
PARSEC vs. SPLASH-2: A Quantitative Comparison of Two
Multithreaded Benchmark Suites on Chip-Multiprocessors

Christian Bienia†, Sanjeev Kumar‡ and Kai Li†
† Department of Computer Science, Princeton University ‡ Microprocessor Technology Labs, Intel

cbienia@cs.princeton.edu

ABSTRACT
The PARSEC benchmark suite was recently released and has been
adopted by a significant number of users within a short amount
of time. This new collection of workloads is not yet fully under-
stood by researchers. In this study we compare the SPLASH-2 and
PARSEC benchmark suites with each other to gain insights into
differences and similarities between the two program collections.
We use standard statistical methods and machine learning to ana-
lyze the suites for redundancy and overlap on Chip-Multiprocessors
(CMPs). Our analysis shows that PARSEC workloads are funda-
mentally different from SPLASH-2 benchmarks. The observed dif-
ferences can be explained with two technology trends, the prolifer-
ation of CMPs and the accelerating growth of world data.

Categories and Subject Descriptors
D.0 [Software]: [benchmark suite]

General Terms
Performance, Measurement, Experimentation

Keywords
benchmark suite, performance measurement, multithreading,
shared-memory computers

1. INTRODUCTION
The Princeton Application Repository for Shared-Memory Com-
puters (PARSEC) was recently released [1]. This collection of mul-
tithreaded benchmarks extends the spectrum of parallel workloads
researchers can choose from. It is the outcome of a joint venture
between Intel and Princeton University that seeks to provide the re-
search community with an up-to-date collection of modern work-
loads for studies of chip-multiprocessors (CMPs). The new bench-
mark suite immediately aroused the interest of researchers around
the world who have started to use it for their work. The first papers
with results obtained through PARSEC have been submitted. This
motivates a fundamental question:

What distinguishes PARSEC from other benchmark
suites?

Several multithreaded benchmark suites are available. SPLASH-
2 [16] and SPEC OMP2001 include workloads from different do-
mains but focus on High-Performance Computing. BioParallel [7]
is composed of bioinformatics programs. ALPBench [10] is a suite
of multimedia workloads. MineBench [11] was created to study
data mining. With PARSEC, researcher now have a new option

and need to understand how the selection of this benchmark suite
can impact their results. Other scientists might face the challenge
to interpret PARSEC results and seek ways to apply their existing
knowledge of other workloads to the new benchmarks.

To help other researchers understand PARSEC we compare the
suite to the SPLASH-2 selection of programs. SPLASH-2 is prob-
ably the most commonly used suite for scientific studies of parallel
machines with shared memory. According to Google Scholar, its
characterization study [16] was cited more than 1400 times. Like
PARSEC it is one of few parallel suites that are not limited to a sin-
gle application domain. Its wide use and the thorough understand-
ing researchers have of these workloads make it an excellent candi-
date for a comparison. PARSEC aims to improve over SPLASH-2
with more up-to-date programs from a broader range of application
domains.

This paper makes three contributions:

• We compare SPLASH-2 with PARSEC to determine how
much the program selections of the two suites overlap. Sig-
nificant differences exist that justify an overhaul of the pop-
ular SPLASH-2 benchmark suite.

• We identify workloads in both suites that resemble each other
that can help researcher to interpret results. A few bench-
marks of the two suites have similar characteristics.

• We demonstrate how current technology trends are chang-
ing programs. The direct comparison of the PARSEC suite
with SPLASH-2 shows that the proliferation of CMPs and
the massive growth of data have a measurable impact on
workload behavior.

The scope of our paper is the parallel aspects of the behavior of
multithreaded workloads on CMPs. Moreover, we do not study
single-core characteristics because this is not the intended use of
either benchmark suite. The focus of our study is on redundancy
within and between the suites. The remainder of the paper is struc-
tured as follows: In Section 2 we give an overview of both bench-
mark suites. Section 3 outlines the methodology that we used and
explains the statistical methods that we employed. In Section 4 we
present our comparison and show that SPLASH-2 and PARSEC
contain fundamentally different types of programs. An interpreta-
tion of these results is given in Section 5, where we demonstrate
how the objectives of PARSEC have lead to the inclusion of work-
loads with different properties. Future and related work are sum-
marized in Sections 6 and 7. We conclude our work in Section 8.

47978-1-4244-2778-9/08/$25.00 ©2008 IEEE

Program Application Domain Problem Size

barnes High-Performance Computing 65,536 particles

cholesky High-Performance Computing tk29.O

fft Signal Processing 4,194,304 data points

fmm High-Performance Computing 65,536 particles

lu High-Performance Computing 1024×1024 matrix, 64×64 blocks

ocean High-Performance Computing 514×514 grid

radiosity Graphics large room

radix General 8,388,608 integers

raytrace Graphics car

volrend Graphics head

water High-Performance Computing 4096 molecules

Table 1: Overview of SPLASH-2 workloads and the used inputs.

Program Application Domain Problem Size

blackscholes Financial Analysis 65,536 options

bodytrack Computer Vision 4 frames, 4,000 particles

canneal Engineering 400,000 elements

dedup Enterprise Storage 184 MB data

facesim Animation 1 frame, 372,126 tetrahedra

ferret Similarity Search 256 queries, 34,973 images

fluidanimate Animation 5 frames, 300,000 particles

freqmine Data Mining 990,000 transactions

streamcluster Data Mining 16,384 points per block, 1 block

swaptions Financial Analysis 64 swaptions, 20,000 simulations

vips Media Processing 1 image, 2662×5500 pixels

x264 Media Processing 128 frames, 640×360 pixels

Table 2: Overview of PARSEC workloads and the simlarge input set.

