive the simulations.

Can we make the model more realistic? To do so, we perform
a detailed study of what really happens whenf grows, both in
terms of performance (Section III) and in terms of backfilling
activity (Section IV). This leads to the heel-and-toe dynamics,
which explain the improved performance as resulting from a
shift in system behavior towards SJF scheduling (Section V).
We then show why this breaks down with higherf values
(Section VI). The conclusion is that thef -model is not very
realistic, and a more precise model like we propose in [23]
should be used; however, thef -model can be improved by
imposing realistic restrictions on the estimates (SectionVII).
Finally, our conclusions are presented in Section VIII.

II. M ETHODOLOGY

The experiments are based on an event-based simulation of
EASY scheduling, where events are arrivals and terminations.
Upon arrival, the scheduler is informed of the number of
processors the job needs and its estimated runtime. It can then
start the job’s simulated execution or place it in a queue. Upon
a job termination, the scheduler is notified and can schedule
other queued jobs on the freed processors. Job runtimes are
part of the simulation input, but are not given to the scheduler.

Tab. I lists the four traces we used to drive the simulations.
These are available through the Parallel Workload Archive
[15]. As recommended, we used the sanitized version of the
traces [7], [24]. Since these traces span the past decade, were
generated at different sites, on machines with different sizes,
and reflect different load conditions, we have reason to believe
consistent results obtained in this paper are representative. The
traces are simulated using the exact data provided, with the

possible modification of replacing real user estimates withthose
generated by thef -model, as noted.

Scheduling performance is measured using averagewait time
and bounded slowdown. The wait time is between a job’s
submittal and its start time. Slowdown is response time (wait-
time plus runtime) normalized by runtime. Bounded slowdown
eliminates the emphasis on very short jobs (e.g. jobs with
zero runtime) due to having the runtime in the denominator.
A commonly used runtime lower-bound of 10 seconds was
set, yielding the formula:max

(

1 , w+r
max(10,r)

)

, wherew and
r are the job’s wait and run times in seconds, respectively. To
reduce warmup effects, the first 1% of terminated jobs were
not included in the results; to reduce cooldown effects, jobs
terminating after the last arrival were also not included [10].

Finally, we have chosenf ’s minimal value to be zero,
because this seems to be best aligned with the perception that
“zero badness” implies perfect accuracy. However, due to the
multiplicative nature of this factor, it is often more convenient
to useF = f + 1. With this, the random model uniformly
draws an estimate of a job with runtimer from [r, r · F], and
the deterministic model sets the estimate to ber·F . Note that in
all figures where badness is shown along the X-axis, the random
F -model is plotted against the deterministicF/2-model, such
that both have the same mean.

III. PERFORMANCE AS AFUNCTION OF BADNESS

Statistical Confidence: The first step we take in trying to un-
cover the impact of increased “badness” (= f) on performance
is to expose the trends underlying the very noisy Fig. 3. To this
end we repeat each simulation 100 times with different seeds,
and plot the mean of the results (“random”) and the and 90%
interval (“90% confidence”, from the 5th percentile to the 95th
percentile). Fig. 4 shows that this turns the initial noisy results
into relatively smooth curves (at the price of performing about
10,000 simulations of scheduling the jobs in each trace).

 260
 280
 300
 320
 340
 360

 0 2 4 6 8 10

SDSC

w
ai

t [
m

in
ut

es
]

 16

 18

 20

 22

 24

 0 2 4 6 8 10

CTC

 90
 95

 100
 105
 110
 115

 0 2 4 6 8 10

KTH

 90

 100

 110

 120

 130

 0 2 4 6 8 10

BLUE

 65
 70
 75
 80
 85
 90
 95

 0 2 4 6 8 10

f (badness factor)

b.
 s

lo
w

do
w

n

real
f=0

random
90% confidence

deterministic 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10
 50

 60

 70

 80

 90

 0 2 4 6 8 10
 20

 25

 30

 35

 40

 0 2 4 6 8 10

Fig. 4. Statistics from repeated simulations expose clearer performance trends (compare with Fig. 3).

V Trend vs. L Trend: Fig. 4 reveals two trends:2 The first
is V shaped (most pronounced for SDSC), and the second is
L shaped (CTC). In both cases, random performance curves
initially drop (improve) for smallf values. Then, the curves
either asymptotically converge to some value (L shape), or the
trend is first reversed and only then converges (V shape). This
general tendency continues to largerf values: BLUE is actually
V shaped in both metrics (its curves are quite similar to that
of SDSC when changing theX scale tof ∈ [0, 100] and
bigger); KTH/wait and KTH/slowdown are L and V shaped,
respectively. The deterministic model obviously stays noisy
(only one sample perf), but it is evident that its curves are
usually found in the proximity of the lower (better) performance
bound of the random model.

If grouping SDSC and BLUE (V shapes only) and comparing
them to CTC and KTH (some L shapes), then Tab. I reveals
they can be characterized as having higher and lower load,
respectively (in this paper the term “load” means “offered
load” or “utilization”). This classification was corroborated by
simulating all the logs under “high” and “low” load conditions,
achieved by artificially multiplying all arrival times by a con-
stant (e.g. if BLUE’s original load is 76%, we can raise it to
80% by multiplying all arrival times by7680).

FINDING #1

Expressed in terms of means of multiple simulations, perfor-
mance is either V or L shaped. Higher or lower average load
implies a tendency towards a V or L shape, respectively. The
deterministic model is usually closer to the best performance
results of the random model.

