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Abstract— Java has become one of the predominant languages 

for embedded and mobile platforms due to its architecturally 

neutral design, portability, and security. But Java execution in the 

embedded world encompasses Java Virtual Machines (JVMs) 

specially tuned for the embedded world, with stripped-down 

capabilities, and configurations for memory-limited environments. 

While there have been some studies on desktop and server Java, 

there have been very few studies on embedded Java. The non 

proliferation of embedded Java benchmarks and the lack of 

widespread profiling tools and simulators have only exacerbated 

the problem.  While the industry uses some benchmarks such as 

MorphMark, MIDPMark, and EEMBC Java Grinder Bench, 

their representativeness in comparison to actual embedded Java 

applications has not been studied.  In order to conduct such a 

study, we gathered an actual mobile phone application suite and 

characterized it in detail. We measure several properties of the 

various applications and benchmarks, perform 

similarity/dissimilarity analysis and shed light on the 

representativeness of current industry standard embedded 

benchmarks against actual mobile Java applications. It was 

observed that for many characteristics, the applications had a 

broader range, indicating that the benchmarks were under 

representing the range of characteristics in the real world. 

Furthermore, we find that the applications exhibit less code 

reuse/hotness compared to the benchmarks. We also draw 

comparisons of the embedded benchmarks against popular 

desktop/client Java benchmarks, such as the SPECjvm98 and 

DaCapo. Interestingly, embedded applications spend a significant 

amount of time in standard library code, on average 65%, 

suggesting to the usefulness of software and hardware techniques 

to facilitate pre-compilation with out the real time resource 

overhead of JIT. 

 

I. INTRODUCTION 
Devices such as MP3 players, PDAs, and cellular phones have 

increased in popularity over the past few years, and this is only 

expected to grow. According to Rob Shaddock, chief technology 

officer for Motorola mobile devices, the dramatic size of the cell 

phone market, with its 2 billion subscribers "makes it the largest 

consumer electronics business on the planet, bar none" [16]. A 

2006 Gartner study expects mobile application deployment by 

enterprises to grow by 30% per year till 2011 with over 8% of the 

IT budgets spent on mobile applications.  

As mobile devices grow in complexity and time-to-market 

windows shrink, high-level languages have been increasingly 

adopted to enhance productivity. Issues relating to development 

time, platform security and portability, as well as the traditional 

concerns of performance and cost have been pushed to the 

forefront. More importantly, the rise of malicious software has 

increased the need for ensuring the security of executable code. 

Java [25] has become one of the predominant development 

languages for mobile systems due to its architecturally neutral 

design, rich Application Program Interfaces (APIs) and ability to 

ensure executable security. Java support on embedded platforms 

has experienced significant development and growth from major 

industry groups in recent years. According to a Gartner study, the 

sale of Java enabled cell phones is expected to be nearly 789 

million units in 2007, and 1.17 billion in 2010 [14]. 

There are many reasons for the popularity of Java despite the 

challenges to run Java in a resource-restricted embedded 

environment. The embedded space is populated by a very large 

variety of architectures (ARM, MIPS, x86, PowerPC etc) and 

operating systems(flavors of Linux, Windows CE, Palm etc) 

making portability a key issue. This coupled with the short life 

span of devices and rapid pace of evolution of applications 

exacerbates the need to be able to churn out high quality, portable 

code rapidly. A 2006 Gartner study [14] expects that, 50% of the 

large corporations will employ at least five mobile architectures 

and a third of current application will be discarded by 2009. Under 

such circumstances, the managed runtime based model of Java 

coupled with a virtual machine environment provides considerable 

advantages to an embedded software developer including code 

portability and ease of development.  The presence of garbage 

collection in the language runtime, frees the programmers from the 

burden of memory management, by avoiding memory leaks and 

accidental memory overwrites (“dangling pointers”) [21]. 

Additionally, Java is designed to deploy code dynamically over a 

network in a secure fashion. Furthermore, the bytecode structure of 

Java also ensures that the class files are compact compared to a full 

native binary, allowing for optimal use of limited network 

bandwidth.  

Figure 1 illustrates the various layers in the typical embedded 

Java platform. Embedded Java environments consist of two 

important elements – configurations and profiles. Configurations 

provide a set of libraries and a virtual machine. Profiles are APIs 

built on top of configurations to provide a runtime environment for 

a specific device such as PDA or cell phone. Profile manages the 

application, user interface, networking and I/O. In our 

experiments, the configuration is CLDC, and the profile is MIDP.  

CLDC (Connected Limited Device Configuration) [29] includes 

some new classes designed specifically to fit the needs of small-

footprint devices with an intermittent (limited) network 

connection. It specifies a stripped-down JVM (e.g.: KVM) as well 

as several APIs for fundamental application services. Short for 

Mobile Information Device Profile, MIDP is a set of embedded 

Java APIs that define how software applications interface with 

cellular phones and two-way pagers.  

Embedded Java has become important and critical; however 

embedded Java benchmarking is yet to mature. A notable effort 

comes from the Embedded Microprocessor Benchmark 

Consortium (EEMBC), a consortium of 58 member companies, 

who have interest in a variety of areas like microprocessors 

(MPU’s) microcontrollers (MCU’s), and digital signal processors 

(DSP’s). To address the emergence of Java as a language of 

choice, in 2002, EEMBC released a Java benchmark suite, the 
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EEMBC Java Grinderbench [12]. EEMBC Grinderbench 

contains kernels extracted from some real world applications built 

on the CLDC framework. There are also some other benchmarks 

available like Morphmark [22], MIDPMark [7] and 

CaffeineMark [23]. These stress some aspects of the embedded 

Java framework on the target test platform and are mostly 

synthetic. For this reason, some of the benchmarks like 

CaffeineMark have been criticized to be the LLLs of embedded 

Java benchmarks. We use all of these benchmarks in our study. 

 

Given a set of benchmarks, it would be immensely useful to system 

designers to know, if the benchmarks provide adequate 

representation of their application space. Such concerns are 

understandably acute in emerging areas like embedded Java. 

Although suites such as Morphmark, MIDPmark and Caffeinmark 

exist, nothing is known about their representativeness. 

Furthermore, the loop nature of many of these benchmarks has 

been of concern to designers and many often doubt their 

representativeness. We undertake a study examining the embedded 

benchmarks in the light of a suite of embedded applications from a 

leading cell phone manufacturer, Samsung Electronics. The mobile 

application suite consists of 50+ real world applications, deployed 

in various models of mobile phones and devices. These 

applications include interactive graphical games, board games, 

image rendering, web browsing, photo gallery, and navigation 

systems (maps). 

There have been very few studies on embedded Java in the past.  

Desktop Java has been understood a little more and hence we also 

compare and contrast embedded Java with desktop Java.  

