

Ciji Isen and Lizy John

Electrical and Computer Engineering Department

University of Texas at Austin

{isen, ljohn}@ece.utexas.edu

Jung Pil Choi and Hyo Jung Song

Samsung Electronics

{jungpil.choi, hjsong}@samsung.com

Abstract— Java has become one of the predominant languages

for embedded and mobile platforms due to its architecturally

neutral design, portability, and security. But Java execution in the

embedded world encompasses Java Virtual Machines (JVMs)

specially tuned for the embedded world, with stripped-down

capabilities, and configurations for memory-limited environments.

While there have been some studies on desktop and server Java,

there have been very few studies on embedded Java. The non

proliferation of embedded Java benchmarks and the lack of

widespread profiling tools and simulators have only exacerbated

the problem. While the industry uses some benchmarks such as

MorphMark, MIDPMark, and EEMBC Java Grinder Bench,

their representativeness in comparison to actual embedded Java

applications has not been studied. In order to conduct such a

study, we gathered an actual mobile phone application suite and

characterized it in detail. We measure several properties of the

various applications and benchmarks, perform

similarity/dissimilarity analysis and shed light on the

representativeness of current industry standard embedded

benchmarks against actual mobile Java applications. It was

observed that for many characteristics, the applications had a

broader range, indicating that the benchmarks were under

representing the range of characteristics in the real world.

Furthermore, we find that the applications exhibit less code

reuse/hotness compared to the benchmarks. We also draw

comparisons of the embedded benchmarks against popular

desktop/client Java benchmarks, such as the SPECjvm98 and

DaCapo. Interestingly, embedded applications spend a significant

amount of time in standard library code, on average 65%,

suggesting to the usefulness of software and hardware techniques

to facilitate pre-compilation with out the real time resource

overhead of JIT.

I. INTRODUCTION
Devices such as MP3 players, PDAs, and cellular phones have

increased in popularity over the past few years, and this is only

expected to grow. According to Rob Shaddock, chief technology

officer for Motorola mobile devices, the dramatic size of the cell

phone market, with its 2 billion subscribers "makes it the largest

consumer electronics business on the planet, bar none" [16]. A

2006 Gartner study expects mobile application deployment by

enterprises to grow by 30% per year till 2011 with over 8% of the

IT budgets spent on mobile applications.

As mobile devices grow in complexity and time-to-market

windows shrink, high-level languages have been increasingly

adopted to enhance productivity. Issues relating to development

time, platform security and portability, as well as the traditional

concerns of performance and cost have been pushed to the

forefront. More importantly, the rise of malicious software has

increased the need for ensuring the security of executable code.

Java [25] has become one of the predominant development

languages for mobile systems due to its architecturally neutral

design, rich Application Program Interfaces (APIs) and ability to

ensure executable security. Java support on embedded platforms

has experienced significant development and growth from major

industry groups in recent years. According to a Gartner study, the

sale of Java enabled cell phones is expected to be nearly 789

million units in 2007, and 1.17 billion in 2010 [14].

There are many reasons for the popularity of Java despite the

challenges to run Java in a resource-restricted embedded

environment. The embedded space is populated by a very large

variety of architectures (ARM, MIPS, x86, PowerPC etc) and

operating systems(flavors of Linux, Windows CE, Palm etc)

making portability a key issue. This coupled with the short life

span of devices and rapid pace of evolution of applications

exacerbates the need to be able to churn out high quality, portable

code rapidly. A 2006 Gartner study [14] expects that, 50% of the

large corporations will employ at least five mobile architectures

and a third of current application will be discarded by 2009. Under

such circumstances, the managed runtime based model of Java

coupled with a virtual machine environment provides considerable

advantages to an embedded software developer including code

portability and ease of development. The presence of garbage

collection in the language runtime, frees the programmers from the

burden of memory management, by avoiding memory leaks and

accidental memory overwrites (“dangling pointers”) [21].

Additionally, Java is designed to deploy code dynamically over a

network in a secure fashion. Furthermore, the bytecode structure of

Java also ensures that the class files are compact compared to a full

native binary, allowing for optimal use of limited network

bandwidth.

Figure 1 illustrates the various layers in the typical embedded

Java platform. Embedded Java environments consist of two

important elements – configurations and profiles. Configurations

provide a set of libraries and a virtual machine. Profiles are APIs

built on top of configurations to provide a runtime environment for

a specific device such as PDA or cell phone. Profile manages the

application, user interface, networking and I/O. In our

experiments, the configuration is CLDC, and the profile is MIDP.

