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Abstract— Parallel job scheduling with backfilling requires FCFS FCFS + Backfilling

users to provide runtime estimates, used by the scheduler to _ \ _
better pack the jobs. Studies of the impact of such estimatesn ] ]
performance have modeled them using a “badness factor’f > 0 1 . 11 .
in an attempt to capture their inaccuracy (given a runtime r, the . ¥ . ¥
estimate is uniformly distributed in [r, (f + 1) - 7]). Surprisingly,

inaccurate estimates { > 0) yielded better performance than ac- Future Time

curate ones (f = 0). We explain this by a “heel and toe” dynamics
that, with f > 0, cause backfilling to approximate shortest-job first
scheduling. We further find the effect of systematically inceasing
f is V-shaped: average wait time and slowdown initially drop,
only to rise again later on. This happens because highefs lead problem with this approach is that many processors may be lef
to increased randomness (more long jobs appear as short andidle as they accumulate. To solve this problem, the schedule
vice versa) and to backfilling of longer jobs, overshadowinghe 515 areservationfor the first queued job, for the earliest

“heel and toe” dynamics and limiting the preference for shot . .

jobs. Finally, we show that the badness factor fails to capte the futu_re time at which enough proc.essors are expected to be
badness of real estimates, because these are modal and boeddy available. The scheduler then continues to scan the queue fo
a maximal value. Therefore the f model is actually inappropriate  smaller jobs (requiring less processors) that can be dtarte

for studying the effect of the inaccuracy of estimates. immediately without interfering with the reservation. Tawtion

of selecting such jobs for execution before their time idechl

backfilling This is illustrated in Fig. 1.

Processors

Fig. 1. EASY backfilling reduces fragmentation, e.g. by running4ob
that is short enough to terminate before the reservatiojofp8.

I. INTRODUCTION

The workload on a parallel supercomputer consists OfL? . . ] . .
sequence of jobs submitted for execution. These jobs a er Runtime Estmates. Note that backiilling requires the
scheduler to know in advance how long each job will run:

characterized by their arrival time, size (number of prsoes te th tion for the | twaiting iob
they need), runtime, and a runtime estimate provided by thoe compule the reservation for the ‘ongest-waiting Jo (hee
tg_know the runtimes of job 1 and job 2 to determine when

user to aid the scheduler in planing ahead. Such estimaﬂaest r. il be freed d to K i ler iob
known to be inaccurate, a fact that prompted many research ir_processors will be freed), and to know if smaller jobs

to check their actual effect on the scheduling. Much of thiy€ short enough to be backfilled (need to make sure job 4

research used the'*model”, in which estimates are assumed t ill terminate before the reserv_ation of job 3)._ Therefor_e,
be some multiple of the real runtime, and led to some sunisi ASY and other schedulers require users to provide a runtime

conclusions, such as the claim that inaccurate estimata e est!mate for aI.I submitted jobs [13]' Jobs that excged their
improved performance. We explain this behavior, and sha th(]a_stlmates are killed, so as not to violate subseq_uent (AR .
this model is actually inappropriate for such researcht dees he assumption was that users would be motivated to provide

not reflect salient features of user estimates in real wadgo 2CCUrate estimates, because (1) jobs would have a betierecha

But we also show that a relatively minor modification imprsve_t]?tEaCkf'" |ftthe|rhes'i|m’\?tes ?r:elt'ght’ but (Z)t_WOl:Id be:dl_ h
the model and enables realistic evaluations. if they are too short. Nevertheless, user estimates areyhig

. . _ _ inaccurate [6], [12], [23].
Backfilling: The EASY backfilling algorithm [13] is currently

the most commonly used method for parallel job schedulinyflodeling Inaccuracy: To study the sensitivity of backfilling
supported by all major production schedulers, includinyig {0 poor estimates, Feitelson and Mu'alem Weil proposed fhe *
LoadLeveler, Cluster Resources’ Moab and Maui, Platformf8odel” [6]. Given a jobJ with runtimer, the model postulates
LSF, Altair's OpenPBS and PBS-Pro, and Sun’s GridEngiﬁEat its estimate is chosen at random from a uniform disticbu
[4]. Upon submittal, users specify the number of processdfsthe rangelr, (f +1) - r], wheref > 0 is a predetermined
required by their jobs, and these are placed in a first-corf@nstant { is non-negative because jobs are killed if they try
first-serve (FCFS) queue. When enough free processors lsecéthun beyond their estimate). They termgdthe “badness
available to fill the needs of the first queued job, it is alteca factor” because estimates become increasingly inaccasfe

exclusive use of these processors and runs to completian. WS, with f = 0 indicating completely accurate estimates.
The f-model has been used when simulating workloads that

*Current affiliation: 1BM T. J. Watson Research Center. lacked estimates data [26], [8], but much more importaiitlg,
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On average, overestimation impacts both the jobs that
Fig. 2. Average performance usually improves if replacing user are running and the jobs that are waiting. The schedler
estimates (“real’) by actual runtimes (‘perfeclf’=0). But in both | ompytes a later finish time for the running jobs, creat|ng
cases, making estimates ess accurate (by doubling) tertusyt larger holes in the schedule. The larger holes ca,n ther] be

model and its variants have been extensively used to sty fH!Sed to accommodate waiting jobs that have overestimpted
impact of inaccurate estimates on backfilling algorithmg][2 | €xecution times. The probability of finding a backfilling can
[14], [18], [27], [16], [9]. One simple variant of interest the didate effectively does not change with the overestimatipn
“deterministic f-model”, in which there is no randomness and
estimates are a direct multiple of the runtime and the badnes g, example, doubling the lengths of all the jobs in Fig. 1

factor plus one: (f +1)-r [28], [1], [3]. only means the X-axis is scaled by a factor of two, but doesn't