 
Table 1. Embedded Java Benchmarks Used in this Study 

Benchmark Source

EmbeddedCaffeineMark 3.0 Pendragon Software

MIDPMark Digital Bridges

Morpmark Morpheme

GrinderBench EEMBC  

Specifically, we address the following questions:  

a) Are popular embedded benchmarks representative of the real 

world embedded applications?  

A primary concern in benchmarking is whether the benchmarks are 

representative of actual applications. Embedded benchmarks are 

traditionally miniature compared to their desktop counterparts. 

They are loop intensive and often are created by stripping out a lot 

of I/O functionality from applications. Many are often concerned 

about the representativensss and usefulness of these miniature 

embedded benchmarks. We study a cellular phone application suite 

consisting of 50+ applications in use within an actual cellular 

phone, and analyze the similarity between these real world 

embedded applications and embedded Java benchmarks to 

understand the representativeness of the benchmarks. We use 

Principal Component Analysis and clustering techniques [9, 10, 

11] to study similarity. 

b) Are embedded Java benchmarks fundamentally different 

from client/desktop Java benchmarks? 

Most embedded benchmarks are traditionally miniature. Does the 

small size mean inherent reduction of complexity compared to the 

desktop benchmarks? How different are embedded Java 

benchmarks from desktop Java benchmarks? We compare the 

embedded Java benchmarks against desktop benchmarks like 

SPECjvm98 [26], and a recently proposed desktop suite, the 

DaCapo benchmark [3]. 

II. Embedded benchmarks and applications 
 
This section describes the embedded benchmarks and applications 

that we used. 

A. Embedded CaffeineMark (CaffMark) 
The EmbeddedCaffeineMark benchmark suite from PenDragon 

Software [23] is a simple synthetic benchmark suite composed of 

several key Java language features. As illustrated in Table 2, the 

EmbeddedCaffeineMark suite is composed of a variety of tests 

involving kernels targeting basic language features such as method 

invocations, object manipulation, and basic logical, string and 

mathematical operations.  

Table 2. EMBEDDED CAFFEINEMARK TESTS 

TestName Description

Sieve prime number ‘sieve’

Loop Fibonacci ‘loop’

Logic Boolean ‘logic’ tests

String

‘String’ concatenation and conversion

Float ‘float’ operations (add,sub,mul,div)

Method

Repeated method invocation (non-

recursive)  
 

B. MIDPMark 
The MIDPMark benchmark suite by DigitalBridges [7], is a suite 

that tests the different media features of a mobile handset. A set of 

non-interactive and non-graphical MIDPMark tests as described in 

Table 3 were used in the study. These tests include method and 

thread creation, integer math and synchronization calls. 

Table 3. MIDPMark Non-Graphical Tests 

TestName Description

Creation New object creation

Logic Integer Math

Method Method Invocation (private, public, static,

final, etc)

Synchro Synchronized method calls (use of monitor)

Thread Thread creation

 

C. MorphMark 
MorphMark, by Morpheme Ltd [22], is another common 

benchmark suite that tests the performance of applications like 

video games. The benchmark is primarily designed to test the 

overall performance of embedded Java Virtual Machines when 

running an entertainment gaming application. However, the 

benchmark suite also has tests targeting the virtual machine 

performance itself without interacting with the graphics subsystem. 

The set of tests that were used in our study are listed in Table 4. 

 

Table 4. MorphMark Non-Graphical Tests 

TestName Description

Forward Loop Method loop with a incrementing counter

Reverse Loop Method loop with a decrementing counter

Integer Math Simple arithmetic tests

System Array Copy

Array copy using the System.ArrayCopy functionality

User Array Copy Array copy using user level copying

 

D. EEMBC Java GrinderBench 
EEMBC, the industry embedded benchmarking consortium, 



 

provides a set of Java benchmarks known as Java 

GrinderBench[12]. These are composed of a set of six embedded 

Java applications. The applications are non-interactive, non-

graphical and only require the support of the CLDC libraries. All 

the six applications were used in the study and are described in 

more detail in Table 5. 
Table 5. EEMBC Java GrinderBench Applications 

TestName Description

Chess Chess playing solver (3 games, 10 moves)

Crypto

Encrypts/Decrypts a small text document with

a set of crypto algorithms (DES, IDEA,

Blowfish, Twofish)

XML

Parsing and manipulation of a small XML

document

Parallel

Mergesort, Matrix multiply using multiple

threads for execution

PNG

Decodes a PNG graphic image (doesn’t use

graphical display, just the decoding only)

RegEx Parses a file using regular expressions  

E. Mobile phone Java Applications 
We obtained access to a suite of embedded Java applications for a 

mobile phone. The suite consists of approximately 50 different 

applications. These applications are from various applications 

domains like interactive graphical games, board games, image 

rendering, web browsing, photo gallery, and navigation systems 

(maps).  

Table 6. Summary of Dynamic Bytecode Count for Studied 

Benchmarks

Benchmark Suite

Embedded Caffeine Mark

MIDPMark

Morphmark

Chess 9.9

Crypto 24.7

XML 10.03

Parallel 155.4

PNG 7

RegEx 5.7

70.9

4.8

EEMBC Java Grinder

Dynamic Bytecodes (Million of 

Bytecodes)

50

 

In order to give an indication of the length of the benchmarks, we 

provide the dynamic size of the various benchmarks used in this 

study. Table 6 shows the number of bytecodes executed for each 

given benchmark. As seen in Table 6, the individual tests and 

suites in the study have varying dynamic bytecode counts, ranging 

from 5 to 155 million bytecodes. In contrast, the SPECjvm98 

benchmarks execute 2 to 954 million bytecodes with the –s1 data 

set and approximately 100 million to 1 billion bytecodes with the –

s100 data set. Thus the embedded benchmarks are miniature 

compared with the desktop Java benchmarks. How representative 

are these embedded benchmarks? That is the question we set off to 

answer. 

III. Methodology 
Characterizing embedded Java and comparing it to desktop Java is 

very challenging from the perspective of tools and methodology. 

Embedded and desktop VMs are different and the stripped down 

embedded VMs will not run the desktop applications. However, 

we use a methodology that consists of analyzing object-oriented 

metrics in the various programs at a VM-independent level. We 

use the IBM J9 VM [15], and a Sprint Wireless Tool Kit [28] in 

order to perform the various experiments. Embedded VMs are 

stripped down to be resource efficient which in turn makes them 

deficient in some of the debugging and profiling abilities. Many of 

the embedded VMs have no support for profiling interfaces like 

JVMPI [25] or JVMTI [25]. We used the IBM J9 VM, which 

supports JVMPI, enabling us to measuring several of the VM level 

metrics. Real embedded Java applications often use some of the 

device specific characters adding to the dependencies and 

complexity of execution. Some of these dependencies seem to 

interfere with the limited JVMPI support IBM J9 has and had to be 

dealt at a case by case basis for the suite of 50+ applications. By 

working around these limitations, we perform a study of embedded 

Java benchmarks at both the bytecode and the native embedded 

processor level.   