IV. BACKFILLING AS A FUNCTION OF BADNESS

Holes vs. Balance:Our goal is to understand the reason for
the system behavior as reported in Finding 1. A reasonable
first step is to validate or disprove the (contradicting) claims
underlying the “holes” and “balance” arguments. Though we
already know both fail to provide a full explanation to the

2While not shown due to space limitations, we have also conducted simu-
lations with biggerf values and the results reported here are partly based on
these additional experiments.

observed performance trends (e.g. the V shape), determining
which argument (if any) better describes the effect of increased
f on backfilling is essential. Recall the holes argument implies
backfilling activity intensifies withf , whereas the balance
argument claims the effect of bigger holes evens out by backfill
candidates appearing proportionally longer.

Results: Fig. 5 shows the percent of jobs that were backfilled,
as a function off , along with their average runtimes. The
trends are consistent and the confidence intervals are tight.
Backfilling rates clearly increase withf : The exact numbers are
workload dependent in that higher loads (Tab. I) imply higher
rates. But when simulating the logs under equal high/low load
conditions (as in Sec. III), the rates become remarkably similar.
The runtimes of backfilled jobs also follow the same pattern,
and so do their sizes (not shown).

FINDING #2

In accordance to the holes argument and in contrast to the
balance argument, biggerf implies more jobs that enjoy
backfilling. On average, these jobs are longer and wider.

A possible interpretation of this finding is as support for
the L-shaped performance curves (CTC, Fig. 4). This is based
on the notion that jobs can be partitioned into “light” or
“heavy” based on whether their characteristics allow them to
be backfilled or not, and it seemed that biggerf simply means
that more jobs become “light” and can enjoy better service.
However, as we will show below, our finding doesn’t just mean
“more” jobs. It can also meandifferent jobs, and specifically
longer jobs, possibly at the expense of shorter ones.

V. THE HEEL-AND-TOE DYNAMICS

Heel-and-Toe Hypothesis:The question that follows Finding
2 is why is it so? What’s wrong with the balance argument?
Why isn’t the effect of bigger holes canceled by the backfill
candidates that are proportionally longer? After reexamining
the backfilling rules, we came up with a possible explanation,
as illustrated in Fig. 6. To simplify, assume all estimates are
exactly double the runtime (F=2 under the deterministic model
as defined in Sec. II). Based on the information available to
the scheduler atT0 (time 0), it appears the earliest time for

 66
 68
 70
 72
 74
 76

 0 2 4 6 8 10

SDSC

ba
ck

fil
l r

at
e

[%
]

 25
 26
 27
 28
 29
 30

 0 2 4 6 8 10

CTC

 58
 60
 62
 64
 66
 68

 0 2 4 6 8 10

KTH

 65

 70

 75

 80

 0 2 4 6 8 10

BLUE

 80

 85

 90

 95

 100

 0 2 4 6 8 10

f (badness factor)

ru
nt

im
e

[m
in

ut
es

]

real
f=0

random
90% confidence

deterministic
 155

 160

 165

 170

 175

 0 2 4 6 8 10
 100

 105

 110

 115

 0 2 4 6 8 10
 45

 50

 55

 60

 0 2 4 6 8 10

Fig. 5. The percent of backfilled jobs and their average runtimes monotonically increase withf . In all cases, the relative increase is roughly
similar, e.g. the rates/runtimes associated withf=10 are 10-20% bigger than that off=0.

J3 (job 3) to start isT12, even though thereal earliest start
time is actuallyT6. Thus, the scheduler makes a reservation
on J3’s behalf for T12 and can only backfill jobs that honor
this reservation. AtT4, J2 terminates. AsJ1 is still running,
nothing has changed with respect toJ3’s reservation, and so
the scheduler scans the wait queue in search of appropriate
candidates for backfilling.J4 (the first backfill candidate under
FCFS) fits the gap betweenT4 and the reservation (T12) and so
it is backfilled, effectively pushing back the real earliesttime
at whichJ3 could have started fromT6 to T8.

SJFness: This “heel-and-toe” scenario, of repeatedly pushing
away the earliest starting point of the first queued job, step
by step, may continue untilT12 is reached. During this time,
the window between the current time and the reservation time
is continuously shortened, such that waiting jobs that fit this
open gap get shorter and shorter, effectively nudging the system
towards Shortest-Job First (SJF) scheduling. (Note that the
initial open gap can be very short to begin with.) And so,
if the heel-and-toe dynamic does in fact occur, this limited
form of “SJFness” contributes to the performance improvement
reported in Finding 1, namely, the first (descending) part of
the V-curves, and the L-curves in their entirety. This effect is
directly quantified in the next section.

Tendency towards SJFness with positivef was also observed
(but not explained) by Zotkin and Keleher [28], which con-
ducted an “off-line” simulation of what happens whenall the
jobs in a trace arrive at the same exact time instance. They
found that, in comparison tof=0, shorter jobs leave the system
at a faster rate when estimates are set to be five times the actual
runtime. The heel-and-toe dynamics explain this phenomenon.

Verifying Heel-and-Toe Occurs: Let Jh be the first queued
job (meaningJh isn’t backfilled, but rather, it waits for its
turn, becomes first, and gets a reservation). LetSh denote the
real shadow timeof Jh, defined to beJh’s (hypothetical) start-
time, if all estimates suddenly become completely accurate. For
example, the initial real shadow ofJ3 in Fig. 6 is T6. During
the timeJh is first, we say that a backfill operation iswild if
it causesSh to be delayed, or that it’smild, otherwise. All the
backfill operations in Fig. 6 are wild, because all resulted in

a change of the real shadow. By definition, showing that wild
backfilling happens means proving that heel-and-toe dynamics
indeed occur. Fortunately, detecting wild backfilling is easy
in a simulation: We computeSh by traversing the run-list in
(real) termination order and finding the earliest time in which
enough free processor accumulate to satisfyJh. By doing this
before/after a backfill operation, we can tell if the operation is
wild (Sh changed) or mild (stayed the same).