2. OVERVIEW
The SPLASH-2 suite is one of the most widely used collections
of multithreaded workloads [16]. It is composed of eleven work-
loads, three of which come in two implementations that feature dif-
ferent optimizations. We provide an overview in Table 1. When
SPLASH-2 was released at the beginning of the 90s, parallel ma-
chines were still a relatively uncommon and expensive branch of
computers. Most of them were owned by well funded govern-
ment and research institutions where they were primarily used to
work on scientific problems. The composition of the SPLASH-2
suite reflects that. The majority of workloads belong to the High-
Performance Computing domain.

PARSEC is a new benchmark suite that was released at the begin-
ning of 2008 [1]. It was rapidly adopted by researchers around the
world. Within the first 6 months since its release it was downloaded
over 500 times. PARSEC has the following five main features:

Multithreaded Applications All PARSEC workloads have been
parallelized to take advantage of multiprocessor computers
with shared memory.

Emerging Workloads The suite focuses on new applications that
require a significant increase in processing power. These ap-
plications pose a challenge that has to be solved in order to
fully take advantage of their capabilities.

Diverse PARSEC includes programs from a wide range of appli-
cation domains and usage models in order to capture the in-
creasingly diverse ways in which computers are used.

Employ State-of-Art Techniques The included workloads imple-
ment the latest algorithms and techniques in their field.

Support Research The benchmark suite supports research by pro-
viding an infrastructure to allow the instrumentation and ma-
nipulation of its workloads and to assist detailed microarchi-
tectural simulations.

The workload composition of the PARSEC suite differs signifi-
cantly from SPLASH-2. We provide an overview in Table 2. Since
the release of SPLASH-2 parallel computing has reached the main-
stream. The wide availability of CMPs has turned multiprocessor
machines from an expensive niche product into a commodity that is
used for problems from an increasingly wide range of application
domains. This fact has influenced the PARSEC program selection.
The suite includes benchmarks from many different areas such as
enterprise servers, data mining and animation.

Unlike SPLASH-2 PARSEC already includes input sets that reflect
current computing problems. The reference input set of SPLASH-2
however cannot be considered representative for modern problem
sizes anymore due to its higher age. Where possible we used a
combination of profiling and timing on real machines to determine
inputs for SPLASH-2 that have computational demands similar to
the PARSEC inputs. In order to preserve the comparability of dif-
ferent programs we used the same input for workloads that solve
the same problem, even if the computational requirements would
have allowed us to choose a bigger problem size. In each case the
two versions of lu, ocean and water, but also barnes and fmm
have therefore the same input size. Table 1 and Table 2 show the
inputs that we chose for this study.

48

3. METHODOLOGY
We used the following methodology to gather and analyze data
about the behavior of the workloads: First, we identified a set of
interesting characteristics (Section 3.1). We then used execution-
driven simulation to obtain the data relevant for the characteristics
(Section 3.2). Finally, standard statistical methods were applied to
the data to compute the similarity of the workloads (described in
Sections 3.3 and 3.4).

3.1 Program Characteristics
Both SPLASH-2 and PARSEC are aimed at the study of parallel
machines. A comprehensive benchmark suite for single processor
systems already exists with SPEC CPU2006[14]. The focus of our
study is therefore on the parallel behavior of the programs. We pri-
marily chose characteristics that reflect how threads communicate
with each other on a CMP and how data is shared. Our selection
of interesting program characteristics and how we measured them
largely follows the methodology established by previous work on
characterization of multithreaded programs [16, 6, 10, 1].

Characteristic Type

Floating point operations per instruction Instruction

ALU operations per instruction Instruction

Branches per instruction Instruction

Memory references per instruction Instruction

Cache misses per memory reference Working Set

Fraction of cache lines shared Sharing

Fraction of cache lines shared and
Sharing

written to

Accesses to shared lines per
Sharing

memory reference

Writes to shared lines per
Sharing

memory reference

Table 3: Characteristics chosen for the redundancy analysis.

Instruction metrics are based on totals across all cores for the

whole program.

The characteristics that we chose are given in Table 3. To capture
the fundamental program properties we included a set of four in-
struction characteristics that were normalized to the total number of
instructions: The number of floating point operations, ALU instruc-
tions, branches and memory accesses. Threads running on a CMP
use shared caches to communicate and share data with each other.
Another five characteristics were thus chosen that reflect properties
related to data usage and communication such as the total work-
ing set size or how intensely the program works with the shared
data. These characteristics are the data cache miss rate, what per-
centage of all cache lines is shared for reading and what percentage
for writing, the ratio of memory references that reads from shared
cache lines and the ratio that writes to them.

One difficulty in extracting properties related to cache usage is that
the behavior of the program might change with the cache size. For
example, shared data might get displaced by more frequently used
private data [1] if the cache is too small to contain the whole work-
ing set. It is therefore necessary to collect data for a sufficiently
large range of cache sizes. In order to avoid that unrealistic archi-
tecture parameters skew the data towards aspects of the program
behavior not relevant for future CMPs, we limited our experiments
to 8 cache sizes ranging from 1 MB to 128 MB. This approach
results in the following 44 characteristics:

Instruction Mix 4 characteristics that describe which instructions
were executed by the program

Working Sets 8 characteristics providing information about work-
ing set sizes

Sharing 32 characteristics describing how much of the working
set is shared and how intensely it is used

3.2 Experimental Setup
We obtained our data with Pin[13]. Pin is comparable to the ATOM
toolkit for Compaq’s Tru64 Unix on Alpha processors. It em-
ploys dynamic binary instrumentation to insert routines into the
instruction stream of the program under analysis. To obtain in-
formation about the impact of different cache sizes, we employed
CMP$im [7]. CMP$im is a plug-in for Pin that simulates the cache
hierarchy of a CMP.