 

A. Simulation/Execution framework  
 
The embedded virtual machine used in this study is an IBM J9. 

The IBM J9 VM, is a high-end, feature-heavy, versatile VM 

implementation for embedded Java. It supports JVMPI enabling 

profiling.  

 

B. Principal Component Analysis and 

Clustering 
 

In order to understand the similarity/dissimilarity between 

embedded Java benchmarks, other Java benchmarks and actual 

embedded Java applications, we use Principal Component 

Analysis (PCA) and clustering [10, 11]. PCA is a multivariate 

statistical technique that reduces a large N-dimensional space 

into a lower dimensional uncorrelated space with very little loss 

of information. In order to isolate the effect of varying ranges of 

each parameter, the data is first normalized to a unit normal 

distribution, i.e. a normal distribution with mean equal to zero 

and standard deviation equal to 1, for each variable. PCA helps 

to reduce the dimensionality of a data set while retaining most of 

the original information. PCA computes new variables, so-called 

principal components, which are linear combinations of the 

original variables, such that all the principal components are 

uncorrelated. PCA transforms p variables X1, X2,...., Xp into p 

principal components (PC) Z1,Z2,…,Zp  such that:  

∑
=

=

p

j jiji XaZ
0

 

 This transformation has the property Var [Z1] ≥ Var [Z2] ≥…≥ 

Var [Zp] which means that Z1 contains the most information and Zp 

the least.  Given this property of decreasing variance of the PCs, 

we can remove the components with the lower values of variance 

from the analysis.  This reduces the dimensionality of the data set 

while controlling the amount of information that is lost. We use a 

standard technique (Kaiser Criterion) to choose PCs where only 

the top few PCs which have eigenvalues greater than or equal to 

one are retained.  For details on PCA please refer to [9].  After 

PCA, the workload space is projected using the most important 

principal components, or linkage distance between the programs is 

computed. 

IV. Measuring Representativeness of 

Embedded Benchmarks 
We study characteristics of the aforementioned embedded Java 

benchmarks and applications. Some issues with the 

instrumentation and profiling setup prevented a few of the 

applications from functioning correctly; but still we were able to 

correctly execute 40+ real world applications. We first compare the 

benchmarks and applications for code complexity, code structure, 

object-orientedness features, class hierarchies, etc using the 



 

popular Chidamber and Kemerer (C-K) metrics [4]. Then the 

applications and benchmarks are compared for object behavior as 

measured by execution-time object allocation/deallocation and 

liveness characteristics using methodology used by Diekman-

Holzle, and Blackburn et al [8, 3]. 

 

A. Code Complexity Metrics  
 
The complexity of the code is one of the aspects to compare 

embedded benchmarks and real world mobile phone application 

programs. Chidamber and Kemerrer [4] proposed several object 

oriented programming metrics in order to quantify code 

complexity.  These metrics include Depth of Inheritance tree, 

number of children, coupling between classes, etc. We use the 

software package ckjm [27] to measure these metrics. As in prior 

work [3], these metrics are measured for classes that load at 

runtime. The libraries are excluded from the analysis as they are 

heavily duplicated across the benchmarks. These metrics are 

described in short as follows.  

 

WMC (Weighted Methods per Class): WMC for a given 

program is measured by adding complexity of a program’s 

methods. Ckjm assigns a complexity value of 1 to each method, 

and therefore the WMC value is equal to the number of declared 

methods in the loaded classes. Large numbers thus show that a 

class provides a variety of different behaviors in the form of 

different methods/functions. 

DIT (Depth of Inheritance Tree): DIT provides for each class a 

measure of the inheritance levels from the top of the object 

hierarchy. In Java where all classes inherit object the minimum 

value of DIT is 1. 

NOC (Number of Children): NOC measures the number of 

immediate subclasses of the class. 

CBO (Coupling Between Objects): For a given class CBO 

measures the number of classes coupled to a given class. Classes 

may be coupled via method calls, field accesses, inheritance, 

arguments, return types, and exceptions. The metric measures code 

complexity in terms of interactions between objects and classes. 

RFC (Response for a Class): RFC measures the number of 

different methods that may execute when a method is invoked. 

Ckjm calculates a rough approximation to the response set by 

inspecting method calls within the class’s method bodies. 

LCOM (Lack of Cohesion): LOC counts methods in a class that 

are not related through the sharing of some of the class’s fields. 

 

Table 7 presents the C-K metrics for embedded benchmarks and 

the mobile phone application suite. The benchmark data includes 

EEMBC, Morphmark, MIDPmark, and Caffeine benchmarks. The 

applications data is aggregated from 40+ different applications.  

 

Weighted Methods per class ranges from 37 to 191 for the 

benchmarks, while it ranges from 2 to 410 for the applications. 

Similarly the depth of inheritance tree ranges from 7 to 49 for 

benchmarks while it ranges 0 to 68 for the applications. 

However, the average depth of inheritance tree is 25 for the 

benchmarks while only 16 for the applications. The number of 

children range from 0 to 16 for benchmarks and 0 to 22 for 

applications. In general, the applications exhibit a wider spread 

than the benchmarks. For all 6 of the metrics, the application has 

a maximum much higher than the maximum of the benchmarks. 

Similarly, the minimum for the applications is smaller than the 

minimum for the benchmarks for 5 out of 6 metrics. However, if 

you look at the mean or median, for many of the metrics, the 

benchmarks are slightly more complex than the suite of 

applications we studied. Although this might suggest that the 

benchmarks are slightly over designed, it is not unhealthy to 

have benchmarks slightly overstress application characteristics 

since benchmarks are made to last longer and also intended to 

help in studying ruggedness of designs. The more serious 

weakness is that the benchmark suite lacks the broad spread of 

the application suite. 

 

In order to compare and visualize the similarity/dissimilarity of 

the workload space (with all metrics), we rely on Principal 

Components Analysis (PCA) [9]. Figure 2 shows a scatter plot 

of two principal components that account for about 86% of the 

variance in the embedded benchmarks and the embedded 

applications. From Figure 2 we can observe that the benchmarks 

are within the typical range exhibited by the applications for the 

code complexity characteristics. But there are a few real world 

applications (e.g.: A18, A30, A49, A50) that are very different 

from all the benchmarks and hence are not represented by the 

benchmarks. Two of the applications, A49 and A50 have high 

values for most of the C-k metrics. (Our non-disclosure 

agreement with Samsung does not allow us to discuss the details 

of these applications any more.) However, it can be easily 

concluded that there is room for improvement in the design of 

the benchmarks. Benchmark suites can be made to include more 

diverse benchmarks. Although the benchmark suite does not 

show complete coverage of the application space, it is 

encouraging to note that the industry standard benchmarks do 

fall within the range exhibited by the applications.  