Fig. 7 clarifies that the heel-and-toe dynamic is not just
hypothetical, e.g. withf=10, 2-5% of the jobs are wildly
backfilled. The X-axis doesn’t start at zero, because there can be
no wild backfilling with perfect estimates. The consequences
of wild backfilling are delayedjobs that suffer from at least
one wild backfill operation while they are at the head of the
queue (asJ3 in Fig. 6). Fig. 8 (top) shows that around 1% of
the jobs are delayed. Any performance improvement obtained
by the f -model is at the expense of these jobs. The bottom
of Fig. 8 shows the average delay duration. This is the elapsed
time betweenJh’s initial real shadow and its eventual start time
(the “stolen” time in Fig. 6), and it grows withf . The average
number of timesSh is delayed also grows withf (not shown).

Holes vs. Balance Revisited:Our findings indicate that the
seemingly contradictory “balance” and “holes” arguments can
in fact be reconciled: The performance improvement attributed
to positivefs is not just because of wider holes in the schedule
that allow for more backfilling (in accordance to the “holes”
argument), because backfill candidates are indeed widened pro-
portionally (in accordance to the “balance argument”). Rather,
it is the result of a heel-and-toe effect that manages to keepthe
holes open by backfilling shorter jobs, which repeatedly delay
the execution of the first queued job and lead to an SJF-like
schedule.

FINDING #3

The heel-and-toe dynamic (1) is verified to occur in practice,
(2) reconciles between the balance and holes arguments, and
(3) leads to a limited form of SJFness. Thus, it explains the
performance improvement due to positivef values.

Let us now explain why performance can also become worse.

Time

2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 120

N
od

es
W

ai
tin

g

3 3 3 3
1

2
1

2 4 2 4
1 5

2
1 5

4 6

6
5 4

6
5

6

Fig. 6. Illustrating heel-and-toe. Job numbers indicate arrival order. Job estimates are exactly double their runtime (F=2). The left portion of jobs
(green/dark) indicates their real runtimes. Due to the doubling, the scheduler views jobs as twice as long (right portion; yellow/bright). The bottom
arrows show the progress of time, whereas the top black arrows show the earliest time at which job 3 would have been started, had real runtimes
been known (at that particular point in time). The thief’s width shows the amount of “stolen” time, at the expense of job 3.

 1

 2

 3

 4

 5

 10 8 6 4 2 0.1

SDSC

w
ild

 b
ac

kf
ill

 [%
]

 0.5

 1

 1.5

 2

 2.5

 10 8 6 4 2 0.1

CTC

 1

 2

 3

 4

 5

 10 8 6 4 2 0.1

KTH

 1
 1.5

 2
 2.5

 3
 3.5

 10 8 6 4 2 0.1

BLUE

 50
 100
 150
 200
 250
 300
 350

 10 8 6 4 2 0.1

f (badness factor)

ru
nt

im
e

[m
in

ut
es

]

real
random

90% confidence
deterministic

 150

 200

 250

 300

 350

 10 8 6 4 2 0.1
 100
 150
 200
 250
 300
 350

 10 8 6 4 2 0.1
 50

 100
 150
 200
 250
 300
 350

 10 8 6 4 2 0.1

Fig. 7. Existence of wild backfilling demonstrates heel-and-toe dynamics occur. The rate of wild jobs and their average runtimefollow the same
trends as in the general case (Fig. 5).

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 10 8 6 4 2 0.1

SDSC

de
la

ye
d

ra
te

 [%
]

 0.4

 0.5

 0.6

 0.7

 0.8

 10 8 6 4 2 0.1

CTC

 0.6
 0.8

 1
 1.2
 1.4
 1.6

 10 8 6 4 2 0.1

KTH

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 10 8 6 4 2 0.1

BLUE

 0
 50

 100
 150
 200
 250

 10 8 6 4 2 0.1

f (badness factor)

de
la

y
[m

in
ut

es
]

real
random

90% confidence
deterministic

 0

 20

 40

 60

 10 8 6 4 2 0.1
 0

 50

 100

 150

 200

 10 8 6 4 2 0.1
 0

 50

 100

 150

 200

 10 8 6 4 2 0.1

Fig. 8. The percentage of jobs that suffer from wild backfilling (top), and the average delay (bottom). The unique trend observedin BLUE (top) is
also displayed by the other logs if simulating high load conditions as in Sec. III and examining a slightly widerf range; on the other hand, BLUE
becomes like all the others if simulating low load conditions.

VI. COUNTERING THESJFNESS OFHEEL-AND-TOE

We now focus on the second, ascending, part of the V-shaped
performance curves where performance continuously degrades
(Finding 1; Fig. 4). The explanation has two components: the
increasedf , and the resulting amplification of randomness (for
the non-deterministic model). These components increasingly
counteract the SJFness reported earlier.

