
On the Effects of Memory Latency and Bandwidth on Supercomputer
Application Performance

Richard Murphy

Sandia National Laboratories∗

PO Box 5800, MS-1110
Albuquerque, NM 87185-1110
rcmurph@sandia.gov

Abstract

Since the first vector supercomputers in the mid-1970’s,
the largest scale applications have traditionally been float-
ing point oriented numerical codes, which can be broadly
characterized as the simulation of physics on a computer.
Supercomputer architectures have evolved to meet the needs
of those applications. Specifically, the computational work
of the application tends to be floating point oriented, and the
decomposition of the problem two or three dimensional. To-
day, an emerging class of critical applications may change
those assumptions: they are combinatorial in nature, in-
teger oriented, and irregular. The performance of both
classes of applications is dominated by the performance of
the memory system. This paper compares the memory per-
formance sensitivity of both traditional and emerging HPC
applications, and shows that the new codes are significantly
more sensitive to memory latency and bandwidth than their
traditional counterparts. Additionally, these codes exhibit
lower base-line performance, which only exacerbates the
problem. As a result, the construction of future supercom-
puter architectures to support these applications will most
likely be different from those used to support traditional
codes. Quantitatively understanding the difference between
the two workloads will form the basis for future design
choices.

1. Introduction and Motivation

Supercomputing is in the midst of large technological,
architectural, and application changes that greatly impact
the way designers and programmers think about the system.
Technologically, the constraints of power and the speed of

∗Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

light dictate that multicore architectures will form the basis
for the commodity processors that constitute the heart of
massively parallel processing (MPP) supercomputers. This
impacts the architecture in three ways:

1. Power constraints dictate that clock rates will not im-
prove appreciably as they have in the past.

2. The combination of power, the constraint of the speed
of light, and the architectural limits of instruction level
parallelism dictate that the trend in scalar processors
towards higher performing individual cores will not
hold.

3. Even though die area is increasing, cost is still dictated
by packaging, and the number of pins available for ex-
ternal communication will likely not grow as quickly
as the number of cores.

These technological and architectural trends are no less
significant than the those which dictated the transition from
vector-based supercomputers to commodity MPP architec-
tures in the early 1990’s. In fact, given the maturity of vector
architectures, such a change was likely inevitable. One criti-
cal architectural trend still holds across any implementation:
the challenge posed by the memory wall. In today’s super-
computers, the memory wall manifests itself as a dramatic
difference between the increase in processor clock rate and
the rate of a memory access. In multicore machines – even
with flat clock rates – the memory wall manifests itself due
to the increasing number of cores compared to available
channels (or independent access paths) to memory.

Unlike prior large-scale technological and architectural
changes, today’s architects must also contend with a shift
in the application base. Historically, supercomputing has
been dominated by the simulation of physics on a computer,
which itself can be thought of as fundamentally structured
in nature. In a three dimensional universe, problem decom-
position can be performed in three dimensions (by divid-
ing the simulated area into cubes). The types of supercom-

351-4244-1562-4/07/$25.00 ©2007 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:22 from IEEE Xplore. Restrictions apply.

puter architectures that have been adopted often reflect this
structure. For example, 3d mesh topologies reflect the kind
of “nearest neighbors” communication pattern common in
physics codes. Furthermore, the “work” performed in these
applications is fundamentally floating point: the computa-
tion of temperature, pressure, volume, etc. Many emerging
applications, however, are different. They are combinatorial
in nature, fundamentally unstructured, and often consist of
integer computations.

This paper examines the memory performance of a suite
of real world applications from both the traditional and
emerging problem domains. It examines the impact of
memory latency and bandwidth on the applications. The
results demonstrate that both sets of applications are funda-
mentally dominated by memory latency, but that the emerg-
ing applications both begin with a lower baseline perfor-
mance, and are more sensitive to memory than their tra-
ditional counterparts. This represents a significant chal-
lenge to supercomputer architects, and quantitatively es-
tablishes how emerging applications differ from their tra-
ditional counterparts.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the related work. Section 3 examines the
applications under study. Section 4 specifies the methodol-
ogy and metrics used for evaluation. Section 5 presents the
results Conclusions are given in Section 6.