 

Another interesting aspect is the comparison of the complexity 

of embedded benchmarks to SPECjvm98 and the recently 

developed DaCapo benchmark [3]. DaCapo was an effort to 

create a benchmark suite that is heavily object-oriented. We 

compared the C-k metrics of SPECjvm98 and DaCapo 

benchmarks to embedded programs and observe that DaCapo is 

far richer and complex in object-orientedness than any other 

program we studied. Figure 3 presents the principal component 

analysis with embedded applications, embedded benchmarks, 

SPECjvm98 and DaCapo. The complexity and richness of 

DaCapo overshadows the rest of the data. DaCapo_eclipse is far 

out to the left and is not shown in the figure. The embedded 

benchmarks, applications, luindex & lusearch from DaCapo 

suite and most of the SPEC benchmarks (with the exception of 

javac) gets clustered together on the right side. 

 

 Figure 2. Principal component based analysis using C-k complexity 

metrics for Embedded benchmarks and mobile phone applications 



 

Table 7: Complexity Metrics for Embedded Java Benchmarks and Applications

Benchmark 

WMC: Weighted 

methods per 

class 

DIT: Depth of 

Inheritance 

Tree 

NOC: Number 

of Children 

CBO: Coupling 

between object 

classes 

RFC: 

Response for a 

Class 

LCOM: Lack 

of cohesion in 

methods 

       

Chess 183 49 8 143 468 362 

Crypto 123 19 4 59 248 487 

KXML 186 28 8 72 516 922 

Parallel 37 15 4 27 85 31 

Png 64 11 0 26 192 77 

Regex 191 42 13 47 391 691 

Caff 64 7 0 14 113 88 

MIDP 113 47 16 52 365 450 

Morphmark 94 7 0 11 218 1570 

MIN 37 7 0 11 85 31 

MAX 191 49 16 143 516 1570 

Arith.MEAN 117.22 25 5.88 50.11 288.44 519.77 

Applications       

A1 36 9 2 15 131 29 

A2 126 8 0 14 343 1329 

A3 64 8 2 11 116 774 

A4 220 44 6 71 627 547 

A5 107 13 0 40 271 727 

A6 109 13 0 35 322 140 

A7 208 42 13 123 562 471 

A8 122 9 0 22 332 461 

A9 85 13 0 39 249 264 

A10 34 2 0 3 86 79 

A11 239 24 4 54 601 1019 

A12 75 8 0 24 252 206 

A13 43 3 0 6 107 175 

A14 140 4 1 6 235 2617 

A15 128 24 5 34 265 1806 

A16 75 4 0 8 172 1163 

A17 69 12 0 19 247 60 

A18 136 4 0 12 223 5601 

A19 239 25 5 47 637 1473 

A20 261 36 2 73 765 688 

A21 180 14 0 45 578 1375 

A22 200 13 4 26 393 544 

A23 128 12 1 38 405 240 

A24 58 3 0 7 116 485 

A25 160 18 0 47 434 557 

A26 2 0 8 121 157 2 

A27 128 12 1 38 405 240 

A28 77 12 1 20 297 67 

A29 52 5 0 11 164 92 

A30 410 16 0 61 1131 8369 

A31 43 5 0 8 125 26 

A32 128 22 0 62 373 165 

A33 128 12 1 38 405 240 

A34 116 13 0 48 406 370 

A36 81 6 0 13 297 377 

A37 144 21 2 49 393 291 

A38 111 12 0 23 327 181 

A45 65 8 0 23 175 116 

A48 8 1 0 0 10 8 

A49 300 62 21 163 764 569 

A50 325 68 22 199 835 700 

A52 44 6 0 15 128 63 

MIN 2 0 0 0 10 2 

MAX 410 68 22 199 1131 8369 

Arith. MEAN 128.6667 15.38095 2.404762 40.7381 353.8333 826.3333 

 

 



 

 

 
Figure 3. Principal component based analysis using C-k metrics for Embedded, SPECjvm98 and DaCapo 

benchmarks with mobile phone application suite 

 

  

B. Object allocation/liveness/locality analysis 
This section presents two important program properties namely 1) 

memory allocation and management, and 2) code reuse. The 

memory allocation and management properties are of greatest 

concern to virtual machine designers.  The code reuse information 

is useful to VM and hardware designers. The memory behavior of 

objects is gathered by using the limited support for JVMPI that 

IBM J9 VM offers. Due to some of the stability and dependency 

issues with JVMPI in IBM J9, the code reuse was done using the 

Sprint Wireless Toolkit 3.1[28]. The Sprint Wireless Toolkit is an 

emulation of the embedded Java platform with support for some 

device and vendor specific libraries, which enables us to execute 

most of our application suite. 

1) Dynamic Object Memory behavior 
To capture the dynamic memory profile of the programs, we 

measure some of the metrics suggested by Dieckmann et al [8]. 

The VM was modified using a plug-in written using JVMPI. This 

allowed for data collection and regular (controlled) invocation of 

the GC. We invoked the GC once in every 10K of allocation and 

measured both object allocation and live object statistics. A brief 

discussion on each of the metrics follows.  

 

Allocated bytes: measures the total number of bytes allocated by 

this program.  

Live bytes: measures the total number of bytes alive at the end of 

a 10k allocation cycle, allowing one to compare the data survival 

behavior. The amount of the bytes that stay alive can determine 

the size of the second level of the heap and the algorithm used to 

compact the heap. Since data compaction tends to perform bulk 

copy, support for such operations in the architecture could be 

helpful; but the level of support needed would be partly 

determined by the amount of live bytes. 

Allocated to Live bytes ratio: measures the ratio of allocated to 

live bytes. This gives an idea of the pressure on the GC in terms of 

that data allocation and de-allocation rate. A high ratio would 

signal that allocation and de-allocation are happening at a high rate 

(i.e. low survival rate with most of the objects being de-allocated 

quickly). A high ratio would support the weak generation 

hypothesis [20], the hypothesis that most objects die young, 

making it a valuable information to the GC designers. The 

usefulness of this metric extends to computer architects too. A high 

ratio is likely to imply that large amount of data is being allocated 

and stored in the high level memory and caches and then being 

discarded at a very high rate. This could lead to a low utilization of 

the cache hierarchy.  

Allocated objects: measures the total number of objects allocated 

by this program. Allocation of a large number of objects requires 

an appropriately tuned heap management, a useful input to the 

Virtual Machine designers.  A large number of allocations can 

pressure the TLB.  

Live objects: measures the total number of objects alive at the 

end of a 10k allocation cycle. The larger the number of objects that 

survive, the more difficult could be the GC operations and possibly 

more number of data copy operation are required.  