The numbers for the working set and sharing characteristics were
collected by simulating a single shared cache for a CMP. We used
this method because we are interested in fundamental program prop-
erties, not processor features. This approach abstracts from the ar-
chitectural details of the memory hierarchy while still capturing the
fundamental properties of the program. It is a common method for
the analysis of multithreaded programs [16, 6, 10, 1].

We simulated an 8-way CMP with a single cache shared by all
cores. The cache was 4-way associative with 64 byte lines. Its
capacity was varied from 1 MB to 128 MB to collect the charac-
teristics for different cache sizes. The experiments were conducted
on an 8-way SMP with Intel 64-bit CPUs running a Linux 2.6.9

kernel. All programs were compiled with gcc 4.2.1. We chose
gcc as our compiler because of its wide-spread use. It is usually the
compiler of choice for many non-scientific workloads. The entire
runtime of all programs was simulated.

3.3 Removing Correlated Data
Characteristics of real-world programs might be correlated. For ex-
ample, the behavior of programs on CMPs with two caches of sim-
ilar size might be almost identical. Correlated characteristics can
skew the redundancy analysis. It is therefore necessary to elim-
inate correlated information with Principal Components Analysis
(PCA) [3]. PCA is a common method used for redundancy analy-
sis [4, 5, 15, 8, 12]. First, the data is mean-centered and normalized
to make it comparable. PCA is then employed to remove correlated
information and reduce the dimensionality of the data. PCA com-
putes new variables – the Principal Components (PCs) – that are
linear combinations of the original variables. The vectors com-
puted in that manner have decreasing variance, i.e. the amount of
information in each vector decreases. In order to decide objectively
how much information to keep, we use Kaiser’s Criterion to choose
how many PCs to eliminate. This approach keeps only the top few
PCs that have eigenvalues greater than or equal to one. The result-
ing data is guaranteed to be uncorrelated while capturing most of
the information from the original variables.

3.4 Measuring Similarity
We employ hierarchical clustering to group similar programs into
clusters. The Euclidean distance between the program characteris-
tics is a measure for the similarity of the programs. This approach
is a common way to process the output of a PCA [5, 15, 8, 12].
Hierarchical clustering works as follows:

49

0.3 0.4 0.5 0.6 0.7 0.8 0.9

lu, contig. (SPLASH-2)

lu, non-contig. (SPLASH-2)

barnes (SPLASH-2)

fmm (SPLASH-2)

vips (PARSEC)

radiosity (SPLASH-2)

raytrace (SPLASH-2)

freqmine (PARSEC)

ferret (PARSEC)

water, nsquared (SPLASH-2)

bodytrack (PARSEC)

water, spatial (SPLASH-2)

blackscholes (PARSEC)

dedup (PARSEC)

fluidanimate (PARSEC)

cholesky (SPLASH-2)

volrend (SPLASH-2)

radix (SPLASH-2)

x264 (PARSEC)

fft (SPLASH-2)

ocean, contig. (SPLASH-2)

canneal (PARSEC)

streamcluster (PARSEC)

facesim (PARSEC)

ocean, non-contig. (SPLASH-2)

swaptions (PARSEC)

Linkage Distance

W
o

rk
lo

a
d

d = ~0.42 d = ~0.72

Figure 1: Similarity of SPLASH-2 and PARSEC workloads. The two vertical arrows are used for illustration purposes. SPLASH-2

codes tend to cluster early (distance d <∼ 0.42), PARSEC includes a larger number of diverse workloads (distance d >∼ 0.72).

1. Assign each workload to its own cluster.

2. Compute the pair-wise distances of all clusters.

3. Merge the two clusters with the smallest distance.

4. Repeat steps 2 - 3 until only a single cluster is left.

The output of the hierarchical clustering algorithm can be visual-
ized by a dendrogram. The vertical axis lists all workloads, the hor-
izontal axis is the linkage distance. Each joint in the dendrogram
corresponds to a merge step of the clustering algorithm. Its projec-
tion onto the horizontal axis shows how similar two clusters were
when they were merged. Clusters with very dissimilar workloads
will be merged late, their joint will be close to the root. Programs
with very similar characteristics on the other hand will be merged
early. Their joint will be close to the leaves, which represent the
individual workloads.

4. REDUNDANCY ANALYSIS RESULTS
In this section we employ PCA and hierarchical clustering to an-
alyze how redundant the SPLASH-2 and PARSEC workloads are.
We are interested in answers for the following three questions:

• How much do the two program collections overlap?

• In particular, which workloads of the PARSEC suite resem-
ble which SPLASH-2 codes?

• Which benchmark suite is more diverse?

We obtain answers to those questions by analyzing the redundancy
within and between the two benchmark suites.

Our first step was to analyze both benchmark suites separately to
measure their diversity by computing the total variance of their
characteristics. It is almost the same for both suites: SPLASH-2
characteristics have a variance of 19.55, for PARSEC the value is
18.98. However, the variance does not take into account how pro-
grams add diversity. Moreover, workloads with almost identical
characteristics that deviate substantially from the mean will arti-
ficially inflate the variance without contributing much beyond the
inclusion of only one of these programs. We will see that this is the
case with the two lu codes. A more detailed analysis is therefore
necessary before conclusions can be drawn.