2. Related Work

Characterizing performance is a richly studied area of
computer architecture. The SPEC suite has been extensively
characterized[10, 8, 12, 14, 26], as have other workloads
such as OLTP[13, 4, 2]. These codes are generally chosen
to represent “typical” machine workloads for a class of ap-
plications.

In the area of supercomputing, specialized bench-
marks have been constructed to test specific areas of ma-
chine performance. The HPC Challenge RandomAccess
benchmark[6] and the STREAM benchmark[15] have been
specifically constructed to measure the performance of the
memory system. Although this information is useful to ar-
chitects, it is difficult to directly map back to application
performance.

The applications in this work have been studied
extensively[19, 18, 20]. The floating point suite is similar
in structure to other real world supercomputer applications
that have been previously examine[21, 28].

Numerous definitions of spatial and temporal local-
ity have been proffered to characterize the memory per-
formance of applications, both canonical [22, 9] and
experimental[19, 29, 5, 7, 27, 25]. This study examines the
performance impact of the memory system on applications.

The memory wall is also an extremely well studied

problem in computer architecture[30, 16]. It has been
argued that this is the dominant problem in computer
architecture[11]. Indeed, the results of this work further
support this conclusion by affirming that key supercomputer
applications are memory latency dominated in performance,
which is the classic definition of the memory wall.

3. Applications

This study examines two classes of important applica-
tions from Sandia National Laboratories: a traditional set
of primarily floating point codes, and an emerging class of
primarily integer codes. These codes have been discussed
extensively previously, and are significantly different from
traditional suites such as SPEC CPU[20, 19]. Their descrip-
tion and basic instruction mix follow.

3.1. Traditional Floating Point Codes

Each of the floating point applications are production
MPI codes designed to run at very large scale. Broadly
speaking they are scientific and engineering applications
which represent physical simulations. They are:

• ALEGRA is a finite element shock physics code capa-
ble of modeling near- and far-field responses to explo-
sions, impacts, and energy depositions.

• CTH is a multi-material, large deformation, strong
shock wave, solid mechanics code developed at San-
dia National Laboratories over the last 30 years. CTH
models multi-phase, elastic viscoplastic, porous and
explosive materials with multiple mesh refinement
methods.

• Cube3 Cube3 is a generic linear solver that drives the
Trilinos framework for parallel linear and eigensolvers.
It mimics a finite element analysis problem by creating
hexagonal elements, then assembling and solving a lin-
ear system. The width, depth, and degrees of freedom
(e.g., temperature, pressure, velocity, etc.) can be var-
ied.

• ITS performs Monte Carlo simulations of linear time-
independent coupled electron/photon radiation trans-
port.

• MPSalsa is a high resolution 3d simulation of react-
ing flow. The simulation requires both fluid flow and
chemical kinetics modeling.

• Xyce is a parallel circuit simulation system capable of
modeling very large circuits at multiple layers of ab-
straction (device, analog, digital, and mixed-signal). It
includes both SPICE-like models and radiation mod-
els.

36

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:22 from IEEE Xplore. Restrictions apply.

3.2. Emerging Integer Applications

Unlike their traditional counterparts, the emerging appli-
cations studied in this work are integer-oriented, generally
problems from Discrete Math, typically unstructured, and
written for a variety of programming models. They are at
the core of important problems in proteomics, genomics,
data mining, pattern matching, and computational geome-
try. Although many are classic algorithms problems (DFS,
for example), the implementations are typically “newer”
than their traditional counterparts (that is, there are no three
decade old codes among these applications).

• DFS implements a depth-first search on a large graph
and forms the basis for several high-level algorithms
including connected components, tree and cycle detec-
tion, solving the two-coloring problem, finding Artic-
ulation Vertices, and topological sorting.