CLDC (Connected Limited Device Configuration) [29] includes

some new classes designed specifically to fit the needs of small-

footprint devices with an intermittent (limited) network

connection. It specifies a stripped-down JVM (e.g.: KVM) as well

as several APIs for fundamental application services. Short for

Mobile Information Device Profile, MIDP is a set of embedded

Java APIs that define how software applications interface with

cellular phones and two-way pagers.

Embedded Java has become important and critical; however

embedded Java benchmarking is yet to mature. A notable effort

comes from the Embedded Microprocessor Benchmark

Consortium (EEMBC), a consortium of 58 member companies,

who have interest in a variety of areas like microprocessors

(MPU’s) microcontrollers (MCU’s), and digital signal processors

(DSP’s). To address the emergence of Java as a language of

choice, in 2002, EEMBC released a Java benchmark suite, the

On the Representativeness of Embedded Java Benchmarks

Embedded Java Application

MIDP Profile

Native API Hooks

CLDC Configuration

+

Embedded Java Virtual Machine

Operating System

Device
Fig 1. Typical Embedded Java Platform

EEMBC Java Grinderbench [12]. EEMBC Grinderbench

contains kernels extracted from some real world applications built

on the CLDC framework. There are also some other benchmarks

available like Morphmark [22], MIDPMark [7] and

CaffeineMark [23]. These stress some aspects of the embedded

Java framework on the target test platform and are mostly

synthetic. For this reason, some of the benchmarks like

CaffeineMark have been criticized to be the LLLs of embedded

Java benchmarks. We use all of these benchmarks in our study.

Given a set of benchmarks, it would be immensely useful to system

designers to know, if the benchmarks provide adequate

representation of their application space. Such concerns are

understandably acute in emerging areas like embedded Java.

Although suites such as Morphmark, MIDPmark and Caffeinmark

exist, nothing is known about their representativeness.

Furthermore, the loop nature of many of these benchmarks has

been of concern to designers and many often doubt their

representativeness. We undertake a study examining the embedded

benchmarks in the light of a suite of embedded applications from a

leading cell phone manufacturer, Samsung Electronics. The mobile

application suite consists of 50+ real world applications, deployed

in various models of mobile phones and devices. These

applications include interactive graphical games, board games,

image rendering, web browsing, photo gallery, and navigation

systems (maps).

There have been very few studies on embedded Java in the past.

Desktop Java has been understood a little more and hence we also

compare and contrast embedded Java with desktop Java.

Table 1. Embedded Java Benchmarks Used in this Study

Benchmark Source

EmbeddedCaffeineMark 3.0 Pendragon Software

MIDPMark Digital Bridges

Morpmark Morpheme

GrinderBench EEMBC

Specifically, we address the following questions:

a) Are popular embedded benchmarks representative of the real

world embedded applications?

A primary concern in benchmarking is whether the benchmarks are

representative of actual applications. Embedded benchmarks are

traditionally miniature compared to their desktop counterparts.

They are loop intensive and often are created by stripping out a lot

of I/O functionality from applications. Many are often concerned

about the representativensss and usefulness of these miniature

embedded benchmarks. We study a cellular phone application suite

consisting of 50+ applications in use within an actual cellular

phone, and analyze the similarity between these real world

embedded applications and embedded Java benchmarks to

understand the representativeness of the benchmarks. We use

Principal Component Analysis and clustering techniques [9, 10,

11] to study similarity.

b) Are embedded Java benchmarks fundamentally different

from client/desktop Java benchmarks?

Most embedded benchmarks are traditionally miniature. Does the

small size mean inherent reduction of complexity compared to the

desktop benchmarks? How different are embedded Java

benchmarks from desktop Java benchmarks? We compare the

embedded Java benchmarks against desktop benchmarks like

SPECjvm98 [26], and a recently proposed desktop suite, the

DaCapo benchmark [3].

II. Embedded benchmarks and applications

This section describes the embedded benchmarks and applications

that we used.

A. Embedded CaffeineMark (CaffMark)
The EmbeddedCaffeineMark benchmark suite from PenDragon

Software [23] is a simple synthetic benchmark suite composed of

several key Java language features. As illustrated in Table 2, the

EmbeddedCaffeineMark suite is composed of a variety of tests

involving kernels targeting basic language features such as method

invocations, object manipulation, and basic logical, string and

mathematical operations.