The Inaccuracy Mystery: A very surprising result repeatedly change anything regarding the backfilling decision: ingeéer

reported by most of the aforementioned papers was that,doubling, job 4 looks twice as long in the eyes of the schedule

terms of performance, inaccurate estimates are usualfgrprebut the same applies to the 2-time-units-hole opened by job 2

able over accurate ones. This is illustrated in Fig. 2 thatvsh so job 4 can still backfill.

average wait time and slowdown of jobs when simulating While both arguments seemingly make sense, one obvious

the run of four different workloads with various estimategsroblem with them is that they are contradictory: If the balke

Evidently, performance improves when deliberately makingrgument is correct, then there is no benefit in opening those

estimates less accurate by doubling them. This is true bothrger holes” as suggested by the holes-argument, because

when doubling perfectly accurate estimates and when dugiblibackfilling candidates would become proportionally larged

the original inaccurate user estimates [28], [14]. cancel the effect. On the other hand, the “holes argument”
While there’s wide agreement that making estimates less a@plies a performance improvement that is proportionaf to

curate by multiplying them by some factor is usually benefici in contrast to the balance-argument rationale. Regardfetse

the effect of the choseji is less obvious. This is illustrated incontradiction, both arguments fail to explain the resufisven

Fig. 3. Faced with (usually a small subset of) such resulig, Fig. 3, for example the noisiness of BLUE (performance is

researchers claimed that the improvement in performanceatsually quite sensitive tg), or the opposite trends observed

largely “insensitive” tof [28], [26], [3], [9]. Further, England in SDSC/wait vs. CTC/wait (CTC/wait supports the holes-

et al. suggested a new “robustness” metric for the evaloatio argument while SDSC/wait contradicts it; both contradi t

computer systems, and claimed (in a case-study demonstratialance-argument).

the usefulness of their metric) that [3]

Failure to Capture Users’ “Badness”. The role of a model
ROBUSTNESSCLAIM is, among other things, to truthfully reflect reality. In ghi
“Our results support those of a previous work and also "€SPect, according to Fig. 3, the populgrmodel fails: It
indicate that backfilling is robust to inaccurate run time ¢s Yi€lds unrealistically improved performance results taat
timates in general. It seems that, with respect to backgjjljn consistently better than those obtained when real usenasts
what the scheduler doesn’t know won't hurt it” are utilized (the only exception is very smafl values in
CTC/wait). Surprisingly, this issue has usually been bedsh

] ) _ aside: In contrast to the other key parameters in parallel
The Failure to Explain the Mystery: The fact nonzero bad- \orkjoads (runtimes, interarrival times, number of prees)

ness (> 0) usually improves performance was unanimoushyat received a lot of attention in terms of realistic moagi
explained by what we call théoles argument’[6], [28], [14],  the dominant estimate model has been fhmodel or simply
[1], [18], as articulated by Chiang et al. [1]: using actual runtimes instead of estimatgsq) [11], [19],
HOLES ARGUMENT [25], [5], [17]. We conjecture that this can be attributexsbme
“We note that for large f (or when multiplying [real] “gxtent, to thg perception that estima}:[es ar? unimportamause
estimates by two), jobs with long runtimes can have \le maccyracy |mproyes pgrjormance and “what the scheduler
large runtime overestimation, which leaves larger holgs d0€SN't know won't hurt it”.

for backfilling shorter jobs. As a result, average slowdopvnPreview: In this paper we try to solve all the questions raised
and wait may be lower” above: Why are result so sensitive fo as seen in Fig. 3?
Why does multiplying the estimate by a factor usually help?
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Fig. 3. Performance as a function ¢ffor the random and the determinisfiemodel, with a resolution of 0.1 (that i$,= 0, %, %, %, )
Except for SDSC, most results associated with positivalues are better (smaller) than the performance assdaidte f =0 (“real” corresponds

to real user estimates).

Log fi i i . I . . .
s> 1%;2‘_91. — C?f; 53222 gggs'%g gg&) possible modification of replacing real user estimates thitise
KTH-SP2-1996-1 100 | 28,490 | 9/96-8/97 | 69% generated by th¢-model, as noted.