• Connected Components breaks a graph into compo-
nents. Two vertices are in a connected component if
and only if there is a path between them.

• Subgraph Isomorphism determines whether or not a
subgraph exists within a larger graph.

• Full Graph Isomorphism determines whether or not
two graphs have the same shape or structure.

• Shortest Path computes the shortest path between two
vertices using a breadth first search. Real world ap-
plications include path planning and networking and
communication.

• Graph Partitioning is used extensively in VLSI cir-
cuit design and adaptive mesh refinement. The prob-
lem divides a graph in to k partitions while minimiz-
ing the cut between the partitions (or the total weight
of the edges that cross from one partition to another).

• BLAST is the Basic Local Alignment Search Tool and
is the most heavily used method for quickly search nu-
cleotide and protein databases in biology.

• zChaff is a heuristic for solving the Boolean Satisfi-
ability Problem. In propositional logic, a formula is
satisfiable if there exists an assignment of truth values
to each of its variables that make the formula true.

3.3. Instruction Mix for Each Suite

Figure 1 shows the instruction mix for the integer and
floating point suites. Although the “work” for the floating
point suite is primarily floating point, real applications per-
form significantly less floating point than do typical bench-
mark suites. For example, the SPEC CPU 2000 suite av-
erages 32% floating point, while real Sandia codes average

Figure 1. Sandia Integer and Floating Point Suite
Instruction Mix

only about 12% floating point[19]. Other key differences
between the integer and floating point codes are apparent.
The integer codes perform 15% fewer memory references
(although those references are much more likely to miss the
cache, as Section 5 will demonstrate). Furthermore, the in-
teger codes perform twice as many branches as their float-
ing point counterparts. This is unsurprising since scientific
codes tend to have larger basic blocks due to complex for-
mula calculations[23].

The combination of an increased cache miss rate and an
increased number of branches makes the integer codes chal-
lenging for modern superscalar processors.

4. Methodology and Metrics

This section discusses the application traces used in this
work, the metrics used for evaluation, and the simulation
environment. The simulation methodology is similar to that
employed in prior studies of this application base, although
the metrics are entirely new.

4.1. Application Traces

Each of the applications used in this work was ana-
lyzed using traces of 4 billion sequential instructions pro-
duced by the Amber[1] instruction trace generator for the
PowerPC. These traces have been used in several prior
studies[19, 18, 20, 23, 17, 24] and are well understood. The
traces typically represent multiple executions of the main
loop of the program and were originally generated with the
input from applications experts and platform profiling tools.
In the case of the MPI programs, traces were of single node
execution.

37

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:22 from IEEE Xplore. Restrictions apply.

Table 1. Processor Configuration
Parameter Val
Issue Width 8
Commit Width 4
RUU Size 64
L1 Instruction/Data Cache 64k

2-way Set Associative
64-byte block
Least Recently Used

L1 Cache Latency 3 cycles
L2 Unified Cache 1 MB

16-way Set Associative
64-byte block
Least Recently Used

L2 Cache Latency 20 cycles
Integer ALUs 3
Integer Multiplier/Dividers 1
FP ALUs 2
FP Multiplier/Divider 1
Clock Rate 2.5 GHz

4.2. Metrics

This work defines bandwidth and latency as follows:

• Latency: the time between when the processor re-
quests a memory value and when the first byte of that
request arrives.

• Bandwidth: the transfer speed of the second and all
subsequent bytes of a memory request.

The simulations in this work vary the memory bandwidth
and latency according to this definition for each run.

4.3. Simulation Environment

The traces were used as inputs to Sandia’s Structural
Simulation Toolkit (SST). The SST is a parallel machine
simulator (for both shared and distributed memory archi-
tectures) that uses an enhanced version of SimpleScalar’s
sim-outorder processor simulator[3] as the baseline
processor. SST has significantly enhanced cache and mem-
ory models, and has been used to simulate several super-
computer architectures.