Table 2. EMBEDDED CAFFEINEMARK TESTS

TestName Description

Sieve prime number ‘sieve’

Loop Fibonacci ‘loop’

Logic Boolean ‘logic’ tests

String

‘String’ concatenation and conversion

Float ‘float’ operations (add,sub,mul,div)

Method

Repeated method invocation (non-

recursive)

B. MIDPMark
The MIDPMark benchmark suite by DigitalBridges [7], is a suite

that tests the different media features of a mobile handset. A set of

non-interactive and non-graphical MIDPMark tests as described in

Table 3 were used in the study. These tests include method and

thread creation, integer math and synchronization calls.

Table 3. MIDPMark Non-Graphical Tests

TestName Description

Creation New object creation

Logic Integer Math

Method Method Invocation (private, public, static,

final, etc)

Synchro Synchronized method calls (use of monitor)

Thread Thread creation

C. MorphMark
MorphMark, by Morpheme Ltd [22], is another common

benchmark suite that tests the performance of applications like

video games. The benchmark is primarily designed to test the

overall performance of embedded Java Virtual Machines when

running an entertainment gaming application. However, the

benchmark suite also has tests targeting the virtual machine

performance itself without interacting with the graphics subsystem.

The set of tests that were used in our study are listed in Table 4.

Table 4. MorphMark Non-Graphical Tests

TestName Description

Forward Loop Method loop with a incrementing counter

Reverse Loop Method loop with a decrementing counter

Integer Math Simple arithmetic tests

System Array Copy

Array copy using the System.ArrayCopy functionality

User Array Copy Array copy using user level copying

D. EEMBC Java GrinderBench
EEMBC, the industry embedded benchmarking consortium,

provides a set of Java benchmarks known as Java

GrinderBench[12]. These are composed of a set of six embedded

Java applications. The applications are non-interactive, non-

graphical and only require the support of the CLDC libraries. All

the six applications were used in the study and are described in

more detail in Table 5.
Table 5. EEMBC Java GrinderBench Applications

TestName Description

Chess Chess playing solver (3 games, 10 moves)

Crypto

Encrypts/Decrypts a small text document with

a set of crypto algorithms (DES, IDEA,

Blowfish, Twofish)

XML

Parsing and manipulation of a small XML

document

Parallel

Mergesort, Matrix multiply using multiple

threads for execution

PNG

Decodes a PNG graphic image (doesn’t use

graphical display, just the decoding only)

RegEx Parses a file using regular expressions

E. Mobile phone Java Applications
We obtained access to a suite of embedded Java applications for a

mobile phone. The suite consists of approximately 50 different

applications. These applications are from various applications

domains like interactive graphical games, board games, image

rendering, web browsing, photo gallery, and navigation systems

(maps).

Table 6. Summary of Dynamic Bytecode Count for Studied

Benchmarks

Benchmark Suite

Embedded Caffeine Mark

MIDPMark

Morphmark

Chess 9.9

Crypto 24.7

XML 10.03

Parallel 155.4

PNG 7

RegEx 5.7

70.9

4.8

EEMBC Java Grinder

Dynamic Bytecodes (Million of

Bytecodes)

50

In order to give an indication of the length of the benchmarks, we

provide the dynamic size of the various benchmarks used in this

study. Table 6 shows the number of bytecodes executed for each

given benchmark. As seen in Table 6, the individual tests and

suites in the study have varying dynamic bytecode counts, ranging

from 5 to 155 million bytecodes. In contrast, the SPECjvm98

benchmarks execute 2 to 954 million bytecodes with the –s1 data

set and approximately 100 million to 1 billion bytecodes with the –

s100 data set. Thus the embedded benchmarks are miniature

compared with the desktop Java benchmarks. How representative

are these embedded benchmarks? That is the question we set off to

answer.

III. Methodology
Characterizing embedded Java and comparing it to desktop Java is

very challenging from the perspective of tools and methodology.