Increased f : As shown in Fig. 5 (and highlighted in Find-
ing 2), backfilling activity monotonically increases withf ,
while at the same time, the runtime of backfilled jobs becomes
longer. Longer average runtimes wouldn’t be problematic by
themselves, had short jobs nevertheless been prioritized.But
this is not the case. To illustrate why, let us reconsider the
scenario depicted in Fig. 6. Tab. II lists the estimates of jobs at
time T4 (after J2 terminates) for variousF values, as well as

 196
 198
 200
 202
 204
 206

 0 2 4 6 8 10

SDSC

ru
nt

im
e

of
 n

on
-

ba
ck

fil
le

d
[m

in
ut

es
]

 194
 195
 196
 197
 198
 199

 0 2 4 6 8 10

CTC

 210

 215

 220

 225

 230

 0 2 4 6 8 10

KTH

 114
 116
 118
 120
 122
 124
 126

 0 2 4 6 8 10

BLUE

 38

 40

 42

 44

 46

 0 2 4 6 8 10

f (badness factor)

S
JF

ne
ss

 [%
]

real
f=0

random
90% confidence

deterministic
 78

 79

 80

 81

 82

 0 2 4 6 8 10
 48

 50

 52

 54

 0 2 4 6 8 10
 44

 46

 48

 50

 52

 0 2 4 6 8 10

Fig. 9. Average runtime of non-backfilled jobs is usually made shorter when increasingf (top). Average SJFness initially rises, but there’s a quick
trend change as backfilled jobs become longer.

F estimates hole length
J1 J4 J5 J6 at T4

1 6 4 3 2 2
11

3
8 51

3
4 21

3
4

2 12 8 6 4 8

TABLE II

The length of the hole in the schedule and the estimates of jobs in
Fig. 6, for variousF values, at timeT4. In the first row F=1 so

estimates equal runtimes; in subsequent rows estimates areruntimes
multiplied byF . For eachF , the estimate of the first job that fits the

hole appears in bold.

the length of the resulting hole. The last row simply specifies
what is shown in Fig. 6 (F=2). Recall that job indexes indicate
arrival order, used by the scheduler when searching for backfill
candidates. Thus,J4 is the first candidate and since it fits the
existing hole it is chosen for backfilling. However, if the value
of F had been 113 instead of 2 (second row in Tab. II), then the
hole would have been proportionally smaller and the scheduler
would have deemedJ4 as too long for backfilling, favoring
instead the shorterJ5 for execution. IfF was further reduced
to 1 (complete accuracy; first row), thanJ5 would also appear
as too long, effectively makingJ6 (the shortest waiting job) the
only eligible candidate. We can therefore see there’s a subtle
tradeoff here:

FINDING #4

While biggerf means more backfilling (which short jobs
enjoy more than longer ones), the bigger holes do in fact
allow longer jobs to backfill.

This finding is verified in Fig. 9. First, the top row shows the
average runtime of non-backfilled jobs: this usually becomes
shorter with increasedf , suggesting the scheduler indeed makes
“wrong” decisions by forcing shorter jobs to wait and preferring
longer jobs for backfilling (Fig. 5). More important is the
bottom row that directly quantifies the effect: “SJFness” isthe
percent of jobs that are the shortest in the waiting queue at
the time they are chosen to run. Evidently, SJFness intensifies
with very smallf values, only to monotonically drop later on
(perfectly coinciding with our explanation above).

r1 Fr1

range fore1
︷ ︸︸ ︷

r2 Fr2

︸ ︷︷ ︸

range fore2

α
� -

 1

1/2 ⋅ r1/r2

 0
r2/r1 0

P
r[

 e
1

>
 e

2
]

F (badness factor)

Fig. 10. Probability thate1 > e2 when actuallyr1 < r2; see text for
details.

Increased Randomness:The situation gets worse when ran-
domness is introduced, as now, in addition, long jobs can
masquerade as short jobs and vice versa. To illustrate this,let
J1/J2 be two jobs within the wait queue with runtimesr1/r2

and estimatese1/e2 that were generated by the randomf model,
respectively. This is depicted in Fig. 10 (left), assumingr1 < r2

without loss of generality. We are interested inPr (e1 > e2),
that is, the probability the scheduler is erroneously told thatJ1

is longer thanJ2. By conditioning (Bayes’ theorem) this is

Pr (e1 > e2) = Pr (e1 > e2 | e1, e2 ∈ α) · Pr (e1, e2 ∈ α) +

Pr (e1 > e2 | e1, e2 ∈ α) · Pr (e1, e2 ∈ α)

whereα ≡ [r2, F r1] is the intersection of the two ranges from
which e1 and e2 are drawn. The second term in the above
summation is obviously zero (when eithere1 or e2 are outside
α thene1 < e2) and so we are left with

Pr (e1 > e2) =

Pr (e1 > e2 | e1, e2 ∈ α)
| {z }

λ1

· Pr (e1 ∈ α)
| {z }

λ2

· Pr (e2 ∈ α)
| {z }

λ3

If α exists (Fr1 > r2), then λ1 = 1
2 , because it’s simply

the probability one number is bigger than another if both are
uniformly chosen from the same range. (Ifα is degenerate then
λ1 = 0.) As λ2 andλ3 represent standard events in a uniform
setting, we get

 0

 0.2

 0.4

 0.6

 0.8

 1

18
h8h4h2h1h

30
m

15
m5m2m1m

SDSC

time [log scale]

C
D

F

runtime
estimate

Emax

10%

18
h8h4h2h1h

30
m

15
m5m2m1m

CTC

Emax

24%

60
h

15
h4h2h1h

30
m

15
m5m2m1m

KTH

effective Emax
(daytime)

10%

36
h

18
h8h4h2h1h

30
m

15
m5m2m1m

BLUE

effective Emax
(express)

27%

Fig. 11. Cumulative distribution function (CDF) of runtimes and estimates. Unlike runtimes, estimates are modal. Runtime curves appear higher
because runtimes are always shorter than estimates (underestimates jobs are killed).