The memory simulated in this work is a DDR-like inter-
face which performs transfers in 16-byte blocks.

Table 1 summarizes the conventional superscalar proces-
sor configuration used in this study. The memory latency
and bandwidth were varied and the committed Instructions
Per Cycle (IPC) measured.

The memory latencies examined were: 15ns, 30ns, 60ns,
120ns, and 240ns.

Figure 2. Average Latency and Bandwidth Ef-
fects for the Sandia Floating Point and Integer
Suites

The bandwidths in this experiment were: 2.5 GB/sec, 5
GB/sec, 10 GB/sec, 20 GB/sec, and 40 GB/sec.

The baseline memory latency and bandwidth numbers in
this study look somewhat more aggressive than a modern
Opteron (60ns latency and 10 GB/sec of bandwidth). How-
ever, several points around that baseline were examined, and
can be used for comparison given the reader’s assumptions
about what is appropriate. Those points were generated by
halving and doubling each configuration parameter (latency
and bandwidth) twice.

5. Results

Figure 2 shows the average effect of varying latency and
bandwidth (60ns of memory latency and 10 GB/sec of mem-
ory bandwidth). The center point for each graph (relative
latency and bandwidth of 1.0) is this baseline, and each bar
represents the IPC achieved at that latency/bandwidth point.

38

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:22 from IEEE Xplore. Restrictions apply.

Floating Point Applications

Integer Applications

Figure 3. Complete Results for the Integer and Floating Point Suites

39

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:22 from IEEE Xplore. Restrictions apply.

Figure 3 depicts the latency/bandwidth results for each
application in both the integer and floating point suites.

On average, in the floating point case, halving the avail-
able bandwidth results in an average drop in performance of
1.24%. In the case of the integer suite, the average drop in
performance is 3.59%. By contrast, doubling the memory
latency leads to a respective drop in performance of 11%
and 32% respectively. Thus, all of the codes are more la-
tency than bandwidth dominated. This is a critical point for
two reasons:

1. Memory bandwidth is the typical unit of memory per-
formance measure discussed by supercomputer archi-
tects. This may be because the construction of MPP-
based supercomputers is dominated by the construc-
tion of a high performance network interface, and MPP
system architects therefore tend to think in more net-
working oriented terms. It may also be because band-
width is an easier system characteristic to affect than
latency. Regardless, the more critical unit of measure-
ment is quite conclusively latency.

2. As discussed in Section 1, one of the key concerns for
supercomputer architects is the transition to multicore
machines. If today’s instruction streams in a unicore
processor were memory bandwidth bound, and avail-
able bandwidth did not grow with the number of cores,
performance would suffer. However, these results in-
dicate that there is potentially headroom in bandwidth.

Additionally, the structure of these applications generally
makes it very difficult for the processor to compute mem-
ory addresses quickly enough to keep the memory bus busy.
This tends to make bandwidth less important than latency.

The integer codes are clearly more sensitive to mem-
ory performance than their traditional floating point coun-
terparts (doubling the latency or halving the bandwidth has
2.9× the impact on the integer suite as compared to the
floating point suite).

It is also critical to note that the baseline performance of
each suite is significantly different. The floating point suite
has a baseline IPC of 1.22, while the integer suite has a base-
line performance of 0.70. Thus, the integer suite baselines
with 43% less performance than the floating point suite,
and is significantly more sensitive to latency and bandwidth
variations after that.

Figure 4 shows the most affected applications for the
floating point and integer suites. Cube3 from the floating
point suite and Shortest Path from the integer suite look re-
markably similar. Cube3 has a baseline performance only
10% lower than Shortest Path, and both applications expe-
rience a 55% drop in performance if the memory latency
is doubled. Cube3 experiences a 6% drop in performance
if the bandwidth is halved while Shortest Path experiences
a 7% drop in performance. This is not surprising since

Figure 4. The Most Sensitive Applications From
Each Suite

sparse graphs can be represented as sparse matrices, simi-
lar to those that are fundamental to linear algebra problems.
The sparse matrix representation is not used in this particu-
lar instance of the graph problem, however the fundamental
nature of the data structures used are similarly sparse.