50

Our second step was a direct comparison. To compare the suites
directly with each other, we analyzed all workloads jointly using
a single PCA. This approach guarantees that the PCA weighs all
characteristics equally for all programs, since different data will
generally result in different correlation and hence different PCs.
Having equal weights for the characteristics of all workloads allows
us to compare the benchmarks directly. The PCA chose 10 Princi-
pal Components that retain 74.73% of the variance. Figure 1 shows
the result as a dendrogram containing all SPLASH-2 and PAR-
SEC workloads. PARSEC exhibits substantially more diversity
than SPLASH-2. The dendrogram shows that several SPLASH-
2 programs form clusters early on. As one would expect, most of
the SPLASH-2 programs that come in two versions exhibit signifi-
cant amounts of redundancy (lu and water). Only the two ocean
codes are noticeably different. In fact, the non-contiguous version
of ocean is the one least similar to any other SPLASH-2 work-
loads. This is mainly a consequence of intense inter-core commu-
nication that is caused by its two-dimensional data layout. With a
4 MB cache, 46% of all memory references of the non-contiguous
version of ocean go to shared data. About one in three of these
references is a write. That is a more than three times higher ratio
of shared writes than the next highest one of any SPLASH-2 pro-
gram. This difference is caused by optimizations for machines with
distrubted shared memory and will be discussed in more detail in
Section 5.1.1.

Before any PARSEC workloads start to form clusters with each
other, the algorithm has already identified 3 groups of workloads
containing 7 SPLASH-2 programs in total that exhibit similar char-
acteristics. These clusters have a linkage distance less than d =∼

0.42. We mentioned earlier that workload pairs consisting of two
versions of the same program tend to form clusters (lu and water).
Obviously the differences between both versions do not noticeably
affect their characteristics. The programs radiosity, fmm and
barnes form another cluster. vips is the PARSEC workload most
similar to them. These benchmarks tend to use a limited number
of branches (no more than 11.24% of all instructions). They have
medium-sized working sets and benefit from additional cache ca-
pacity up to 16 MB. At that point their miss rates fall below 0.1%.
bodytrack is identified as the PARSEC workload most similar to
the water programs. Programs of that cluster use about the same
amount of floating point operations (between 29.88% and 31.97%
of all instructions) and memory accesses (between 27.83% and
35.99% of all instructions). About half of all memory references
are used to access shared data once the cache capacity is sufficiently
large.

The first pair of PARSEC workloads to be assigned to the same
cluster are bodytrack and blackscholes. They exhibit a linkage
difference of about 0.45. The algorithm then identifies a large num-
ber of workloads with similar distances. By the time cluster pairs
with a distance of about 0.72 are considered, most workloads have
been assigned to larger clusters. A distance within that range is the
common case for both suites. No obvious similarities can be found
anymore between programs clustering in that range.

Several workloads exist that are very different from all other pro-
grams in both suites (swaptions, the non-contiguous version of
ocean, facesim and streamcluster). These programs have a
high linkage distance of more than 0.72 to any other cluster of pro-
grams and can be considered unique within the analyzed program
collection. All but one of these workloads are PARSEC programs.
If the two lu kernels are treated as a single program, they can also

-0.4
-0.2

0
0.2

0.4

-0.4-0.200.2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

PC 1PC2

P
C

 3

Figure 2: Scatter plot of all workloads using the first three PCs

of all characteristics. SPLASH-2 (dots) and PARSEC work-

loads (crosses) tend to populate different regions of the charac-

teristics space.

be added to this enumeration, however they have a significantly
lower distance to the remainder of the suites than e.g. swaptions
or the non-contiguous version of ocean.

Only two PARSEC programs were identified that resemble some
of the SPLASH-2 codes (bodytrack and vips). The similarity
within clusters of SPLASH-2 workloads is often greater than the
similarity to most other PARSEC workloads. This finding indicates
that the two suites cover fundamentally different types of programs.
Figure 2 is a scatter plot of all workloads using the first three PCs.
It visualizes only a subset of the available information and should
hence not be used to infer information about workload similarity.
Programs appearing close in the plot might in fact be far away if
all relevant dimensions are considered. However, the plot is useful
to visualize how programs cluster. We added lines to indicate the
regions that we refer to. These lines are not meant to be boundaries
and their exact location is not relevant for our conclusions. They
are only an aid to visualize tendencies. From Figure 2 it can be
seen that all but three PARSEC workloads group in the lower left
part of the chart, while all but two SPLASH-2 programs are located
in the remaining space. Obviously, SPLASH-2 and PARSEC have
little overlap.

Our analysis shows that on modern CMPs, the PARSEC suite con-
tains significantly more diversity than SPLASH-2. Benchmarks
of the SPLASH-2 suite tend to cluster early while the PARSEC
suite contains a larger number of unique benchmarks. Moreover,
PARSEC and SPLASH-2 workloads are fundamentally different,
as shown by the scatter plot.

4.1 Multiple Differences
To identify the reason why the two suites differ we performed an
analysis of subsets of the characteristics. We broke all metrics up
into groups reflecting the instruction mix, working sets and shar-
ing behavior of the programs, which we analyzed separately from
each other. This approach allows us to determine which types of
characteristics are the reason for the differences. Our results are

51

-0.3

-0.2

-0.1

-0.3-0.2-0.100.10.20.30.40.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

PC 2PC 1

P
C

 3

Figure 3: Scatter plot using only the instruction mix character-

istics. SPLASH-2 workloads (dots) form a single, major cluster

in the first three PC dimensions that contains virtually no PAR-

SEC programs (crosses).

presented in Figures 3 - 5. We again added lines to identify the
discussed regions.