Pr (e1 > e2) =
1

2
·

Fr1 − r2

Fr1 − r1

·
Fr1 − r2

Fr2 − r2

=
1

2
·

F 2

(F − 1)2
·

r1

r2

+ O

„
1

F

«

thus the error probability is monotonically increasing and
converges to12 ·

r1

r2

whenF goes to infinity (Fig. 10 right).

FINDING #5

Under the random model, the bigger thef , the more it is
probable the scheduler would erroneously view short jobs
as long and vice versa. This explains why SJFness is higher
for the deterministic model (Fig. 9) and hence why the
deterministic model consistently outperforms the random
model (Fig. 4).

VII. M AKING THE MODEL MORE REALISTIC

The Problem: Thef -model isthe dominant model for gener-
ating artificial user runtime estimates and evaluating the impact
of inaccurate user estimates on backfilling algorithms [20],
[28], [14], [1], [18], [27], [16], [3], [9]. Based on thef -
model, researchers have drawn neat conclusions that range from
“performance is independent of accuracy” to “inaccuracy actu-
ally improves performance”. Indeed, when employingartificial
estimates as generated by thef -model, these claims may reflect
certain aspects of the truth, as shown above. However, thereis
a fundamental problem with all the insights that are based on
the f -model:

THE PROBLEM WITH THE f -MODEL

Increased inaccuracy as modeled by largerf values effec-
tively spreadsthe estimates across a larger range. But with
real estimates it’s exactly the opposite! Namely, inaccuracy
manifests itself by more jobs using thesameestimate value.
Thus, conclusions based on the theoreticalf -model might
not apply when real user estimates are involved.

Understanding results that are based on thef -model can
be interesting and important. For example, the heel-and-toe
dynamics turned out to be the reason why, as shown in Fig. 2,
doubling ofreal user estimates improves performance (doubling
is a legitimate scheduling optimization, and there are other
related practical issues [22]). Nevertheless, such understandings
can have only limited applicability to real systems that employ

real user estimates. Importantly, a statement like “inaccuracy
improves performance” is a misleading oversimplification:real
inaccuracy is actually tightly correlated with degraded perfor-
mance, as will be exemplified next.

Modality of Real Estimates: Human users don’t choose es-
timates that are uniformly distributed between the real runtime
and its multiple with some value. Instead, they use arbitrarily
“round” estimates, e.g. 5 minutes, 1 hour, etc. In fact, we found
that about 90% of the jobs repeatedly use the same 20 “round”
values [23]. This modality is reflected in the staircase-like CDF
curves shown in Fig. 11, where each mode corresponds to a
popular estimate. One particular value that is especially popular
is Emax, the maximal estimate allowed. This is a derivative
of the per-site administrative upper bound on runtimes, which
may differ from site to site, but is always enforced. The value
of Emax is typically around 18h; in KTH and BLUE 4h and
2h serve as the “effective”Emax because most jobs were
submitted during daytime or to the interactive/express queues,
respectively.Emax is used by 10-27% of the jobs and is the
most popular in three of the four logs (in SDSC it’s ranked
third). Its immense popularity can probably be attributed to
users who want to “play it safe” and prevent their jobs from
being prematurely killed.

Implications of Modality: Regardless of the reason for
Emax’s popularity, the implications are dire in terms of per-
formance. To understand why, consider an extreme case in
which all jobs useEmax as their estimate. The outcome is
that all backfilling activity, as shown in Fig. 1, completely
stops: The reservation of the first queued job is computed based
on estimated termination times ofcurrently runningjobs, and
these will all occur beforeEmax time, by definition. Hence,
the reservation itself will occur beforeEmax time and therefore
backfilling holes (from the present time until the reservation)
arealwayssmaller thanEmax. Since we assume all estimates
of waiting jobs are exactlyEmax, none of them will fit the
holes in the schedule. Thus scheduling largely reverts to plain
FCFS, which result in a serious performance degradation. (The
only remaining backfill activity is using the “extra” nodes [13]).

Surprisingly, the mere existence (and popularity) ofEmax

is completely overlooked by researchers. For example, Cirne
and Berman conjectured that the apparent connection between
longer runtimes and increased accuracy, shown in Fig. 12,

 0

 0.2

 0.4

 0.6

 0.8

 1

18
h8h4h2h1h

30
m

15
m5m2m1m30
s

10
s

av
g.

 a
cc

ur
ac

y

avg. runtime [log]

SDSC
CTC
KTH

BLUE

Fig. 12. Average accuracy
`

runtime

estimate

´
as a function of runtime. (X-

axis groups jobs to 100 equally-sized bins according to their runtime.)

is because the more a job progresses in its computation, the
grater its chances become to reach successful completion [2].
Such assumptions are unwarranted, as the existence ofEmax

guarantees long jobs to have high accuracy: for example,
assumingEmax is 18h, if a job’s runtime is 17h, then its
estimate must be between 17h–18h and thus at least 94%
accurate. In other words, long jobs are on the right of Fig. 12,
where accuracy is high, while short jobs tend to be on the left,
at lower accuracies.

The peaks in Fig. 12 are due to popular estimates (smaller
thanEmax) and the manyunderestimatedjobs that used them
and are subsequently killed. But many other jobs that use
these popular values are in fact significantlyoverestimated. The
problem is that in a real system the scheduler has no way to
distinguish between such jobs. In contrast, when thef -model
is used, the scheduler actually gets pretty good information. To
clarify, consider a scheduler that explicitly favors shorter jobs
for backfilling [28], [1], [22] and must work with inaccurate
estimates. Such a scheduler does not really need to know
precise runtimes — it just needs to know the correct relative
ordering, and thef model provides the correct ordering with a
probability of at least1 −

r1

2r2

. This can dramatically improve
performance (up to an order of magnitude according to [1]).
As shown earlier, heel-and-toe dynamics nudge a FCFS-based
scheduler towards SJFness, and therefore the same argument
applies. Further, an estimate distribution that is dominated by
only a few distinct modes (Emax and others) negatively effects
performance, because less variance among waiting jobs means
less opportunities for the scheduler to exploit existing holes
(with various sizes) for backfilling.