SDSC-5P2-1998-2.1cln | 128 | 59,725 4/98-4/00 | B4% Scheduling performance is measured using avenaggtime
SDSC-BLUE-2000-2.1-cln] 1,152 | 243314] 4/00-6/03 | 76% and bounded slowdownThe wait time is between a job’s
TABLE | submittal and its start time. Slowdown is response time téwai
The trace files used to drive the simulations. time plus runtime) normalized by runtime. Bounded slowdown

eliminates the emphasis on very short jobs (e.g. jobs with
Can we make the model more realistic? To do so, we perfomaro runtime) due to having the runtime in the denominator.
a detailed study of what really happens whgrows, both in A commonly used runtime lower-bound of 10 seconds was
terms of performance (Section Ill) and in terms of backijlinset, yielding the formulamax (1 , #ﬂig” , wherew and
activity (Section 1V). This leads to the heel-and-toe dyf@n ; are the job’s wait and run times in seconds, respectively. To
which explain the improved performance as resulting from @aduce warmup effects, the first 1% of terminated jobs were
shift in system behavior towards SJF scheduling (Section Vot included in the results; to reduce cooldown effectssjob
We then show why this breaks down with highgrvalues terminating after the last arrival were also not include@l][1
(Se(_:tiqn VI). The conclusic_m is that thﬁmodel is not VeY  Finally, we have choserf’s minimal value to be zero,
realistic, and a more precise model like we propose in [Zﬁlecause this seems to be best aligned with the perceptibn tha
_ShOUIO_I be us_ed_; howe_ve_r, themodel can be |mpr0v_ed by “zero badness” implies perfect accuracy. However, due ¢o th
imposing realistic restrictions on the estimates (Seckh). multiplicative nature of this factor, it is often more comient

Finally, our conclusions are presented in Section VIII. to useF — f + 1. With this, the random model uniformly
draws an estimate of a job with runtimefrom [r,r - F], and
[I. METHODOLOGY the deterministic model sets the estimate to-k#€. Note that in

all figures where badness is shown along the X-axis, the random

The experiments are based on an event-based simulatiorgofnodel is plotted against the determinisfi¢2-model, such
EASY scheduling, where events are arrivals and terminatioihat both have the same mean.

Upon arrival, the scheduler is informed of the number of
processors the job needs and its estimated runtime. It @mn th
start the job’s simulated execution or place it in a queusoriJp T
a job termination, the scheduler is notified and can schedule
other queued jobs on the freed processors. Job runtimes are _ ) _ )
part of the simulation input, but are not given to the schedul Statistical _Conﬂden(_:e: The first step we take in trying to un-
Tab. I lists the four traces we used to drive the simulation€0Ve" the impact of increased *badness” ) on performance
These are available through the Parallel Workload ArchiVg {0 expose the trend§ underlylng the_ Very noisy ,F'g' 3. ®th
[15]. As recommended, we used the sanitized version of ffgd we repeat each simulation 100 times Y‘”th different seeds
traces [7], [24]. Since these traces span the past decade, vi@d Plot the mean of the results (‘random”) and the and 90%
generated at different sites, on machines with differentsi interval (“90% confidence”, from the 5th percentile to thetd5

and reflect different load conditions, we have reason taebeli PECentile). Fig. 4 shows that this turns the initial noieguits
consistent results obtained in this paper are represeatdtne into relatively smooth curves (at the price of performingab

traces are simulated using the exact data provided, with {h@000 simulations of scheduling the jobs in each trace).

. PERFORMANCE AS AFUNCTION OF BADNESS
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Fig. 4. Statistics from repeated simulations expose clearer peefoce trends (compare with Fig. 3).

V Trend vs. L Trend: Fig. 4 reveals two trendsThe first observed performance trends (e.g. the V shape), detemgninin
is V shaped (most pronounced for SDSC), and the secondaiBich argument (if any) better describes the effect of insesl

L shaped (CTC). In both cases, random performance curvésn backfilling is essential. Recall the holes argument iegpli
initially drop (improve) for smallf values. Then, the curvesbackfilling activity intensifies withf, whereas the balance
either asymptotically converge to some value (L shape)her targument claims the effect of bigger holes evens out by Hackfi
trend is first reversed and only then converges (V shapek Thandidates appearing proportionally longer.

general tendency continues to largevalues: BLUE is actually Results: Fig. 5 shows the percent of jobs that were backfilled,
V shaped in both metrics (its curves are quite similar to thgk a function off, along with their average runtimes. The
of SDSC when changing th&’ scale tof € [0,100] and trends are consistent and the confidence intervals are. tight
bigger); KTH/wait and KTH/slowdown are L and V shapedpackfilling rates clearly increase witft The exact numbers are
respectively. The deterministic model obviously stayssyoiworkload dependent in that higher loads (Tab. I) imply highe
(only one sample pef), but it is evident that its curves arerates. But when simulating the logs under equal high/lovd loa
usually found in the proximity of the lower (better) perfante conditions (as in Sec. I1), the rates become remarkabljiaim

bound of the random model. The runtimes of backfilled jobs also follow the same pattern,
If grouping SDSC and BLUE (V shapes only) and comparingnd so do their sizes (not shown).
them to CTC and KTH (some L shapes), then Tab. | reveals FINDING #2

they can be characterized as having higher and lower loadn accordance to the holes argument and in contrast td the
respectively (in this paper the term “load” means “offeretpglance argument, biggef implies more jobs that enjo

load” or “utilization”). This classification was corrobdeal by | packfilling. On average, these jobs are longer and wide}.
simulating all the logs under “high” and “low” load conditis,

achieved by artificially multiplying all arrival times by an- A possible interpretation of this finding is as support for
stant (e.g. if BLUE’s original load is 76%, we can raise it téhe L-shaped performance curves (CTC, Fig. 4). This is based
80% by multiplying all arrival times by%). on the notion that jobs can be partitioned into “light” or

FINDING #1 “heavy” based on whether their characteristics allow them t
Expressed in terms of means of multiple simulations, perffor®® backfilled or not, and I .see"med that biggesimply means
mance is either V or L shaped. Higher or lower average Ipadhat more jobs become “light” and can enjoy better service.
implies a tendency towards a V or L shape, respectively. n&lowever, as we will show below, our finding doesn't just mean

deterministic model is usually closer to the best perforpegn “More” jobs. It can also meadifferentjobs, and specifically
results of the random model. longer jobs, possibly at the expense of shorter ones.