We will first focus on the instruction mix of the workloads. The
instruction mix of SPLASH-2 and PARSEC differs significantly.
In Figure 3 we present a scatter plot of the first three PCs derived
from the four instruction mix characteristics. As can be seen from
the figure SPLASH-2 codes tend to populate the area in the middle.
PARSEC programs can primarily be found in the outer regions. The
overlap of the suites is small. This result is not surprising consider-
ing that the two suites include programs from different domains.

The next aspect which we analyze is the working sets. About half
of all PARSEC workloads have noticeably different working set
characteristics from all other programs. A scatter plot based on the
eight miss rates can be seen in Figure 4. Our analysis of the first
three PCs shows that there exists a tight cluster in the first three
dimensions to which almost all SPLASH-2 codes and many PAR-
SEC workloads belong. Only one SPLASH-2 program is visibly
different, but multiple PARSEC workloads have noticeably differ-
ent working set properties.

The sharing behavior is one of the most important properties of
a multithreaded program on a CMP. Similarities between the two
suites seem to exist, albeit with different tendencies. Figure 5
shows a scatter plot with only the 32 sharing characteristics. Bench-
marks of the SPLASH-2 suite can predominantly be found in the
area on the left side of the figure. PARSEC programs tend to pop-
ulate the areas on the right and bottom half. Some overlap seems
to exist in the lower half of the figure around the horizontal line
where a sufficient number of workloads of both suites is located to
indicate that commonalities might exist. However, these similari-
ties can only exist between approximately half of the programs in
each suite.

Our analysis shows that there is no single source for the differences
of the two suites. The program collections exhibit dissimilarities in
all studied characteristics. No single property can be identified that
can be considered the main reason for the differences.

-0.2
0

0.2
0.4

0.6

-0.6-0.4-0.200.20.4

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PC 2
PC 1

P
C

 3

Figure 4: Scatter plot using only the working set characteris-

tics. At least half of the PARSEC workloads (crosses) have sub-

stantially different working set properties in the first three PC

dimensions, whereas only one of the SPLASH programs (dots)

is visibly unique.

-0.5

0

0.5

-0.4
-0.2

0
0.2

0.4
0.6

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

PC 2
PC 1

P
C

 3

Figure 5: Scatter plot using only the sharing characteris-

tics. SPLASH-2 programs (dots) and PARSEC benchmarks

(crosses) tend to populate different areas of the first three PC

dimensions of the characteristics space.

5. OBJECTIVES OF PARSEC
PARSEC was designed with the objective to capture recent trends
in computing. The remarkably small overlap between SPLASH-2
and PARSEC indicates that these developments might have an im-
pact on workloads that fundamentally alters their characteristics.
In this section we will analyze our data from the perspective of
two technology trends that have influenced the PARSEC suite: The
proliferation of CMPs and the growth of the world’s data. PAR-
SEC workloads have been optimized to take advantage of CMPs.
Its input sets capture the increasing amount of data that is globally
available. SPLASH-2, on the other hand, was created before ei-
ther of those trends could have an impact on its composition or the
design of its programs. We will discuss how both trends are affect-
ing programs. Our goal is to provide a basic understanding of the
results of the last section.

52

Figures 6 and 7 show the miss rates and ratio of shared writes to
all accesses of the workloads. We will use this information for our
analysis of the impact of the trends. Only a fraction of the infor-
mation considered by the clustering algorithm for the redundancy
analysis can be shown here because the amount of data exceeds
what can be comprehended by humans. We show the averages
across all cache sizes and details for a selected cache size for both
characteristics. We had to use different cache sizes for the detailed
breakdowns in the two cases because the shared write ratio is pos-
itively correlated with the cache size, unlike miss rates, which are
negatively correlated. Different cache sizes from opposite ends of
the used spectrum reveal more information about the program be-
haviors.

5.1 Chip-Multiprocessors
CMPs have become ubiquitous. They integrate multiple processing
cores on a single die. The implications of this integration step are
twofold: First, it has turned multiprocessors into a widely available
commodity that is used to run an increasingly diverse spectrum of
programs. The PARSEC suite takes this into account and includes
workloads from a wider range of application domains. This is one
of the reasons for the increased diversity of the suite. Some charac-
teristics such as the instruction mix seem to be directly affected by
that. Second, the trend to CMPs changes the cost model that is em-
ployed for program optimizations: On-chip traffic between cores is
fast and inexpensive. Off-chip accesses to main memory are costly
and usually limited by the available off-chip bandwidth. PARSEC
workloads have been adapted to this cost model. SPLASH-2 pro-
grams, however, have been optimized for systems with distributed
shared memory. They assume a large amount of local memory that
can be accessed at relatively little cost while communication with
other processing nodes requires I/O and is expensive. This is the
opposite of the CMP cost model and can have a significant nega-
tive impact on the behavior of the program on CMPs as we will
demonstrate using the ocean codes.