Allocated to Live objects ratio: measures the ratio of allocated to 

live objects. This metric is analogous to the allocated to live bytes 

ratio except that now it concerns object count instead of bytes. This 

metric gives us an idea of the pressure on the GC in terms of object 

count. This data in conjunction to the object size related data can 

give further insights to GC designers as well as micro-architects. 

For example, a large object count ratio can have implication on the 

cache block size. If the objects are small enough a number of them 

could fit into the same cache block. This could work to ones 



 

advantage and disadvantage. On the positive side it provides 

prefetching but on the negative side it can lead to fragmentation of 

the heap and thus reducing the utilization of the caches as well as 

causing misaligned reads, typically a costlier operation.  

Average Allocated Object size: measures the average size of the 

objects allocated by the program. Large objects will have different 

VM architecture and micro-architectural requirements compared to 

small objects. For example, large objects are better off having 

larger cache block sizes and the ability to write larger amount of 

data in bulk (the bandwidth).  

Average Live Object size: measures the average size of the live 

(as defined before) objects allocated by the program. If the objects 

that survive are smaller, more data operations are required to 

manage them and the efficiency of small data operations become 

critical (e.g. latency of data operations). 

 

Table 8 shows the object allocation/liveness metrics for the 

various embedded benchmarks and embedded applications. Due to 

space limitation, the data for each individual benchmark and each 

mobile application is included in Appendix I. On average, 

benchmarks allocate more heap than applications, but the variation 

in amount of heap allocated is higher in applications than 

benchmarks. Thus there is a difference between average behaviors 

versus the range of behaviors. Similarly, on average, benchmarks 

allocate more objects; however, there is more diversity in object 

count allocation between various applications than between the 

benchmarks. The average allocated/live ratio is similar for both 

applications and benchmarks, although applications have more 

diversity. With respect to average object size, the benchmarks 

exhibit a wider range than applications, both in allocated and live. 

To simplify comparison and visualization we plot the two principal 

components PC1 and PC2 that account for more than 72% of the 

variance in the data (See Figure 4). The applications occupy a 

space distinct from that of the benchmarks (one can draw a line 

separating out the applications from the benchmarks). This is true 

of all the benchmarks except Morphmark. On PC1, the benchmarks 

fall within the range exhibited by the applications, whereas on 

PC2, applications and benchmarks exhibit significant difference in 

behavior. 

 

  

Table 8: Dynamic Object behavior of Embedded Benchmarks and Embedded Applications 
Heap Volume(MB) Object Count Average Object Size  

Allocated  Live  Alloc/Live  Allocated  Live  Alloc/Live  Allocated  Live 

Benchmarks        

    Min 0.06 0.05 1.29 1367 1305 1.05 29.67 31.77 

    Max 101.11 25.62 153.82 2792726 655676 174.03 142.08 883.32 

    Average 36.47 7.22 30.57 819556 111149 42.96 70.48 220.37 

   GM 14.06 1.54 9.13 224925 14178 15.87 62.49 108.58 

   Median 29.25 2.70 6.86 420144 6819 16.21 65.84 83.66 

Applications        

    Min 0.20 0.09 2.30 4162 1773 2.35 32.03 35.12 

    Max 211.15 0.52 407.31 6591939 14760 446.61 49.67 90.67 

    Average 10.12 0.21 29.36 310842 3997 40.16 38.01 54.10 

   GM 1.80 0.19 9.35 47799 3624 13.19 37.73 53.22 

   Median 1.18 0.22 6.27 33225 3752 9.50 36.51 53.78 

 

Table 9: Dynamic Object behavior of Desktop Java benchmarks. Generated from [3] 
Heap Volume(MB) Object Count Average Object Size  

Allocated  Live  Alloc/Live  Allocated  Live  Alloc/Live  Allocated  Live 

SpecJVM98        

    Min 0.7 0.6 1.1 3022 270 1.9 22 25 

    Max 270.7 21.1 292.7 9393097 307043 786.1 28031 24425 

    Average 152.53 6.31 69.99 5081259.22 142958 142.76 3164 2797 

   GM 86.5 3.8 23 1180850 35886 32.9 77 110 

   Median 140.5 6.3 19.5 6158131 153555 22.4 32 56 

DaCapo        

    Min 100.3 0.1 2 2402403 2788 1.4 24 23 

    Max 60235.6 72 8104 161069019 3223276 9304.5 392 330 

    Average 6564.46 16.07 1055.83 38142567.27 442848 1095.64 79.09 84.09 

   GM 907.5 6.2 147.6 18112439 103890 174.3 53 62 

   Median 779.7 9.5 186 25940819 168921 224.2 44 55 

 

 



 

 
 

Figure 5. Principal component based analysis using dynamic object metrics for embedded benchmarks, embedded applications, Specjvm98 and 

DaCapo 

Table 10: Code Reuse metrics 
  hot fn - 

80% calls 

hot fn - 

90% calls 

lib % of 

hot fn 

calls 

hot lib 

fns - 

90% 

calls 

% of 

lib 

calls  

hot fn 

- 80% 

cycles 

hot fn 

- 90% 

cycles 

lib % 

of hot 

fn 

cycles 

hot lib 

fns - 

90% 

cycles 

% of 

lib 

cycles 

total 

Cycles 

total Calls Total 

Fnts 

Benchmarks                         

    Min 3 4 0 0 0.5 1 2 0 0 0.34 2.30E+11 689237 78 

    Max 12 19 81.9 7 81.59 10 18 49.38 8 48.61 5.72E+11 65000000 172 

    Avg 7 11 31.25 3 30.1 6 11 14.14 2 14.7 3.39E+11 28000000 133 

    Median 7.5 11  28.08 4 26.62  7.5  12.5  10.1  2  10.78  
3.221E+11 22000000 150.5 

Application             

    Min 1 1 2.33 1 8.39 2 4 6.59 1 10.94 3.52E+09 1346 43 

    Max 29 44 100 11 97.95 18 29 100 16 92.41 6.90E+11 24000000 318 

    Avg 12 17 40.19 5 39.63 6 10 65.48 6 63.39 8.44E+10 1182801 122 

    Median 12 17 43.16 4 42.18 5 9 67.73 5 63.71 
3.332E+10 87097 109 

 

 
Figure 4.  Principal component based analysis using dynamic object 

metrics for comparison of Embedded benchmarks with mobile phone 

application suite. To avoid cluttering not all points are labeled 

 

Now, let us consider SPECjvm98 and DaCapo. Table 9 

presents a summary of the comparison between embedded Java 

benchmarks and the SPECjvm98/DaCapo information with the 

same IBM J9 tool suite. Due to space limitation, a summary of 

the results from Blackburn et al [3] is included as Appendix II. 