V. THE HEEL-AND-TOE DYNAMICS

IV. BACKFILLING AS A FUNCTION OF BADNESS . . -
Heel-and-Toe Hypothesis: The question that follows Finding

Holes vs. Balance:Our goal is to understand the reason fop g why is it s0? What's wrong with the balance argument?
the system behavior as reported in Finding 1. A reasonalifny isn't the effect of bigger holes canceled by the backfil
first step is to validate or disprove the (contradicting) candidates that are proportionally longer? After reexamgin
underlying the “holes” and “balance” arguments. Though W@e packfilling rules, we came up with a possible explanation
already know both fail to provide a full explanation to theg j|ustrated in Fig. 6. To simplify, assume all estimates a
2While not shown due to space limitations, we have also caedusimu- exaCtIy double the runtlmeF(=2 under the deterministic model

lations with biggerf values and the results reported here are partly based 89 defined in Sec. ”) Base(_j on the informatio_n avr_:lilable to
these additional experiments. the scheduler affy (time 0), it appears the earliest time for
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Fig. 5. The percent of backfilled jobs and their average runtimesataorically increase wittf. In all cases, the relative increase is roughly
similar, e.g. the rates/runtimes associated Witi0 are 10-20% bigger than that p£0.

Js (job 3) to start isT,, even though theeal earliest start a change of the real shadow. By definition, showing that wild
time is actuallyTs. Thus, the scheduler makes a reservatidrmackfilling happens means proving that heel-and-toe dycami
on Js’s behalf for 73, and can only backfill jobs that honorindeed occur. Fortunately, detecting wild backfilling issya
this reservation. Aftl,, J, terminates. AsJ; is still running, in a simulation: We computé), by traversing the run-list in
nothing has changed with respect fg's reservation, and so (real) termination order and finding the earliest time in athi
the scheduler scans the wait queue in search of appropriet@ugh free processor accumulate to satisfy By doing this
candidates for backfilling/, (the first backfill candidate underbefore/after a backfill operation, we can tell if the opematis
FCES) fits the gap betwedh and the reservatiorf{;) and so wild (S}, changed) or mild (stayed the same).

it is backfilled, effectively pushing back the real earliéiste Fig. 7 clarifies that the heel-and-toe dynamic is not just
at which J; could have started frorif to 7. hypothetical, e.g. withf=10, 2-5% of the jobs are wildly
SJFness: This “heel-and-toe” scenario, of repeatedly pushingackfilled. The X-axis doesn’t start at zero, because themebe
away the earliest starting point of the first queued job, st&® wild backfilling with perfect estimates. The consequence
by step, may continue until’, is reached. During this time, of wild backfilling are delayedjobs that suffer from at least
the window between the current time and the reservation tirmge wild backfill operation while they are at the head of the
is continuously shortened, such that waiting jobs that fis thqueue (as/s in Fig. 6). Fig. 8 (top) shows that around 1% of
open gap get shorter and shorter, effectively nudging teeegy the jobs are delayed. Any performance improvement obtained
towards Shortest-Job First (SJF) scheduling. (Note that thy the f-model is at the expense of these jobs. The bottom
initial open gap can be very short to begin with.) And s®f Fig. 8 shows the average delay duration. This is the ethpse
if the heel-and-toe dynamic does in fact occur, this limitetime between/,’s initial real shadow and its eventual start time
form of “SJFness” contributes to the performance improveme(the “stolen” time in Fig. 6), and it grows witli. The average
reported in Finding 1, namely, the first (descending) part etimber of timesS), is delayed also grows witlfi (not shown).

the V-curves, and the L-curves in their entirety. This &ffsC 1,05 vs. Balance Revisited:Our findings indicate that the

directly quantified in the next se_ct|on. - seemingly contradictory “balance” and “holes” argumerda c
Tendency towards SJFness with positfveias also observed j, 5t he reconciled: The performance improvement atteibu

(but not explained) by Zotkin and Keleher [28], which cong, ,gitive fs is not just because of wider holes in the schedule
ducted an “off-line” simulation of what happens wheth the 4 aj10w for more backfilling (in accordance to the “holes”

jobs in a trace arrive at the same exact time instance. They,\ment), because backfill candidates are indeed widewed p

found that, in comparison t$=0, shorter jobs leave the SySte”bortionally (in accordance to the “balance argument”).Heat

at a faster rate when estimates are set to be five times tha! aciUs the result of a heel-and-toe effect that manages to keep

runtime. The heel-and-toe dynamics explain this phenomeng, ¢ open by backfilling shorter jobs, which repeatediagel
Verifying Heel-and-Toe Occurs: Let .J, be the first queued the execution of the first queued job and lead to an SJF-like
job (meaningJ, isn’'t backfilled, but rather, it waits for its schedule.