Enforcing an Upper Bound on Estimates: The bottom line
is that if one wants to model increasing user inaccuracy, one
should focus on the modality of user estimates. For example,
10% of the jobs usingEmax is an optimistic scenario relative
to 20%, which in turn is more optimistic than 30%. Model-
ing increased inaccuracy by gradually associating more jobs
with Emax is more realistic than using the vanillaf -model.
Fortunately,Emax can be naturally incorporated within thef -
model, by truncating estimates that come out too high: if the
model estimate ise, we instead usemin(e, Emax). Let this be
denoted as thetruncatedf -model. This model has the property
that biggerf values imply more jobs associated withEmax.

Fig. 13 shows the results. The truncation has negligible

impact for very smallf values, because at this points very
few artificial estimates exceedEmax. The common trend is
therefore of improved performance, similarly to the vanilla f -
model. Truncation gradually becomes the dominant factor asf
increases and so the trend is reversed. The difference between
the truncated (Fig. 13) and vanilla (Fig. 4) models whenf
goes to infinity is that the ascending part of the latter never
intersects the curves associated with real user estimates (except
BLUE/wait, verified till f=10,000), whereas the former always
does. At the intersection point, the truncated model is successful
in “capturing the badness” of the real estimates. Thus, withbig
enoughf , the behavior of the truncated model coincides with
our claim above that performance degrades if inaccuracy is
increased by making the estimate distribution more modal.

An Accurate Model: While the truncatedf -model is more
realistic than the vanilla one, its output is still fundamentally
different from real estimates. A key difference is that only
one mode is created (atEmax), whereas real estimates exhibit
several modes (Fig. 11). Further, theEmax mode as created by
the model is poorly constructed: it consists of long jobs only
(with big enough runtimes such that multiplying them withF
results in estimates bigger thanEmax). In reality, many short
jobs are estimated by users to runEmax. Of these, most notable
are jobs that fail on startup. Thus, even with the truncated
model, the scheduler can still identify shorter jobs betterthan
when real estimates are employed.

These reasons lead to the undesirable situation where each
trace/metric combination requires a differentf to obtain perfor-
mance results comparable to those of real estimates (crossovers
in Fig. 13). This serious drawback is contrasted with the
model’s simplicity and ease of implementation and use. We
therefore view it as the “quick and dirty” substitute for the
vanilla version, namely, if faced with the choice of using either
one of them, we strongly support the truncated version. It is
our opinion that while it is not perfect, it is also not “garbage”.

In general, however, we advocate using the more sophisti-
cated estimate model we have developed in [23], instead of the
f -model variants. This paper serves in part as motivation. The
input of our new model isEmax and optionally the percent
of associated jobs.3 The optional argument allows to gradually
increase inaccuracy in a truly realistic manner. The outputof
the new model is a series of modes, where each mode is a
pair consisting of an estimate value and the percent of jobs
that use it (twenty of which cover 90% of the jobs). This
means that in contrast to common practices, estimates are not
generated on a per-job basis, but collectively. Thus, our model
also provides a way to map the generated distribution onto a
set of jobs with predetermined runtimes, such that each job’s
assigned estimate is equal to or bigger than its runtime, as
required by the backfilling rules. The model is available for
download at [21], and was verified to produce results that are
almost identical to the real thing [23].

3We show that the dissimilarity between estimate distributions of different
traces is largely embodied in the percent of jobs that useEmax as their
estimate; the distributions are otherwise remarkably similar.

 250

 300

 350

 400

 450

 0
.1 1 1
0

SDSC
w

ai
t [

m
in

ut
es

]

 18

 20

 22

 24

 26

 0
.1 1 1
0

 1
00

CTC

 90

 100

 110

 120

 130

 0
.1 1 1
0

KTH

 100
 110
 120
 130
 140
 150
 160

 0
.1 1 1
0

BLUE

 60

 80

 100

 120

 140

 0
.1 1 1
0

 1
00

f (badness factor; log scale)

b.
 s

lo
w

do
w

n

real
f=0

random
90% confidence

deterministic
 3

 4

 5

 6

 7

 0
.1 1 1
0

 1
00

 1
00

0

 40

 60

 80

 100

 120

 0
.1 1 1
0

 1
00

 25

 30

 35

 40

 45

 0
.1 1 1
0

 1
00

trace intersectionf
wait b. sld

SDSC 4.77 24.50
CTC 29.82 376.09
KTH 8.36 124.35
BLUE 6.68 47.63

Fig. 13. Performance results obtained with the truncatedf -model (compare with Fig. 4). The table specifies the intersection point between curves
associated with the “random” model and those associated with real estimates. (Slight differences exist between results associated with real user
estimate of the vanilla and the truncated models. This is dueto runtimes bigger thanEmax that unexplainably exist in the original logs and were
truncated to make sure they are not bigger than the associated estimates.)