On average, the object sizes are higher for SPECjvm98 for both 

allocated and live. However, live size is higher for DaCapo 

compared to SPEC.  The PCA plot for the workload space with 

embedded benchmarks, embedded applications, SPECjvm98 

and DaCapo is shown in Figure 5. Four principal components 

are presented, accounting for about 97% of the variance in the 

data. As expected, DaCapo’s richness in code complexity 

translates to more complex behavior even for object allocation 

and management. Once all the Java workloads are presented in 

the same figure (as in Fig 5), some outliers from DaCapo and 

one from SPECjvm98 programs (compress) define a broad 

envelope, however, all embedded benchmarks and applications 

and many SPECjvm98 programs are clustered in a small region 

of the workload space. The embedded Java benchmarks have 

more similarity to SPECjvm98 than DaCapo. 

 

Since many garbage collection algorithms are most concerned 

with live object behaviors these demographics are more 

indicative for designers of new garbage collection mechanisms. 

The object demographics also dictate many other choices such 

as the design of per-object metadata, locking mechanisms, etc. 



 

All such decisions in the end affect the performance of the 

micro-architecture.   

2. Code reuse/hotness:  
Modern Virtual Machines implement various techniques to 

take advantage of the reuse of code segments; either by caching 

bytecode translation or compiling frequently used code 

segments into more efficient native code during runtime or 

ahead of time. The impact of these techniques depends on the 

code hotness behavior of different applications. Hence, to 

compare the applications and benchmarks from the perspective 

of code hotness, we use some metrics pertaining to code reuse. 

We collect reuse information at a function granularity using the 

Sprint Wireless Toolkit 3.1[28]. The metrics and the reasoning 

behind using them are discussed below.  

 

Hot 80% function call: The number of functions required to 

make up 80% of the total function calls. The smaller the 

number, the higher the code reuse. 

Hot 90% function call: The number of functions required to 

make up 90% of the total function calls. 

Library % of hot function calls: The percentage of hot 

functions calls that are libraries. This metric and the next five 

metrics were designed to measure the contribution of library 

functions to the top hot functions. A high reuse of library 

functions can be exploited by the VM by say pre-compiling 

those functions ahead of time or caching or preloading 

translations for those functions. This can also affect the 

hardware architecture. For example, storing precompiled code 

can affect space available in the system memory. Another good 

example would be for Java hardware accelerators like Jazelle 

[1] in the ARM Cortex architecture. Jazelle, require the 

bytecode to be reorganized to make optimum use the hardware 

accelerator.  If the applications are deployed dynamically over 

the network from a third party, such processor specific 

optimization might not be possible. That would be less of an 

issue if a significant part of the execution time is spent on 

library function which can be transformed ahead of time to take 

advantage of the hardware and stored in the device 

permanently.  

Hot lib function calls: The number of library function among 

the hot functions (based on call count).  

% of lib calls: The percent of the total function calls that are to 

library functions. 

Library % of hot function cycles: The percentage of hot 

functions cycles that are libraries.  

Hot lib function cycles: The number of library function among 

the hot functions (based on cycle count).  

% of lib cycles: The percent of the total function cycles that 

are contributed by library functions.  

Hot 80% function cycles: The number of functions required to 

make up 80% of the total cycles. 

Hot 90% function cycles: The number of functions required to 

make up 90% of the total cycles. 

Total Cycles: The total number of cycles it takes to execute the 

program. This gives on an idea of the typical execution length 

of programs.  

Total Calls: The total number of function calls invoked.  

Total Function Count: The total number of unique 

functions present.  

 
Summary of the data is presented in Table 10(detailed data is 

included as Appendix III) From the summarized statistics we 

observe that the applications exhibit wider range of reuse 

metrics than the benchmarks. For example, it takes 1-29 

functions to amount for 80% of the function calls in the case of 

applications while it takes only 3-12 functions to do the same 

for embedded java benchmarks. The locality of applications is 

as not as high that suggested by the benchmarks. The 

benchmarks need improvement in this respect. This finding 

also suggests that the effort in implementing even light weight 

JIT compilation is higher than what is projected by the current 

benchmarks. It is also interesting to note that the composition 

of libraries in the execution behavior is higher for applications 

when compared to the benchmarks. For example, in the 

applications, 65% of the cycles on average are library functions 

as opposed to 14% for the benchmarks. A higher contribution 

of library function has special significance for embedded Java 

because it allows for ahead of time compilation and 

optimization of key libraries to be worthwhile. This allows one 

to side-step JIT to some degree and to attain the same benefits 

by employing ahead-of-Time compilation and ROMizing of the 

library functions. 

V. Related Work 
Prior work [17, 18, 2, 3, 10, 19] in understanding the nature of 

Java workloads has focused on characterizing the performance 

of standard client and server applications using industry 

benchmarks such as SPECjvm98 and SpecJbb [24]. In the 

embedded domain, prior work includes Chen et al. [6] which 

characterized the performance of embedded Java applications 

through the development of their PennBench suite. Even 

though this study concerns Java in the embedded space, the 

analysis is limited to method and object distribution across the 

proposed suite.  Furthermore, our study focuses on industry 

standard benchmarks and performs the analysis of the method 

and object level properties elaborately. In another study by 

Chen et al [5], the impact of various garbage collection 

properties and allocation strategies, that can take advantage of 

banked memory, are studied. Griffin et al [13] also proposed 

improvements to the garbage collection strategies with the 

objective of being energy efficient for embedded systems. They 

use a small suite of application to model embedded Java 

applications and only focus on relative benefit of their scheme, 

but no characterization of the applications is presented. We 

perform an elaborate characterization of standard embedded 

benchmarks and embedded applications. We also present a 

comparison between desktop and embedded Java benchmarks. 

 

VI. Conclusion 
With the goal of understanding embedded Java benchmarks 

and their representativeness of real-world embedded 

applications, we gathered and characterized industry 

benchmarks such as MIDPmark, Morphmark, Caffeine, 

EEMBC Java benchmarks, and an actual cell phone application 

suite. Using a versatile embedded virtual machine, a Sprint 

wireless toolkit, and a JVMPI based module, we obtained the 

characteristics of embedded benchmarks and approximately 50 

applications from the cell phone Java application suite. On 

code complexity metrics, as well as object allocation and live 

properties, there are differences between the properties of 

embedded benchmarks and embedded applications. On most 

characteristics, the range of variability represented by the 

applications is much higher than the range of variability 

exhibited by the benchmarks. On the object allocation and live 

properties, the benchmarks and applications occupy an almost 

disjoint space. Furthermore, we find that the applications 

exhibit less code reuse/hotness compared to the 

embedded benchmarks. Future embedded Java benchmarks 



 

can be designed to include benchmarks with a wider range of 

complexity characteristics as well as object allocation 

properties.  