5.1.1 High Impact of Optimizations
Ocean is a program that simulates large-scale ocean movements.
SPLASH-2 provides two versions that solve the same problem but
employ a different memory layout: The non-contiguous implemen-
tation manages the grid on which it operates with two-dimensional
arrays. This data structure prevents that partitions can be allocated
contiguously. The contiguous version of the code implements the
grid with three-dimensional arrays. The first dimension specifies
the processor which owns the partition so that partitions can be al-
located contiguously and entirely in the local memory of machines
with distributed shared memory. Figures 6 and 7 show that this
optimization lowers the number of shared writes at the cost of a
much higher miss rate on CMPs. The effect is significant. The con-
tiguous version of ocean has a shared write ratio that is about 3-5
times lower than the contiguous version for all cache sizes. Its miss
rate, however, is about two orders of magnitude higher for small
caches. It decreases to 0.13% compared to only 0.03% for the non-
contiguous version if the cache capacity is increased to 128 MB.
This makes the contiguous ocean code the SPLASH-2 program
with the worst cache behavior on CMPs. Optimizations like that
are used throughout the SPLASH-2 suite. In the case of ocean
the two available versions allowed us to make a direct comparison,
but an evaluation in all other cases is likely to require a rewrite of
most of the SPLASH-2 suite. The high miss ratio is the reason why
the contiguous version of ocean was identified as most similar to
canneal by the clustering algorithm.

5.1.2 Intense Sharing More Common
Shared writes can be used as an approximation for the amount of
communication between threads that takes place through a shared
cache of a CMP. Figure 7 shows that the communication intensity
is about the same for both suites. It is more concentrated in the
case of SPLASH-2, where the two lu workloads are responsible
for most of the shared writes within the suite. The large growth
in shared writes when the cache capacity is increased from 4 MB
to 8 MB is almost entirely caused by these two programs. Their
ratios increase from 0.88% to 26.18% and from 2.80% to 27.40%.
They remain on that level for all other cache sizes. This increase
coincides with a drop in the miss rate from 0.11% to 0.01% in both
cases when the cache becomes big enough to keep the shared part
of the working set that is less frequently used by the programs.
This unusual behavior is the reason why both lu programs have
been identified as different from all other workloads by the redun-
dancy analysis. The fact that the program is contained twice in two
very similar versions artificially inflates the average shared write
ratio of SPLASH-2. A larger number of PARSEC workloads show
increased sharing activity.

5.1.3 Inclusion of Pipeline Model
Another difference between SPLASH-2 and PARSEC is the inclu-
sion of workloads that employ the pipeline programming model
in PARSEC. The programs dedup and ferret use pipelines with
functional decomposition, i.e. the various pipeline stages have their
own specialized thread pools that handle all the work for their as-
signed pipeline stage. Unlike in the case of workloads such as HPC
programs, the threads of these programs execute different parts of
the code. This programming model is frequently used to develop
commercial workloads because it allows to break down the prob-
lem into independent tasks that can be assigned to different devel-
opment teams, resulting in lower overall complexity and develop-
ment cost. As the data streams through the pipeline, it is handed
from thread to thread, which perform different operations on the
data until the overall goal of the program has been accomplished. A
consequence of this model is that in general all communication be-
tween the pipeline stages is also communication between different
cores. In extreme cases this can be as much as all of the input data,
making efficient communication channels with high bandwidth be-
tween cores a necessity. Shared caches of CMPs satisfy these re-
quirements. Figure 7 shows that both dedup and ferret make use
of this aspect of CMPs.

5.2 Data Growth
World data is currently doubling every three years[2]. This trend is
expected to accelerate further. With this huge amount of informa-
tion comes the need to process and understand it. An example for a
class of programs that deal with this vast amount of data are RMS
programs. These workloads employ models that allow them to have
a basic understanding of the data they process[2]. For example, the
bodytrack program employs a model of the human body to detect
a person being shown in multiple video streams.

The use of models is nothing new for computing. What has changed
is the order of magnitude of the data that must be handled. Both
SPLASH-2 and PARSEC contain programs that employ models,
but only the algorithms and input sets of PARSEC workloads cap-
ture the large increase of data volume that is currently taking place.
The compressed archive that contains the whole suite with all in-
puts is 16 MB in the case of SPLASH-2. For PARSEC, it is 2.7
GB. How does this affect workloads?

53

�
��

�

�
��

�

�
��

�

�
��

�

�
�
��

�

	
�
��

�

�
�
��

�

�
�
�
��

�

���
�

�����

�

�

�����

���
�

������

����������

�
��
�
��
�
��

�
��

�

�
��

�

�
��

�

�
��

�

�
�
��

�

	
�
��

�

�
�
��

�

�
�
�
��

�

���
�

�����

�

�

�����

���
�

������
�

����������

�
��
�
��
�
��

�
��
�

�
�
�
!
��
�

�
!
"
#
�$
�
�

�
�
%
%
�
�
�

&
�
"
'
(

)
�
�
�
�
�*

)
�
$$
�
�

)
�'
�"
�
%
�*

�
��

)
$�
+
*
�%
�

�
�$
�
�
*
�
�'
�
��
$

�
,
�
(
��
!
%
�

-
�(
�

.
�
�
�

�

�

��

�

��

�

	�

�

�
��
�
��
�
��

�
�
$%
�
�

�
�
!
��
�

#

)
/�

)
*
*

�
'
�0
�
!
%
��
1
�2

�
'
�0
%
!
%

�
!
%
��
1
�2

3
�
�
�
%
�0
�
!
%
��
1
�2

3
�
�
�
%
�0
%
!
%

�
!
%
��
1
�2

�
�
"
�!
�
��
#

�
�
"
�4

�
�
#
�$
�
�
�

-
!
�$
�
%
"

5
�
��
$�
0%
�
+
'
�
$�
"
2

5
�
��
$�
0�
(
�
��
�
�2

�

�

��

�

��

�

	�

�

�
��
�
��
�
��

Figure 6: Miss rates of SPLASH-2 and PARSEC. The top charts show the averages of the workloads and the standard deviation for

all cache sizes. The bottom charts give the detailed miss rates of the programs for a 4 MB cache. Miss rates of PARSEC workloads

are noticeably higher for caches up to 16 MB.