Embedded and desktop VMs are different and the stripped down

embedded VMs will not run the desktop applications. However,

we use a methodology that consists of analyzing object-oriented

metrics in the various programs at a VM-independent level. We

use the IBM J9 VM [15], and a Sprint Wireless Tool Kit [28] in

order to perform the various experiments. Embedded VMs are

stripped down to be resource efficient which in turn makes them

deficient in some of the debugging and profiling abilities. Many of

the embedded VMs have no support for profiling interfaces like

JVMPI [25] or JVMTI [25]. We used the IBM J9 VM, which

supports JVMPI, enabling us to measuring several of the VM level

metrics. Real embedded Java applications often use some of the

device specific characters adding to the dependencies and

complexity of execution. Some of these dependencies seem to

interfere with the limited JVMPI support IBM J9 has and had to be

dealt at a case by case basis for the suite of 50+ applications. By

working around these limitations, we perform a study of embedded

Java benchmarks at both the bytecode and the native embedded

processor level.

A. Simulation/Execution framework

The embedded virtual machine used in this study is an IBM J9.

The IBM J9 VM, is a high-end, feature-heavy, versatile VM

implementation for embedded Java. It supports JVMPI enabling

profiling.

B. Principal Component Analysis and

Clustering

In order to understand the similarity/dissimilarity between

embedded Java benchmarks, other Java benchmarks and actual

embedded Java applications, we use Principal Component

Analysis (PCA) and clustering [10, 11]. PCA is a multivariate

statistical technique that reduces a large N-dimensional space

into a lower dimensional uncorrelated space with very little loss

of information. In order to isolate the effect of varying ranges of

each parameter, the data is first normalized to a unit normal

distribution, i.e. a normal distribution with mean equal to zero

and standard deviation equal to 1, for each variable. PCA helps

to reduce the dimensionality of a data set while retaining most of

the original information. PCA computes new variables, so-called

principal components, which are linear combinations of the

original variables, such that all the principal components are

uncorrelated. PCA transforms p variables X1, X2,...., Xp into p

principal components (PC) Z1,Z2,…,Zp such that:

∑
=

=

p

j jiji XaZ
0

 This transformation has the property Var [Z1] ≥ Var [Z2] ≥…≥

Var [Zp] which means that Z1 contains the most information and Zp

the least. Given this property of decreasing variance of the PCs,

we can remove the components with the lower values of variance

from the analysis. This reduces the dimensionality of the data set

while controlling the amount of information that is lost. We use a

standard technique (Kaiser Criterion) to choose PCs where only

the top few PCs which have eigenvalues greater than or equal to

one are retained. For details on PCA please refer to [9]. After

PCA, the workload space is projected using the most important

principal components, or linkage distance between the programs is

computed.

IV. Measuring Representativeness of

Embedded Benchmarks
We study characteristics of the aforementioned embedded Java

benchmarks and applications. Some issues with the

instrumentation and profiling setup prevented a few of the

applications from functioning correctly; but still we were able to

correctly execute 40+ real world applications. We first compare the

benchmarks and applications for code complexity, code structure,

object-orientedness features, class hierarchies, etc using the

popular Chidamber and Kemerer (C-K) metrics [4]. Then the

applications and benchmarks are compared for object behavior as

measured by execution-time object allocation/deallocation and

liveness characteristics using methodology used by Diekman-

Holzle, and Blackburn et al [8, 3].

A. Code Complexity Metrics

The complexity of the code is one of the aspects to compare

embedded benchmarks and real world mobile phone application

programs. Chidamber and Kemerrer [4] proposed several object

oriented programming metrics in order to quantify code

complexity. These metrics include Depth of Inheritance tree,

number of children, coupling between classes, etc. We use the

software package ckjm [27] to measure these metrics. As in prior

work [3], these metrics are measured for classes that load at

runtime. The libraries are excluded from the analysis as they are

heavily duplicated across the benchmarks. These metrics are

described in short as follows.

WMC (Weighted Methods per Class): WMC for a given

program is measured by adding complexity of a program’s

methods. Ckjm assigns a complexity value of 1 to each method,

and therefore the WMC value is equal to the number of declared

methods in the loaded classes. Large numbers thus show that a

class provides a variety of different behaviors in the form of

different methods/functions.

DIT (Depth of Inheritance Tree): DIT provides for each class a

measure of the inheritance levels from the top of the object

hierarchy. In Java where all classes inherit object the minimum

value of DIT is 1.

NOC (Number of Children): NOC measures the number of

immediate subclasses of the class.

CBO (Coupling Between Objects): For a given class CBO

measures the number of classes coupled to a given class. Classes

may be coupled via method calls, field accesses, inheritance,

arguments, return types, and exceptions. The metric measures code

complexity in terms of interactions between objects and classes.