The least affected applications from each suite (Xyce
from the floating point suite and BLAST from the integer
suite) show nearly flat latency/bandwidth curves. Doubling
the memory latency shows less than a 1.25% performance
degradation for Xyce and less than a 5% performance degra-
dation for BLAST. Similarly, halving the bandwidth yields
less than half a percent performance degradation. These ap-
plications are known to generally be more compute inten-
sive, and this result confirms that prior knowledge. These
are the only applications with relatively flat curves.

Cube3 and Alegra are the most sensitive to latency or
bandwidth changes of the floating point suite, while con-
nected components and shortest path dominate the integer
suite.

40

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:22 from IEEE Xplore. Restrictions apply.

To better quantify each suite’s sensitivity to bandwidth
and latency effects, the sensitivity must be defined. Intu-
itively, the sensitivity can be thought of as the slope of ei-
ther the latency or bandwidth lines. As a first-order approx-
imation, these curves can be thought of as linear (they are
very nearly so). For a given latency or bandwidth, the slope
of the resulting 2-dimensional slice of Figure 2 (either la-
tency vs. IPC or bandwidth vs. IPC) can be calculated. For
example, given the baseline latency of 60ns, the bandwidth
sensitivity (or slope of the bandwidth line) can be calculated
as follows:

P60ns,2.5GB/sec − P60ns,40GB/sec

15ns− 240ns
(1)

Where Platency,bandwidth represents the performance at
a given latency and bandwidth. Similarly, given the base-
line bandwidth of 10GB/sec, the latency sensitivity can be
computed by:

P15ns,10GB/sec − P240ns,10GB/sec

2.5GB/sec− 40GB/sec
(2)

The sensitivity to bandwidth is a positive number be-
cause an increase in bandwidth leads to an increase in per-
formance, while the sensitivity to latency is a negative num-
ber because an increase in latency leads to a decrease in
performance.

Figure 5(a) shows the average sensitivity to latency and
bandwidth for both suites, while (b) includes each individ-
ual application for the floating point suite, and (c) includes
the same information for the integer suite. As discussed
earlier, the integer suite is clearly more sensitive to both
bandwidth and latency than the floating point suite. The
integer suite is 42− 60% more sensitive to latency than the
floating point suite. While it begins 66% more sensitive to
bandwidth than the floating point suite, at very high mem-
ory latencies the integer suite is nearly 30% less sensitive to
bandwidth than the floating point suite.

6. Conclusions and Future Work

This paper has examined the impact of memory latency
and bandwidth on a set of traditional floating-point ori-
ented and emerging integer oriented supercomputer appli-
cations. The results demonstrate that both application suites
are more dominated by latency than bandwidth. It has fur-
ther shown that the emerging integer applications are 2.9×
more sensitive to a halving of the memory bandwidth or
doubling of the memory latency than their traditional coun-
terparts, which is critical to understanding the nature of
these emerging codes.

This result has two critical impacts to the field of su-
percomputer architecture: first, it demonstrates that there is
some degree of “bandwidth headroom” in the construction

of multicore supercomputers; and second, it quantitatively
shows that emerging applications are much more memory
sensitive than traditional scientific computing codes. This
provides further evidence in support of the long-held belief
that the lessons of scientific computing have little applica-
bility to these applications, particularly as they relate to data
decomposition.

Because the transition to multicore MPPs will impact the
memory system in future machines, understanding the on-
node memory performance of real applications is critical.
The technology determines the number of available inde-
pendent channels into memory (which affects aggregate la-
tency by constraining the number of simultaneous memory
accesses the memory system can sustain), and the speed and
width of those channels (which affects bandwidth). Both
are likely to be more constrained than the number of cores
that can placed on a die. Choosing the right balance for
supercomputer applications will depend on characterizing
the requirements of the workloads of those machines. This
study does so, and shows that this is an even more signif-
icant problem for emerging codes than for classical super-
computing applications.