turn, becomes first, and gets a reservation). $,etdenote the FINDING #3
real shadow timef J;,, defined to beJy,’s (hypothetical) start- | The heel-and-toe dynamic (1) is verified to occur in practfce
time, if all estimates suddenly become completely accufate | (2) reconciles between the balance and holes argumentd, and
example, the initial real shadow of in Fig. 6 is 5. During | (3) leads to a limited form of SJFness. Thus, it explains|the

the time J, is first, we say that a backfill operation vald if performance improvement due to positifevalues.
it causesS), to be delayed, or that it'mild, otherwise. All the

backfill operations in Fig. 6 are wild, because all resulted i Let us now explain why performance can also become worse.
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trends as in the general case (Fig. 5).
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Fig. 8. The percentage of jobs that suffer from wild backfilling (tagnd the average delay (bottom). The unique trend obsém@BdUE (top) is
also displayed by the other logs if simulating high load dads as in Sec. Il and examining a slightly widgrange; on the other hand, BLUE
becomes like all the others if simulating low load condigon

VI. COUNTERING THESJRESS OFHEEL-AND-TOE Increased f: As shown in Fig. 5 (and highlighted in Find-
ing 2), backfilling activity monotonically increases with,

We now focus on the second, ascending, part of the V-shapgsiile at the same time, the runtime of backfilled jobs becomes
performance curves where performance continuously degratbnger. Longer average runtimes wouldn’t be problematic by
(Finding 1; Fig. 4). The explanation has two components: thigemselves, had short jobs nevertheless been prioritBet.
increasedf, and the resulting amplification of randomness (fahis is not the case. To illustrate why, let us reconsider the
the non-deterministic model). These components incrgbsinscenario depicted in Fig. 6. Tab. Il lists the estimates b§jat

counteract the SJFness reported earlier. time T, (after.J, terminates) for varioug” values, as well as
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LT[ Js at Ty range fore;
1 6] 4 3] 2 2 . — P &
1 1 1 1 f"r
31 815 | 4|2 4 ! ; 12 thyfr, &
2 12 8 6 4 8 | | —
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TABLE I ! !
The length of the hole in the schedule and the estimates efijpb — o T
Fig. 6, for variousF’ values, at tim@. In the first row F=1 so 2t
range fore, F (badness factor)

estimates equal runtimes; in subsequent rows estimategraiges
multiplied by F. For each¥’, the estimate of the first job that fits the rig. 10. Probability thate, > e when actuallyry < ro; see text for
hole appears in bold. details.

the length of the resulting hole. The last row simply spesifie

what is shown in Fig. 6/=2). Recall that job indexes indicatelncreased Randomness:The situation gets worse when ran-
arrival order, used by the scheduler when searching forflllackdomness is introduced, as now, in addition, long jobs can
candidates. Thus]/, is the first candidate and since it fits themasquerade as short jobs and vice versa. To illustratelshis,
existing hole it is chosen for backfilling. However, if thelwa J1/J> be two jobs within the wait queue with runtimes/ry

of I had been % instead of 2 (second row in Tab. Il), then theand estimates, /e, that were generated by the randgmmodel,
hole would have been proportionally smaller and the scleedutespectively. This is depicted in Fig. 10 (left), assuming< r
would have deemed,; as too long for backfilling, favoring without loss of generality. We are interested iir (e; > e2),
instead the shortef; for execution. If " was further reduced that is, the probability the scheduler is erroneously tokt 1/,

to 1 (complete accuracy; first row), thafs would also appear is longer than/,. By conditioning (Bayes’ theorem) this is

as too long, effectively makingdgs (the shortest waiting job) the

only eligible candidate. We can therefore see there’s alesubt £7 (€1 > €2) = Pr(ei > ez | er,e2a € @) Prer,ex € a) +
tradeoff here: Pr(ei > ez |e1,e2 €a)- Pr(er, ez € a)

FINDING #4
While bigger f means more backfilling (which short joljs Wherea = [ry, F'r1] is the intersection of the two ranges from
enjoy more than longer ones), the bigger holes do in facwhich e; and e, are drawn. The second term in the above
allow longer jobs to backfill. summation is obviously zero (when either or e, are outside

a thene; < e3) and so we are left with
This finding is verified in Fig. 9. First, the top row shows the

average runtime of non-backfilled jobs: this usually becomePr (e1 > e2) =

shorter with increased, suggesting the scheduler indeed makes Pr(er >ex|er,ea€) - Prer €a) - Pr(e2 € )
“wrong” decisions by forcing shorter jobs to wait and preieg ~ Ny M

longer jobs for backfilling (Fig. 5). More important is the

bottom row that directly quantifies the effect: “SJFnessthis  If « exists ¢'r1 > 1), then \; = % because it's simply
percent of jobs that are the shortest in the waiting queuethé probability one number is bigger than another if both are
the time they are chosen to run. Evidently, SIFness inteasifuniformly chosen from the same range. ¢lfs degenerate then
with very small f values, only to monotonically drop later on\; = 0.) As Ay and A3 represent standard events in a uniform
(perfectly coinciding with our explanation above). setting, we get
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Fig. 11. Cumulative distribution function (CDF) of runtimes andiesdtes. Unlike runtimes, estimates are modal. Runtimeesiappear higher
because runtimes are always shorter than estimates (stideates jobs are killed).