VIII. C ONCLUSIONS

User runtime estimates are required for backfilling, currently
the most popular scheduling scheme of parallel systems. Many
studies have claimed that system performance is either unaf-
fected by, robust to, or improves with increasingly inaccurate
estimates. The de-facto standard model for obtaining such
results has been thef -model that given a runtimer, uniformly
chooses the associated estimate from[r, (f + 1) · r], or deter-
ministically sets it to be(f +1) · r. With this model, biggerfs
imply increased inaccuracy. Studies that reported a performance
improvement explained it with the “holes” argument, claiming
that increased overestimation of long jobs opens larger holes
in the schedule for backfilling shorter jobs. In contrast, studies
reporting performance is unaffected have used the “balance”
argument, claiming the larger holes cancel out by the fact
backfill candidates appear proportionally longer.

We found performance is extremely sensitive to minor
changes inf , and that within the noisy results space the
contradictory observations about performance trends are both
possible, when using only few samples in a non-systematic
manner. However, averaging over repeated simulations revealed
that the mean effect of increasingf is usually V-shaped: aver-
age wait time and slowdown drop at low inaccuracies and the
trend is gradually reversed for largerfs (though largefs still
yield better results thanf=0). To explain this, we show that the
seemingly contradictory “balance” and “holes” arguments are
both incorrect, or rather, correct to some extent, but miss the key
issue that reconciles between them. Performance improvement
due to increasedf is not simply the result of more backfilling
due to more holes in the schedule. Rather, it is the result of a
“heel-and-toe” dynamic: a distinctive sequence of events where
small backfill jobs continuouslyprevent the holes from closing
up, leading to a preference for short jobs and the automatic
production of an SJF-like schedule. Whenf is very small,
the proportionally narrow holes make sure only jobs that are
truly short enjoy the effect (explains the initial descending
part of the V-shape). However, asf gets bigger, increasingly

longer jobs can enjoy it too (explains the ascending part).
The situation is worse for the random model, which allows
long jobs to masquerade as short and vice versa (explains
why the deterministic model yields better performance). We
have directly quantified this by measuring the “SJFness” as a
function of f , defined to be the percent of jobs that are the
shortest in the wait-queue at the time they are started. The
result was consistentlyΛ-shaped, a kind of mirror image to the
V performance curves.

Fully understanding thef -model highlights its fundamental
flaw: it leads to a limited SJF-like scheduling, and indeed,
SJF is insensitive to multiplying runtimes by some factor as
long as the relative ordering of jobs is preserved. Butreal user
estimates provide no such ordering! Rather, they are inherently
modal, with 90% of the jobs using only 20 “round” estimate
values (e.g. 1 hour) and, in particular, 10-27% usingEmax – the
maximal allowed. Any popular estimate is bad for backfilling,
as the scheduler can’t differentiate between the associated jobs,
e.g. they can have 0% accuracy (zero runtime) if they fail on
startup, 100% accuracy if they are underestimated and killed
by the system, or anything in between if they reach successful
completion. However,Emax is especially bad, as the associated
jobs appear too long for backfilling, and the more jobs there
are that use it, the more the schedule resembles plain FCFS.

The bottom line is that the popular claim that “increasingly
inaccurate estimates improve performance” is only correctif
“inaccurate” means “multiplied by a factor” (as in thef -model),
which is far from the truth when real estimates are involved.
Inaccuracy of real estimates manifests itself in the form of
modality, and “increasing it” means making estimates more
modal (e.g. by adjusting the number of jobs associated with
Emax from 10% to 20%). In this case,increased inaccuracy
actually degrades performance, as one would intuitively ex-
pect. Put another way, this paper refutes the overwhelmingly
accepted myth that inaccuracy improves (or doesn’t effect)per-
formance, on the grounds that it is based on false assumptions.
As a consequence, it motivates the quest for deriving and using

more accurate estimates [22].
We demonstrate the correctness of our findings by suggesting

the truncated f -model, which adjusts an estimatee that is
generated by the vanillaf -model to bemin(Emax, e). This
creates a mode atEmax, such that biggerfs imply more
jobs associated withEmax. Indeed, one can “manufacture”
arbitrarily bad performance results by choosing a big enough f .
Importantly, one can always find anf for which results obtained
when using artificial estimates are equal to those obtained when
real estimates are employed, in contrast to the vanilla model.
We view the truncated model as a simple “quick and dirty”
substitute for the originalf model, and contend it should always
be preferred over the latter.

Regrettably, the truncated model is still not realistic. For
example, it generates only one mode (atEmax) and only
associates long jobs with it, whereas with real estimates there
are several modes and short jobs are associated with all of
them. One consequence was that each trace/metric combination
required a significantly differentf in order to obtain results
comparable to those of the real thing. We therefore advocatethe
use our accurate estimates model as suggested in [23], which
was verified to produce results that are remarkably similar to
the real thing (both in terms of the estimate distribution and the
resulting performance). This model directly targets the modal
nature of estimates and allows to gradually increase inaccuracy
in a truly realistic manner. It is available for download at [21].

Finally, we note our results have a practical value for schedul-
ing: heel-and-toe dynamics happen also with real user esti-
mates, explaining why doubling them improves performance.In
this context, future work includes the evaluation of estimates’
effect on fairness — who pays for the average improvement
in performance, and how much, if e.g. all (real) estimates are
doubled. We also intend to check whether our findings apply
to backfill schedulers with an explicit SJF component (such
as those proposed in [1]) and see whether the heel-and-toe
dynamics work there as well.
Acknowledgments: This research was supported in part by
the Israel Science Foundation (grant no. 167/03). Many thanks
are due to the people and organizations who deposited their
workload logs in the Parallel Workloads Archive.

REFERENCES

[1] S-H. Chiang, A. Arpaci-Dusseau, and M. K. Vernon, “The impact of
more accurate requested runtimes on production job scheduling
performance”. In 8th Job Scheduling Strategies for Parallel Processing,
pp. 103–127, Springer-Verlag, Jul 2002. LNCS 2537.