Finally, this study identifies four critical applications
(two from each suite) that demonstrate the most sensitiv-
ity to latency and bandwidth. Cube3 and Alegra from the
floating point suite and Connected Components and Short-
est Path from the integer suite. As a whole, problems in
graph theory are shown to be particularly challenging to the
memory system.

Future work will extend this study to examine the impact
of moving to multicore architectures with simpler cores.

References

[1] Apple Architecture Performance Groups. Computer
Hardware Understanding Development Tools 2.0 Ref-
erence Guide for MacOS X. Apple Computer Inc, July
2002.

[2] Luiz Andre Barroso, Kourosh Gharachorloo, and
Edouard Bugnion. Memory system characterization
of commercial workloads. In Proceedings of the 25th
annual international symposium on Computer archi-
tecture, pages 3–14. IEEE Computer Society, 1998.

[3] Doug Burger and Todd Austin. The SimpleScalar Tool
Set, Version 2.0. SimpleScalar LLC.

[4] Z. Cvetanovic and D. Bhandarkar. Characterization
of alpha AXP performance using TP and SPEC work-
loads. In Proceedings of the 21ST annual international
symposium on Computer architecture, pages 60–70.
IEEE Computer Society Press, 1994.

41

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:22 from IEEE Xplore. Restrictions apply.

(a) Suite Mean (b) Floating Point (c) Integer

Figure 5. Latency and Bandwidth Sensitivity. It should be noted that bandwidth sensitivity is positive because
increasing bandwidth increases performance while latency sensitivity is negative because increasing latency
decreases performance. Part (a) of the figure depicts the average for each of the benchmark suites, while
(b) shows the floating point applications and (c) the integer.

[5] Peter J. Denning. The working set model for pro-
gram behavior. In Proceedings of the first ACM sym-
posium on Operating System Principles, pages 15.1–
15.12. ACM Press, 1967.

[6] J. Dongarra and P. Luszczek. Introduction to the HPC-
Challenge Benchmark Suite. Technical Report ICL-
UT-05-01, 2005.

[7] Domenico Ferrari. A generative model of working
set dynamics. In Proceedings of the 1981 ACM SIG-
METRICS conference on Measurement and modeling
of computer systems, pages 52–57. ACM Press, 1981.

[8] Swathi Tanjore Gurumani and Aleksandar
Milenkovic. Execution characteristics of SPEC
CPU2000 benchmarks: Intel C++ vs. Microsoft
VC++. In Proceedings of the 42nd annual Southeast
regional conference, pages 261–266. ACM Press,
2004.

[9] John L. Hennessy and David A. Patterson. Computer
Architecture a Quantitative Approach. Morgan Kauf-
mann Publishers, 2002.

[10] Kimberly Keeton, David A. Patterson, Yong Qiang
He, Roger C. Raphael, and Walter E. Baker. Perfor-
mance Characterization of a Quad Pentium Pro SMP
using OLTP Workloads. In Proceedings of the Inter-
national Sympoisum on Computer Architecture, pages
15–26, 1998.

[11] Peter M. Kogge, Jay B. Brockman, and Vincent Freeh.
Processing-In-Memory Based Systems: Performance
Evaluation Considerations. In Workshop on Perfor-
mance Analysis and its Impact on Design held in con-
junction with ISCA, Barcelona, Spain, June 27-28,
1998.

[12] Dennis C. Lee, Patrick Crowley, Jean-Loup Baer,
Thomas E. Anderson, and Brian N. Bershad. Exe-
cution characteristics of desktop applications on win-
dows NT. In International Symposium on Computer
Architecture, pages 27–38, 1998.

[13] Jack L. Lo, Luiz Andre Barroso, Susan J. Eggers,
Kourosh Gharachorloo, Henry M. Levy, and Sujay S.
Parekh. An Analysis of Database Workload Perfor-
mance on Simultaneous Multithreaded Processors. In

42

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:22 from IEEE Xplore. Restrictions apply.