Pr(e1 > e2) —% : ?:1 ::2 : ?:1 ::2 real user estimates. Importantly, a statement like “ineacy
e 2o improves performance” is a misleading oversimplificaticaal
1 F? 1 1 inaccuracy is actually tightly correlated with degradedf@re

T2 (Fo12 m +0 (F) mance, as will be exemplified next.

thus the error probability is monotonically increasing anModality of Real Estimates: Human users don’t choose es-
converges to;— T when F' goes to infinity (Fig. 10 right).  timates that are uniformly distributed between the reatino@
EINDING #5 and its multiple with some value. Instead, they use arllyrar

Under the random model, the b|gger t!ﬁethe more it is “round” eStimateS, e.g. 5 minutes, 1 hOUr, etc. In faCt, wenfb

probable the scheduler would erroneously view short |
as long and vice versa. This explains why SJFness is hi

deterministic model consistently outperforms the rang
model (Fig. 4).

bbdhat about 90% of the jobs repeatedly use the same 20 “round”
phefalues [23]. This modality is reflected in the staircase-kDF

for the deterministic model (Fig. 9) and hence why fhecurves shown in Fig. 11, where each mode corresponds to a

onPopular estimate. One particular value that is especiapupar
is E,..c, the maximal estimate allowed. This is a derivative

VII. M AKING THE MODEL MORE REALISTIC

Tr_\e Pro_blle.m: The f—mpdel |st_he dominant model_ for gener- 51 cerve as the
ating artificial user runtime estimates and evaluating thgact
of inaccurate user estimates on backfilling algorithms ,
[28], [14], [1], [18], [27], [16], [3], [9]. Based on thef-
model, researchers have drawn neat conclusions that resrge fthird).
“performance is independent of accuracy” to “inaccurady-ac

ally improves performance”. Indeed, when employanrtificial

estimates as generated by thenodel, these claims may reflect T _
certain aspects of the truth, as shown above. However, therdémplications of Modality:

of the per-site administrative upper bound on runtimesctvhi
may differ from site to site, but is always enforced. The ealu
of E,,.. is typically around 18h; in KTH and BLUE 4h and
effective’F, ., because most jobs were
ubmitted during daytime or to the interactive/expressugage
[29 spectively.F,, .. is used by 10-27% of the jobs and is the

most popular in three of the four logs (in SDSC it's ranked
Its immense popularity can probably be attributed t
users who want to “play it safe” and prevent their jobs from
being prematurely killed.

Regardless of the reason for

a fundamental problem with all the insights that are based &maz'S Popularity, the implications are dire in terms of per-

the f-model:

THE PROBLEM WITH THE f-MODEL

Increased inaccuracy as modeled by largeralues effec-
tively spreadsthe estimates across a larger range. But \

manifests itself by more jobs using teemeestimate value
Thus, conclusions based on the theoretiftahodel might

not apply when real user estimates are involved.

formance. To understand why, consider an extreme case in

which all jobs useF,,.. as their estimate. The outcome is

that all backfilling activity, as shown in Fig. 1, completely
_stops: The reservation of the first queued job is computeeldoas
ithon estimated termination times ofirrently runningjobs, and

real estimates it's exactly the opposite! Namely, inaceyifa these will all occur before?,,.. time, by definition. Hence,

the reservation itself will occur befoi®,, ., time and therefore
backfilling holes (from the present time until the resemali
arealwayssmaller thanF,,,,,.. Since we assume all estimates
of waiting jobs are exacthy,,.., hone of them will fit the

Understanding results that are based on famodel can holes in the schedule. Thus scheduling largely revertsdampl
be interesting and important. For example, the heel-and-toCFS, which result in a serious performance degradatidre (T
dynamics turned out to be the reason why, as shown in Fig.anly remaining backfill activity is using the “extra” nodeis3]).
doubling ofreal user estimates improves performance (doubling Surprisingly, the mere existence (and popularity) [0f,...

is a legitimate scheduling optimization, and there are rothis completely overlooked by researchers. For example,eCirn
related practical issues [22]). Nevertheless, such utatatiigs and Berman conjectured that the apparent connection betwee
can have only limited applicability to real systems that &yp longer runtimes and increased accuracy, shown in Fig. 12,



- 1= - Y impact for very smallf values, because at this points very
@ 08rp ¢Ic - : fo . few artificial estimates exceefl,,..,. The common trend is
E 0.6 |LBLUE therefore of improved performance, similarly to the vanijfl
S 04 model. Truncation gradually_becomes the dom_inant factgf as
S IR SRS VA t increases and so the trend is reversed. The difference eetwe
z 02 P e the truncated (Fig. 13) and vanilla (Fig. 4) models when

0 =—— goes to infinity is that the ascending part of the latter never

8 BEE E EESESSES S . . ) .
S 99 6 Bg NS0 ® intersects the curves associated with real user estimexesit
BLUE/wait, verified till f=10,000), whereas the former always
does. At the intersection point, the truncated model is sssfcll

Fig. 12. Average accuracy—rtim<) as a function of runtime. (X-  in “capturing the badness” of the real estimates. Thus, hiigh
axis groups jobs to 100 equally-sized bins according to thetime.)  enoughy, the behavior of the truncated model coincides with
gu claim above that performance degrades if inaccuracy is

tacreased by making the estimate distribution more modal.