[2] W. Cirne and F. Berman, “A comprehensive model of the supercomputer
workload”. In 4th Workshop on Workload Characterization, Dec 2001.

[3] D. England, J. Weissman, and J. Sadago-pan, “A new metric for
robustness with application to job scheduling”. In 14th IEEE Int’l Symp.
High Performance Distributed Comput., pp. 135–143, Jul 2005.

[4] Y. Etsion and D. Tsafrir,A Short Survey of Commercial Cluster Batch
Schedulers. Technical Report 2005-13, The Hebrew University of
Jerusalem, May 2005.

[5] D. G. Feitelson, “Experimental analysis of the root causes of
performance evaluation results: a backfilling case study”. IEEE Trans.
Parallel & Distributed Syst.16(2), pp. 175–182, Feb 2005.

[6] D. G. Feitelson and A. Mu’alem Weil, “Utilization and predictability in
scheduling the IBM SP2 with backfilling”. In 12th IEEE Int’l Parallel
Processing Symp., pp. 542–546, Apr 1998.

[7] D. G. Feitelson and D. Tsafrir, “Workload sanitation for performance
evaluation”. In IEEE Int’l Symp. Performance Analysis of Syst. &
Software, pp. 221–230, Mar 2006.

[8] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernandez,
“Adaptive parallel job scheduling with flexible coscheduling”. IEEE
Trans. Parallel & Distributed Syst.16(11), pp. 1066–1077, Nov 2005.

[9] F. Guim, J. Corbalán, and J. Labarta,Impact of Qualitative and
Quantitative Errors of the Job Runtime Estimation in Backfilling Based
Scheduling Policies. Technical Report, Computer Architecture
Department, Technical University of Catalonia, 2006.

[10] R. Jain,The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

[11] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour, “On the design and
evaluation of job scheduling algorithms”. In Job Scheduling Strategies
for Parallel Processing, pp. 17–42, Springer Verlag, 1999. LNCS 1659.

[12] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user
runtime estimates inherently inaccurate?”. In 10th Job Scheduling
Strategies for Parallel Processing, pp. 253–263, Springer-Verlag, Jun
2004. LNCS 3277.

[13] D. Lifka, “The ANL/IBM SP scheduling system”. In 1st Job Scheduling
Strategies for Parallel Processing, pp. 295–303, Springer-Verlag, Apr
1995. LNCS 949.

[14] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability,
workloads, and user runtime estimates in scheduling the IBMSP2 with
backfilling”. IEEE Trans. Parallel & Distributed Syst.12(6),
pp. 529–543, Jun 2001.

[15] “Parallel Workloads Archive”. URL
http://www.cs.huji.ac.il/labs/parallel/workload/.

[16] G. Sabin and P. Sadayappan, “On enhancing the reliability of job
schedulers”. In High Availability & Performace Computing Workshop,
Oct 2005.

[17] E. Shmueli and D. G. Feitelson, “Using site-level modeling to evaluate
the performance of parallel system schedulers”. In Modeling, Anal. &
Simulation of Comput. & Telecomm. Syst., Sep 2006.

[18] S. Srinivasan, R. Kettimuthu, V. Subrarnani, and P. Sadayappan,
“Characterization of backfilling strategies for parallel job scheduling”. In
Int’l Conf. Parallel Processing, pp. 514–522, Aug 2002.

[19] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan,
“Distributed job scheduling on computational grids using multiple
simultaneous requests”. In 11th IEEE Int’l Symp. High Performance
Distributed Comput., p. 359, Jul 2002.

[20] T. Suzuoka, J. Subhlok, and T. Gross,Evaluating Job Scheduling
Techniques for Highly Parallel Computers. Technical
Report CMU-CS-95-149, School of Computer Science, Carnegie
Mellon University, Aug 1995.

[21] D. Tsafrir, Y. Etsion, , and D. G. Feitelson, “A model/utility for
generating user runtime estimates and appending them to a standard
workload format (SWF) file”. URL
http://www.cs.huji.ac.il/labs/parallel/workload/mtsafrir05, Feb 2006.

[22] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling using
system-generated predictions rather than user runtime estimates”. IEEE
Trans. on Parallel & Distributed Syst., 2007. To apper.

[23] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Modeling user runtime
estimates”. In 11th Job Scheduling Strategies for Parallel Processing,
pp. 1–35, Springer-Verlag, Jun 2005. LNCS 3834.

[24] D. Tsafrir and D. G. Feitelson, “Instability in parallel job scheduling
simulation: the role of workload flurries”. In 20th IEEE Int’l Parallel &
Distributed Processing Symp., p. 10, Apr 2006.

[25] S. Vasupongayya, S-H. Chiang, and B. Massey, “Search-based job
scheduling for parallel computer workloads”. In IEEE Int’l Conf.
Cluster Computing, Sep 2005.

[26] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam, “Improving
parallel job scheduling by combining gang scheduling and backfilling
techniques”. In 14th IEEE Int’l Parallel & Distributed Processing
Symp., pp. 133–142, May 2000.

[27] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam, “An
integrated approach to parallel scheduling using gang-scheduling,
backfilling, and migration”. IEEE Trans. Parallel & Distributed Syst.
14(3), pp. 236–247, Mar 2003.

[28] D. Zotkin and P. J. Keleher, “Job-length estimation and performance in
backfilling schedulers”. In 8th IEEE Int’l Symp. High Performance
Distributed Computing, p. 39, Aug 1999.