International Symposium on Computer Architecture,
pages 39–50, 1998.

[14] Ann Marie Grizzaffi Maynard, Colette M. Donnelly,
and Bret R. Olszewski. Contrasting characteristics and
cache performance of technical and multi-user com-
mercial workloads. In Proceedings of the Sixth Inter-
national Conference on Architectural support for Pro-
gramming Languages and Operating Systems, pages
145–156. ACM Press, 1994.

[15] McCalpin, John D. Stream: Sustainable memory
bandwidth in high performance computers, 1997.

[16] Sally A. McKee. Reflections on the memory wall. In
CF ’04: Proceedings of the 1st conference on Com-
puting frontiers, page 162, New York, NY, USA, 2004.
ACM Press.

[17] Richard C. Murphy. Traveling Threads: A New Mul-
tithreaded Execution Model. Ph.D. Dissertation, Uni-
versity of Notre Dame, May 2006.

[18] Richard C. Murphy, Jonathan Berry, William McLen-
don, Bruce Hendrickson, Douglas Gregor, and An-
drew Lumsdaine. DFS: A Simple to Write Yet
Difficult to Execute Benchmark. In IEEE Interna-
tional Symposium on Workload Characterization 2006
(IISWC06), October 25-27, 2006.

[19] Richard C. Murphy and Peter M. Kogge. On the Mem-
ory Access Patterns of Supercomputer Applications:
Benchmark Selection and its Implications. To Appear
In IEEE Transactions on Computers.

[20] Richard C. Murphy, Arun Rodrigues, Peter Kogge,
and Keith Underwood. The implications of working
set analysis on supercomputing memory hierarchy de-
sign. In The 2005 International Conference on Super-
computing, June 20-22, 2005.

[21] Leonid Oliker, Andrew Canning, Jonathan Carter,
John Shalf, and Stephane Ethier. Scientific Compu-
tations on Modern Parallel Vector Systems. In Pro-
ceedings of Supercomputing, page 10, 2004.

[22] David A. Patterson and John L. Hennessy. Computer
Organization and Design: The Hardware/Software In-
terface, 2ed. Morgan Kaufmann Publishers, 1997.

[23] Arun Rodrigues, Richard Murphy, Peter Kogge, and
Keith Underwood. Characterizing a New Class of
Threads in Scientific Applications for High End Su-
percomputers. In Proceedings of the 18th Annual
ACM International Conference on Supercomputing,
pages 164–174, June 26-July 1 2004.

[24] Arun F. Rodrigues. Programming Future Architec-
tures: Dusty Decks, Memory Walls, and the Speed of
Light. Ph.D. Dissertation, University of Notre Dame,
2006.

[25] Juan Rodriguez-Rosell. Empirical working set be-
havior. Communications of the ACM, 16(9):556–560,
1973.

[26] Rafael Saavedra and Alan Smith. Analysis of bench-
mark characteristics and benchmark performance pre-
diction. ACM Transactions on Computer Systems,
14(4):344–84, 1996.

[27] D. R. Slutz and I. L. Traiger. A note on the calculation
of average working set size. Communications of the
ACM, 17(10):563–565, 1974.

[28] Jeffrey S. Vetter and Andy Yoo. An Empirical Perfor-
mance Evaluation of Scalable Scientific Applications.
In Proceedings of Supercomputing, pages 1–18, 2002.

[29] Jonathan Weinberg, Michael McCracken, Alan
Snavely, and Erich Strohmaier. Quantifying Locality
In The Memory Access Patterns of HPC Applications.
In Supercomputing 2005, page 50, November, 2005.

[30] Wm. A. Wulf and Sally A. McKee. Hitting the mem-
ory wall: implications of the obvious. SIGARCH Com-
put. Archit. News, 23(1):20–24, 1995.

43

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 10, 2008 at 08:22 from IEEE Xplore. Restrictions apply.