avg. runtime [log]

is because the more a job progresses in its computation,
grater its chances become to reach successful completjon
Such assumptions are unwarranted, as the existendg,gf An Accurate Model: While the truncatedf-model is more
guarantees long jobs to have high accuracy: for exampqgglistic than the vanilla one, its output is still fundartsdiy
assumingE,,q, is 18h, if a job’s runtime is 17h, then its different from real estimates. A key difference is that only
estimate must be between 17h-18h and thus at least 9996 mode is created (d,....), whereas real estimates exhibit
accurate. In other words, long jobs are on the right of Fig. 13everal modes (Fig. 11). Further, thg,,, mode as created by
where accuracy is high, while short jobs tend to be on the Iefi€ model is poorly constructed: it consists of long jobsyonl
at lower accuracies. (with big enough runtimes such that multiplying them with

The peaks in Fig. 12 are due to popular estimates (smalfggults in estimates bigger that,....). In reality, many short
than E,,.,) and the manynderestimategobs that used them jobs are estimate_d by users to rip,,,.. Of thesg, most notable
and are subsequently killed. But many other jobs that ude jobs that fail on startup. Thus, even with the truncated
these popular values are in fact significaraiserestimatedThe model, the scheduler can still identify shorter jobs betfen
problem is that in a real system the scheduler has no wayWthen real estimates are employed.
distinguish between such jobs. In contrast, when fhmodel These reasons lead to the undesirable situation where each
is used, the scheduler actually gets pretty good informafio trace/metric combination requires a differghto obtain perfor-
clarify, consider a scheduler that explicitly favors skoijpbs Mance results comparable to those of real estimates (ersso
for backfilling [28], [1], [22] and must work with inaccuratein Fig. 13). This serious drawback is contrasted with the
estimates. Such a scheduler does not really need to kn&\Wdel's simplicity and ease of implementation and use. We
precise runtimes — it just needs to know the correct relatifeerefore view it as the “quick and dirty” substitute for the
ordering, and the" model provides the correct ordering with a/anilla version, namely, if faced with the choice of usinther
probability of at leastl — 7. This can dramatically improve On€ of them, we strongly support the truncated version. It is
performance (up to an order of magnitude according to [LRUr opinion that while it is not perfect, it is also not “gager.
As shown earlier, heel-and-toe dynamics nudge a FCFS-baselh general, however, we advocate using the more sophisti-
scheduler towards SJFness, and therefore the same argurfi@i@d estimate model we have developed in [23], insteadeof th
applies. Further, an estimate distribution that is doneidaty .f-model variants. This paper serves in part as motivatioe. Th
only a few distinct modesK,... and others) negatively effectsinput of our new model ist,,., and optionally the percent
performance, because less variance among waiting jobssme@fassociated jobThe optional argument allows to gradually

less opportunities for the scheduler to exploit existingeho increase inaccuracy in a truly realistic manner. The ouggut
(with various sizes) for backfilling. the new model is a series of modes, where each mode is a

Enforcing an Upper Bound on Estimates: The bottom line pair consisting of an estimate value and the percent of jobs
is that if one wants to model increasing user inaccuracy, oftat Use it (twenty of which cover 90% of the jobs). This

should focus on the modality of user estimates. For exampﬁB?anS that in contrgst to common pract?ces, estimates are no
10% of the jobs using®,,.. is an optimistic scenario relative generated on a per-job basis, but collectively. Thus, oudeho

to 20%, which in turn is more optimistic than 30%. Mode|@/s0 provides a way to map the generated distribution onto a

ing increased inaccuracy by gradually associating more joﬁet of jobs with predetermined runtimes, such that eachsjob’

with E,... is more realistic than using the vanillamodel. assigned estimate is .equal to or bigger than its rl_mtime, as
Fortunately,E,,..., can be naturally incorporated within thfe required by the backfilling rulgs_,. The model is available for
model, by truncating estimates that come out too high: if tﬁg)wnloqd at. [21], and was vgrlfled to produce results that are
model estimate ig, we instead usein(e, E,,.. ). Let this be almost identical to the real thing [23].
denoted as theuncatedf-model This model has the property o _ .

We show that the dissimilarity between estimate distrdmsi of different

that_ bigger/ values imply more jobs assocu’_;lted Wilha:- __traces is largely embodied in the percent of jobs that B%g.. as their
Fig. 13 shows the results. The truncation has negligibéetimate; the distributions are otherwise remarkably laimi
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Fig. 13. Performance results obtained with the truncgtedodel (compare with Fig. 4). The table specifies the intdige point between curves
associated with the “random” model and those associatdtredt estimates. (Slight differences exist between resgsociated with real user
estimate of the vanilla and the truncated models. This istduentimes bigger thail,... that unexplainably exist in the original logs and were
truncated to make sure they are not bigger than the asso@stienates.)