 

We also compared the embedded programs to desktop/client 

benchmarks such as SPECjvm98 and DaCapo.  Utilizing 

Principal Component Analysis and clustering techniques we 

present a similarity/dissimilarity analysis of the different Java 

benchmarks. As expected, desktop Java benchmarks, especially 

DaCapo, is significantly richer in code complexity metrics and 

object allocation/liveness characteristics. Embedded 

benchmarks and embedded applications are seen to be different 

from SPECjvm98 and DaCapo programs. 

 

We also find that, embedded applications spend a significant 

part of the time executing bytecodes from the standard library; 

on average 65% of the time. This suggests that software and 

hardware techniques that aid ahead of time compilation of 

library functions can provide a significant performance boost 

without having to incur the resource overhead of just-in-time 

compilation of code. Compared to the applications, embedded 

java benchmarks spend far less time, an average of 14%, in 

libraries.  
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Appendix II. Average allocated and live object size and count data – Desktop Java Benchmarks(Data from [3])  

 

  Heap Volume(MB) 
  

Heap objects Mean Object Size 

Benchmark Alloc Live Alloc/Live Alloc Live Alloc/Live Alloc Live 

SPEC         

201.compress 105.4 6.3 16.8 3942 270 14.6 28031 24425 

202.jess 262 1.2 221.3 7955141 22150 359.1 35 56 

205.raytrace 133.5 3.8 35.1 6397943 153555 41.7 22 26 

209.db 74.6 8.5 8.8 3218642 291681 11 24 31 

213.javac 178.3 7.2 24.8 5911991 263383 22.4 32 29 

222.mpegaudio 0.7 0.6 1.1 3022 1623 1.9 245 406 

227.mtrt 140.5 7.2 19.5 6689424 307043 21.8 22 25 

228.jack 270.7 0.9 292.7 9393097 11949 786.1 30 81 

pseudojbb 207.1 21.1 9.8 6158131 234968 26.2 35 94 

DaCapo         

antlr 237.9 1 248.8 4208403 15566 270.4 59 64 

bloat 1222.5 6.2 195.6 33487434 149395 224.2 38 44 

chart 742.8 9.5 77.9 26661848 190184 140.2 29 53 

eclipse 5582 30 186 104162353 470333 221.5 56 67 

fop 100.3 6.9 14.5 2402403 177718 13.5 44 41 

hsqldb 142.7 72 2 4514965 3223276 1.4 33 23 

jython 1183.4 0.1 8104 25940819 2788 9304.5 48 55 

luindex 201.4 1 201.7 7202623 18566 387.9 29 56 

lusearch 1780.8 10.9 162.8 15780651 34792 453.6 118 330 

pmd 779.7 13.7 56.8 34137722 419789 81.3 24 34 

xalan 60235.6 25.5 2364 161069019 168921 953.5 392 158 
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Appendix I. Average allocated and live object size and count data 

  Heap Volume(MB)  Heap objects Mean Object Size 

Benchmarks  Allocated   Live   Alloc/Live   Allocated   Live   Alloc/Live  Allocated Live  

CaffeineMark 31.04 0.20 153.82 300202 1725 174.03 103.38 116.96 

EEMBC_chess 82.33 5.48 15.02 2775187 172512 16.09 29.67 31.77 

EEMBC_crypto 19.57 7.15 2.73 137712 8100 17.00 142.08 883.32 

EEMBC_kXML 101.11 25.62 3.95 2792726 655676 4.26 36.21 39.08 

EEMBC_parallel 18.51 2.70 6.86 420144 4687 89.64 44.07 576.13 

EEMBC_png 43.50 23.21 1.87 465707 147129 3.17 93.41 157.75 

EEMBC_regex 2.83 0.20 14.19 38700 2387 16.21 73.21 83.66 

MIDPMarkMain 29.25 0.39 75.41 444260 6819 65.15 65.84 56.88 

MorphMark 0.06 0.05 1.29 1367 1305 1.05 46.44 37.80 

AVG 36.47 7.22 30.57 819556.11 111148.89 42.95 70.48 220.37 

Applications         

A1 0.20 0.09 2.30 4162 1773 2.35 48.33 49.43 

A2 2.35 0.28 5.88 28368 3902 7.27 36.21 44.79 

A3 1.11 0.13 2.63 11811 3721 3.17 46.91 56.64 

A4 36.21 0.26 7.48 31395 3018 10.40 36.76 51.13 

A5 18.25 0.26 8.25 42702 3577 11.94 36.26 52.49 

A6 1.03 0.17 9.59 36627 2481 14.76 35.84 55.16 

A7 1.09 0.29 9.34 36487 2445 14.92 35.69 57.01 

A9 7.85 0.26 5.13 32146 2864 11.22 35.30 77.27 

A10 0.46 0.12 5.01 40652 4195 9.69 37.67 72.88 

A11 41.15 0.26 8.83 34303 3242 10.58 35.19 42.17 

A12 0.73 0.19 9.63 50333 3669 13.72 43.41 61.84 

A13 0.39 0.11 8.44 67827 5137 13.20 34.58 54.12 

A14 1.10 0.25 8.47 28039 3015 9.30 39.62 43.48 

A16 13.38 0.25 140.06 1127123 5324 211.71 32.13 48.56 

A17 0.55 0.21 70.33 565806 4857 116.49 32.26 53.43 

A21 3.95 0.26 3.71 28626 4777 5.99 38.17 61.69 

A22 1.15 0.15 30.10 240104 4533 52.97 32.68 57.50 

A23 1.55 0.19 3.68 10632 2137 4.98 43.14 58.30 

A24 0.83 0.19 160.03 1281856 4855 264.03 32.10 52.96 

A27 1.31 0.14 3.84 18117 4086 4.43 40.32 46.54 

A28 1.60 0.26 3.59 9642 2060 4.68 40.34 52.53 

A29 0.98 0.10 4.40 28919 4477 6.46 37.98 55.71 

A31 0.85 0.26 54.25 413785 5108 81.01 32.34 48.29 

A32 0.52 0.10 15.18 115933 6085 19.05 34.08 42.77 

A33 1.30 0.14 4.27 18889 3489 5.41 43.94 55.71 

A35 1.13 0.22 6.07 45637 5092 8.96 34.98 51.69 

A36 1.53 0.31 9.88 28227 1833 15.40 34.87 54.35 

A38 0.88 0.32 3.28 21764 2853 7.63 39.01 90.67 

A40 211.15 0.52 5.28 11953 1780 6.72 43.79 55.65 

A41 0.70 0.12 2.75 17643 5394 3.27 49.67 59.04 

A43 1.34 0.24 407.31 6591939 14760 446.61 32.03 35.12 

A44 1.44 0.24 5.94 18347 2711 6.77 37.99 43.32 

A49 2.04 0.15 5.55 36941 4278 8.64 36.14 56.20 

A50 1.21 0.14 6.10 37694 4545 8.29 38.21 51.93 

A51 0.77 0.12 13.97 59250 3782 15.67 34.38 38.56 

A52 2.18 0.23 6.44 16644 2025 8.22 46.06 58.80 

AVG 10.12 0.21 30.02 319247.97 4053.00 41.08 37.78 53.97 
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Appendix III: Code/function reuse characteristics.  