�
��
�

�
��
�

�
��
�

�
��
�

�
�
��
�

	
�
��
�

�
�
��
�

�
�
�
��
�

��

�

�

�

��

�

�
�

�

���

�

�
�

�

������
�

����������

�
�
�
��
�
��

��
��
��
�
��

�
�
�!
�
"

�
�

#�
"
$
%

&
'�

&
(
(

�
)
�*
�

!
��
+
�,

�
)
�*
!

!

�

!
��
+
�,

-
�
�
�
!
�*
�

!
��
+
�,

-
�
�
�
!
�*
!

!

�

!
��
+
�,

�
�
�
�
"
��
%

�
�
�
�.

�
�
%
��
�
�
�

/

#�
�
!
�

�
�
��
��
*!
"
0
)
�
��
�
,

�
�
��
��
*"
1
�
��
�
#,

�

�

��

�

�
�

�

���

�

�
�

�

���

�

	
�

�

�
�
�
��
�
��

��
��
��
�
��

�
#�
�
$
"
�
�

#�
"

�

�
%
��
�
�
$

�
�
!
!
�
�
#

2
�
�
)
1

&
�
�
�
"
�(

&
�
��
�
�

&
#)
��
�
!
�(

�
��

&
��
0
(
�!
�

�
��
�
�
(
�
#)
"
��
�

�
3
�
1
��

!
"

/
�1
"

4
�
�
�

�

�

��

�

�
�

�

���

�

�
�

�

���

�

	
�

�

�
�
�
��
�
��

��
��
��
�
��

�
��
�

�
��
�

�
��
�

�
��
�

�
�
��
�

	
�
��
�

�
�
��
�

�
�
�
��
�

��

�

�

�

��

�

�
�

�

���

�

�
�

�

����5�

����������

�
�
�
��
�
��

��
��
��
�
��

Figure 7: Ratio of shared writes to all memory accesses of SPLASH-2 and PARSEC. The top charts show the averages of the

workloads and the standard deviation for all cache sizes. The bottom charts give the detailed ratios of the programs for a 64 MB

cache. The ratio of SPLASH-2 is dominated by the two lu workloads.

54

5.2.1 Large Working Sets More Common
Larger input sets are likely to result in larger working sets or re-
quire streaming program behavior. Figure 6 shows the miss rates of
SPLASH-2 and PARSEC workloads. For smaller caches PARSEC
workloads have a significantly higher average miss rate. The differ-
ence is 0.26% for a 1 MB cache, approximately one fourth more.
It decreases to 0.11% for an 8 MB cache. SPLASH-2 workloads
have an average miss rate 0.02% higher than PARSEC workloads
if 16 MB caches are used. This trend continues to the end of the
spectrum of cache sizes.

A closer look reveals that most of the SPLASH-2 misses are caused
by only one program, the continuous version of ocean. We already
explained in the last section that this behavior is the consequence
of optimizations for distributed shared memory machines that neg-
atively affect the program on CMPs. The contiguous version of
ocean should not be used on CMPs in favor of the non-contiguous
version. This makes fft the only program with a noticeably higher
miss rate. Other SPLASH-2 programs have miss rates that are
within a very narrow range on a lower level. PARSEC captures
a greater range of miss rates in comparison. It includes workloads
such as blackscholes, which has the lowest miss rate of all pro-
grams (0.01% with 4 MB caches), up to canneal, which has the
worst cache behavior of all benchmarks (miss rate of 3.18% with 4
MB caches). A total of four of its programs have a noticeably high
miss rate (canneal, facesim, ferret and streamcluster).

Both SPLASH-2 and PARSEC contain workloads that can gener-
ate their own input. Can this feature be used to generate inputs for
SPLASH-2 benchmarks that have large working sets comparable
to PARSEC workloads? Unfortunately, this is not the case in prac-
tice. Most SPLASH-2 codes have runtime requirements that grow
superlinearly with the size of the input, whereas its working sets
grow no more than linearly in most cases[16]. Time limitations
will thus constrain how large input problems can be in practice.
For this study, we already sized the SPLASH-2 inputs such that the
runtime of all benchmarks was about the same.

In Table 4 we have summarized how time and space requirements
grow with the input size for all SPLASH-2 programs that have a pa-
rameter to scale their inputs. Only fmm, radix and the spatial ver-
sion of water employ algorithms for which the computational re-
quirements grow no faster than the memory requirements. barnes
can also be included in this list for practical purposes since the
logN factor can be considered constant. This limits the number of
workloads that can be tuned to reflect the enormous growth of data
to only four, too few for most scientific studies. Computationally
intensive workloads with relatively small working sets are a char-
acteristic of the SPLASH-2 suite.

6. FUTUREWORK
The large difference between SPLASH-2 and PARSEC workloads
leaves the question open for a combination of the two program col-
lections. Both suites could improve their diversity by integrating
workloads from the other suite. Closely related to this issue is the
question of application area coverage. Which program areas should
a modern benchmark suite cover, and how well do both suites do
from that perspective?

More work is also necessary to understand how these differences
can impact performance on CMPs. A thorough study would require
the analysis of the workloads on a wide range of designs, since the
architectures of CMPs have not matured yet.