VIIl. CONCLUSIONS longer jobs can enjoy it too (explains the ascending part).
User runtime estimates are required for backfilling, cutyen The situation is worse for the random model, which allows

the most popular scheduling scheme of parallel systemsymd4fnd jobs to masquerade as short and vice versa (explains

studies have claimed that system performance is either- undfy the deterministic model yields better performance). We
fected by, robust to, or improves with increasingly inaeter have directly quantified this by measuring the “SJFness” as a

estimates. The de-facto standard model for obtaining suyypetion of f, defined to be the percent of jobs that are the
results has been themodel that given a runtime, uniformly shortest in the ‘Wwait-queue at the time thgy are started. The
chooses the associated estimate frontf + 1) - 7], or deter- result was consistentl)-shaped, a kind of mirror image to the
ministically sets it to be f + 1) - . With this model, biggerfs Y Performance curves.
imply increased inaccuracy. Studies that reported a pedoce ~ Fully understanding th¢-model highlights its fundamental
improvement exp|ained it with the “holes” argument, C|a'|g]| flaw: it leads to a limited SJF-like scheduling, and indeed,
that increased overestimation of long jobs opens largeeshofSJF is insensitive to multiplying runtimes by some factor as
in the schedule for backfilling shorter jobs. In contraaidas long as the relative ordering of jobs is preserved. @at user
reporting performance is unaffected have used the “balan&stimates provide no such ordering! Rather, they are imitigre
argument, claiming the larger holes cancel out by the fagodal, with 90% of the jobs using only 20 “round” estimate
backfill candidates appear proportionally longer. values (e.g. 1 hour) and, in particular, 10-27% usif)g,, — the

We found performance is extreme|y sensitive to mindﬂaXimaJ allowed. Any popular estimate is bad for backfllllng
changes inf, and that within the noisy results space thas the scheduler can't differentiate between the assdgeais,
contradictory observations about performance trends etk b€-d. they can have 0% accuracy (zero runtime) if they fail on
possib|e’ when using 0n|y few Samp|es in a non-systemaﬁ@rtup, 100% accuracy if they are underestimated anddkille
manner. However, averaging over repeated simulationstete by the system, or anything in between if they reach successfu
that the mean effect of increasirfgis usually V-shaped: aver- completion. Howeverk,,,.. is especially bad, as the associated
age wait time and slowdown drop at low inaccuracies and ti#s appear too long for backfilling, and the more jobs there
trend is gradua”y reversed for |arg¢5 (though |arg@fs still are that use it, the more the schedule resembles plain FCFS.
yield better results thayi=0). To explain this, we show that the The bottom line is that the popular claim that “increasingly
seemingly contradictory “balance” and “holes” arguments ainaccurate estimates improve performance” is only corifect
both incorrect, or rather, correct to some extent, but nhiskey “inaccurate” means “multiplied by a factor” (as in tfiemodel),
issue that reconciles between them. Performance impravemehich is far from the truth when real estimates are involved.
due to increased is not simply the result of more backfilling Inaccuracy of real estimates manifests itself in the form of
due to more holes in the schedule. Rather, it is the result ofreodality, and “increasing it” means making estimates more
“heel-and-toe” dynamic: a distinctive sequence of everitsne modal (e.g. by adjusting the number of jobs associated with
small backfill jobs continuouslprevent the holes from closing F,,,., from 10% to 20%). In this caséncreased inaccuracy
up, leading to a preference for short jobs and the automatictually degrades performancas one would intuitively ex-
production of an SJF-like schedule. Whegnis very small, pect. Put another way, this paper refutes the overwhelmyingl
the proportionally narrow holes make sure only jobs that asecepted myth that inaccuracy improves (or doesn'’t effeet)
truly short enjoy the effect (explains the initial descerydi formance, on the grounds that it is based on false assunsption
part of the V-shape). However, gsgets bigger, increasingly As a consequence, it motivates the quest for deriving antjusi



more accurate estimates [22]. 7

We demonstrate the correctness of our findings by suggesting
the truncated f-mode| which adjusts an estimate that is g
generated by the vanillg-model to bemin(E,,..,¢). This
creates a mode ak,,.., such that biggerfs imply more
jobs associated with¥,,,... Indeed, one can “manufacture”
arbitrarily bad performance results by choosing a big ehgug
Importantly, one can always find gifor which results obtained
when using artificial estimates are equal to those obtairteghw
real estimates are employed, in contrast to the vanilla inodez1]
We view the truncated model as a simple “quick and dirty”
substitute for the origingf model, and contend it should always{lz]
be preferred over the latter.

Regrettably, the truncated model is still not realisticr Fo
example, it generates only one mode (@f,.,) and only (13
associates long jobs with it, whereas with real estimateseth
are several modes and short jobs are associated with all 0]
them. One consequence was that each trace/metric conaninati
required a significantly differenf in order to obtain results
comparable to those of the real thing. We therefore advdhate
use our accurate estimates model as suggested in [23], WH%CSP‘I
was verified to produce results that are remarkably simdar [L6]
the real thing (both in terms of the estimate distributiod #re
resulting performance). This model directly targets thedaio [17]
nature of estimates and allows to gradually increase iracgu
in a truly realistic manner. It is available for download 2a1]. 18]

Finally, we note our results have a practical value for saked
ing: heel-and-toe dynamics happen also with real user esti-
mates, explaining why doubling them improves performafrce. (19
this context, future work includes the evaluation of est&sa
effect on fairness — who pays for the average improvement
in performance, and how much, if e.g. all (real) estimates af0
doubled. We also intend to check whether our findings apply
to backfill schedulers with an explicit SJF component (such
as those proposed in [1]) and see whether the heel-andlfdé
dynamics work there as well.
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