Benchmarks total Cycles 
total 
Calls 

Total 
Fnts 

hot fn - 
80% 
calls 

hot fn - 
80% 
cycles 

hot fn - 
90% 
calls 

hot fn - 90% 
cycles 

lib % of 
hot fn 
calls 

lib % of 
hot fn 
cycles 

hot lib 
fns - 90% 
calls 

hot lib 
fns - 
90% 
cycles 

% of 
lib 
calls  

% of lib 
cycles 

CaffeineMark 5.718E+11 1737511 78 4 2 6 4 56.67 49.38 4 3 54.28 48.61 

eembc_chess 2.301E+11 2E+07 172 12 9 15 16 43.75 10.10 4 3 40.56 10.78 

eembc_crypto 3.216E+11 3.5E+07 162 8 9 12 16 2.65 0.00 1 0 2.40 1.14 

eembc_kxml 2.678E+11 2.4E+07 153 7 10 19 18 12.40 33.17 7 8 12.69 31.74 

eembc_parallel 3.226E+11 689237 83 4 1 5 2 81.90 10.35 4 1 81.59 13.54 

eembc_png 3.836E+11 6.5E+07 97 3 3 4 4 0.00 0.00 0 0 0.50 0.71 

eembc_regex 3.827E+11 6.1E+07 148 8 6 10 9 8.87 0.00 1 0 8.19 0.34 

midpmark 2.301E+11 2E+07 172 12 9 15 16 43.75 10.10 4 3 40.56 10.78 

AVG 3.388E+11 2.8E+07 133 7 6 11 11 31.25 14.14 3 2 30.10 14.70 

Apps                           

A1 5.242E+09 1346 66 16 5 24 8 34.21 66.51 8 4 34.10 62.79 

A2 4.813E+10 409796 150 15 5 22 12 20.61 52.10 2 4 19.18 50.10 

A3 9.828E+09 25006 80 17 8 21 13 46.02 79.19 6 11 46.27 75.14 

A4 6.903E+11 2.4E+07 233 13 5 18 12 24.58 54.52 4 4 23.58 52.39 

A5 1.875E+11 91531 112 14 3 18 4 44.56 6.59 4 1 42.48 10.94 

A6 1.553E+10 72717 120 10 6 20 12 38.77 93.68 8 8 38.27 90.06 

A7 9.156E+09 917141 207 1 10 1 16 100.00 78.60 1 12 97.95 75.00 

A10 1.74E+10 8833 61 8 6 11 8 38.82 37.54 4 4 39.67 38.42 

A11 1.632E+11 4328264 224 19 7 30 16 13.33 70.57 4 7 13.00 65.35 

A12 2.301E+10 22310 83 8 4 10 6 19.13 19.30 2 3 19.91 22.13 

A13 2.536E+10 32687 73 8 6 11 10 52.69 42.04 5 6 49.97 41.84 

A14 3.604E+10 187220 121 26 4 38 7 49.56 100.00 8 7 45.28 92.41 

A15 6.364E+10 448268 120 10 5 17 9 46.14 94.59 6 7 46.43 90.29 

A16 8.518E+10 789351 109 6 8 13 13 19.58 67.73 4 9 21.76 63.71 

A17 8.423E+09 3084 99 16 4 21 7 38.37 90.43 7 5 38.78 88.80 

A21 8.715E+09 98117 137 6 10 11 15 45.64 77.21 6 10 45.16 76.26 

A22 1.966E+10 131164 121 18 7 26 12 16.49 93.29 5 8 16.34 86.56 

A23 4.89E+10 51242 119 14 6 18 9 46.56 53.00 7 6 45.21 52.20 

A24 4.845E+10 40477 72 7 3 9 6 76.61 76.24 5 4 72.06 76.01 

A25 9.623E+09 23753 122 21 5 24 9 26.19 94.79 5 7 24.83 91.52 

A27 7.929E+10 79413 120 13 6 17 9 47.46 49.96 7 6 45.56 48.94 

A28 1.271E+10 37932 87 2 5 5 7 48.80 78.25 2 4 48.33 76.19 

A29 5.922E+10 94008 73 12 6 17 9 40.47 75.38 4 6 41.75 69.98 

A30 8.906E+10 1847010 225 7 18 14 29 2.33 43.13 2 16 8.39 44.39 

A31 5.296E+10 118068 62 8 3 11 5 70.19 41.04 4 3 66.33 41.50 

A32 6.856E+09 15317 130 12 8 23 11 54.64 94.98 7 10 51.27 88.31 

A33 9.97E+10 94699 120 13 6 17 8 47.40 47.59 7 5 45.33 47.64 

A34 3.449E+11 252335 142 5 3 11 5 59.65 15.12 5 3 54.79 15.63 

A35 2.299E+10 38546 61 8 3 9 4 53.59 46.44 3 2 56.15 47.29 

A36 3.332E+10 59541 104 17 7 23 10 31.68 52.45 6 8 31.88 52.83 

A38 1.179E+10 40091 104 12 6 18 9 51.31 95.26 9 7 49.69 90.89 

A39 8.227E+09 9244 51 9 5 11 8 43.16 62.52 3 5 41.26 61.66 

A40 6.002E+11 1.3E+07 307 17 5 24 10 27.44 87.23 4 5 27.85 81.30 

A41 1.911E+10 8564 47 6 3 7 6 17.44 63.47 2 3 18.97 61.81 

A42 4.078E+11 2505370 125 5 4 10 5 53.21 74.02 3 3 50.22 71.73 

A43 1.669E+10 38771 71 12 4 15 6 5.60 34.35 2 2 10.74 35.51 

A44 6.391E+10 45491 96 7 4 10 8 26.21 52.68 3 4 27.52 52.78 

A45 1.498E+10 172246 79 7 3 11 8 42.96 76.01 3 5 42.18 72.49 

A47 3.521E+09 1350 43 13 6 16 11 46.03 59.12 7 7 50.59 60.81 

A48 3.6E+10 87097 94 4 4 7 7 45.20 88.22 2 5 45.24 84.08 

A49 2.37E+10 129003 304 29 7 44 13 26.44 97.03 11 12 25.76 90.77 

A50 3.772E+10 228200 318 27 9 42 17 19.10 92.13 10 12 19.55 86.35 

A52 5.954E+10 118594 67 4 2 7 4 70.21 41.27 2 2 64.66 41.06 

AVG 8.436E+10 1182801 122 12 6 17 10 40.19 65.48 5 6 39.63 63.39 
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