Code Time Space

barnes N logN N

fft N1.5 logN N

fmm N N

lu (contig.) N3 N

lu (non-contig.) N3 N

ocean (contig.) N3 N2

ocean (non-contig.) N3 N2

radix N N

water (nsquared) N2 N

water (spatial) N N

Table 4: Growth rate of time and memory requirements of the

SPLASH-2 workloads that have a parameter to scale the input

size N. In most cases execution time grows much faster than

the working set size.

7. RELATEDWORK
Statistical analysis of benchmark characteristics with PCA and hi-
erarchical clustering is a commonly used method. Eeckhout et al.
were first to make use of it for workload analysis [4]. Giladi et al.
analyzed the redundancy within the SPEC CPU89 suite [5]. They
show that a subset of only six programs is sufficient to capture most
of the diversity of the SPEC CPU89 suite. Vandierendonck et al.
came to a similar conclusion when they studied the SPECCPU2000
suite on 340 different machines [15]. Phansalkar et al. presented
a study of redundancy and application balance of SPEC CPU2006
on five different machines using six characteristics. Hoste et al.
proposed the use of genetic algorithms for comparisons of bench-
marks [9]. Their approach is able to reduce the number of char-
acteristics that have to be measured. Joshi et al. compared SPEC
benchmarks across generations of the suite [8]. Our selection of
characteristics differs from previous work because the focus of our
study is on the parallel behavior of programs. We therefore focused
on shared-memory characteristics.

8. CONCLUSIONS
In this paper we compared 44 program characteristics that cap-
ture instruction mix, communication and memory behavior of the
SPLASH-2 and PARSEC benchmark suites on chip-multiproces-
sors. The redundancy analysis showed that SPLASH-2 and PAR-
SEC are composed of programs with fundamentally different prop-
erties. No single reason for the differences could be identified.
PARSEC is the more diverse suite in direct comparison.

Some of the observed differences can be explained by the prolif-
eration of CMPs, which have made parallel computing a widely
available commodity. Multiprocessors are now used in program do-
mains that have little in common with High-Performance Comput-
ing. SPLASH-2 workloads, however, are optimized for distributed
shared memory machines. As the example of ocean showed this
can skew the observed characteristics to the point where the opti-
mization has more impact on the program behavior on CMPs than
the actual algorithm. The enormous growth of data has lead to an
inflation of working set sizes. Input set and processing time limi-
tations prevent that this behavior can be adequately captured with
the SPLASH-2 suite.

So which one is the ”right” suite to use? It depends. SPLASH-
2 remains an important and useful program collection. The fact
that it is an older selection of HPC programs, which are optimized

55

for a different machine model, is not necessarily a disadvantage.
Once released programs can have a very long life. Our comparison
allows researchers to understand the implications of their choice.
Whatever their decision, scientists should expect different results.

9. REFERENCES
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel

Architectures and Compilation Techniques, October 2008.

[2] P. Dubey. Recognition, Mining and Synthesis Moves Computers to
the Era of Tera. Technology@Intel Magazine, February 2005.

[3] G. Dunteman. Principal Component Analysis. Sage Publications,
1989.

[4] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Quantifying
the Impact of Input Data Sets on Program Behavior and its
Applications. Journal of Instruction-Level Parallelism, 5:1–33, 2003.

[5] R. Giladi and N. Ahituv. SPEC as a Performance Evaluation
Measure. Computer, 28(8):33–42, 1995.

[6] C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S. Kumar, A. P.
Selle, J. Chhugani, M. Holliman, and Y.-K. Chen. Physical
Simulation for Animation and Visual Effects: Parallelization and
Characterization for Chip Multiprocessors. SIGARCH Computer
Architecture News, 35(2):220–231, 2007.

[7] A. Jaleel, M. Mattina, and B. Jacob. Last-Level Cache (LLC)
Performance of Data-Mining Workloads on a CMP - A Case Study
of Parallel Bioinformatics Workloads. In Proceedings of the 12th
International Symposium on High Performance Computer

Architecture, February 2006.

[8] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John. Measuring
Benchmark Characteristics Using Inherent Program Characteristics.
IEEE Transactions on Computers, 28(8):33–42, 1995.

[9] Kenneth Hoste and Lieven Eeckhout. Comparing Benchmarks Using
Key Microarchitecture-Independent Characteristics. In Proceedings
of the IEEE International Symposium on Workload Characterization

2006, pages 83–92, 2006.

[10] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The
ALPBench Benchmark Suite for Complex Multimedia Applications.
In Proceedings of the IEEE International Symposium on Workload
Characterization 2005, October 2005.

[11] R. Narayanan, B. Özisikyilmaz, J. Zambreno, G. Memik, and A. N.
Choudhary. MineBench: A Benchmark Suite for Data Mining
Workloads. In Proceedings of the IEEE International Symposium on
Workload Characterization 2006, pages 182–188, 2006.

[12] A. Phansalkar, A. Joshi, and L. K. John. Analysis of Redundancy and
Application Balance in the SPEC CPU2006 Benchmark Suite. In
ISCA ’07: Proceedings of the 34th Annual International Symposium

on Computer Architecture, pages 412–423, New York, NY, USA,
2007. ACM.

[13] Pin. http://rogue.colorado.edu/pin/.

[14] SPEC CPU2006. http://www.spec.org/cpu2006/.

[15] Vandierendonck, H. and De Bosschere, K. Many Benchmarks Stress
the Same Bottlenecks. InWorkshop on Computer Architecture
Evaluation Using Commercial Workloads, pages 57–64, 2 2004.

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd International Symposium
on Computer Architecture, pages 24–36, June 1995.

56