RFC (Response for a Class): RFC measures the number of

different methods that may execute when a method is invoked.

Ckjm calculates a rough approximation to the response set by

inspecting method calls within the class’s method bodies.

LCOM (Lack of Cohesion): LOC counts methods in a class that

are not related through the sharing of some of the class’s fields.

Table 7 presents the C-K metrics for embedded benchmarks and

the mobile phone application suite. The benchmark data includes

EEMBC, Morphmark, MIDPmark, and Caffeine benchmarks. The

applications data is aggregated from 40+ different applications.

Weighted Methods per class ranges from 37 to 191 for the

benchmarks, while it ranges from 2 to 410 for the applications.

Similarly the depth of inheritance tree ranges from 7 to 49 for

benchmarks while it ranges 0 to 68 for the applications.

However, the average depth of inheritance tree is 25 for the

benchmarks while only 16 for the applications. The number of

children range from 0 to 16 for benchmarks and 0 to 22 for

applications. In general, the applications exhibit a wider spread

than the benchmarks. For all 6 of the metrics, the application has

a maximum much higher than the maximum of the benchmarks.

Similarly, the minimum for the applications is smaller than the

minimum for the benchmarks for 5 out of 6 metrics. However, if

you look at the mean or median, for many of the metrics, the

benchmarks are slightly more complex than the suite of

applications we studied. Although this might suggest that the

benchmarks are slightly over designed, it is not unhealthy to

have benchmarks slightly overstress application characteristics

since benchmarks are made to last longer and also intended to

help in studying ruggedness of designs. The more serious

weakness is that the benchmark suite lacks the broad spread of

the application suite.

In order to compare and visualize the similarity/dissimilarity of

the workload space (with all metrics), we rely on Principal

Components Analysis (PCA) [9]. Figure 2 shows a scatter plot

of two principal components that account for about 86% of the

variance in the embedded benchmarks and the embedded

applications. From Figure 2 we can observe that the benchmarks

are within the typical range exhibited by the applications for the

code complexity characteristics. But there are a few real world

applications (e.g.: A18, A30, A49, A50) that are very different

from all the benchmarks and hence are not represented by the

benchmarks. Two of the applications, A49 and A50 have high

values for most of the C-k metrics. (Our non-disclosure

agreement with Samsung does not allow us to discuss the details

of these applications any more.) However, it can be easily

concluded that there is room for improvement in the design of

the benchmarks. Benchmark suites can be made to include more

diverse benchmarks. Although the benchmark suite does not

show complete coverage of the application space, it is

encouraging to note that the industry standard benchmarks do

fall within the range exhibited by the applications.

Another interesting aspect is the comparison of the complexity

of embedded benchmarks to SPECjvm98 and the recently

developed DaCapo benchmark [3]. DaCapo was an effort to

create a benchmark suite that is heavily object-oriented. We

compared the C-k metrics of SPECjvm98 and DaCapo

benchmarks to embedded programs and observe that DaCapo is

far richer and complex in object-orientedness than any other

program we studied. Figure 3 presents the principal component

analysis with embedded applications, embedded benchmarks,

SPECjvm98 and DaCapo. The complexity and richness of

DaCapo overshadows the rest of the data. DaCapo_eclipse is far

out to the left and is not shown in the figure. The embedded

benchmarks, applications, luindex & lusearch from DaCapo

suite and most of the SPEC benchmarks (with the exception of

javac) gets clustered together on the right side.

 Figure 2. Principal component based analysis using C-k complexity

metrics for Embedded benchmarks and mobile phone applications

Table 7: Complexity Metrics for Embedded Java Benchmarks and Applications

Benchmark

WMC: Weighted

methods per

class

DIT: Depth of

Inheritance

Tree

NOC: Number

of Children

CBO: Coupling

between object

classes

RFC:

Response for a

Class

LCOM: Lack

of cohesion in

methods

Chess 183 49 8 143 468 362

Crypto 123 19 4 59 248 487

KXML 186 28 8 72 516 922

Parallel 37 15 4 27 85 31

Png 64 11 0 26 192 77

Regex 191 42 13 47 391 691

Caff 64 7 0 14 113 88

MIDP 113 47 16 52 365 450

Morphmark 94 7 0 11 218 1570

MIN 37 7 0 11 85 31

MAX 191 49 16 143 516 1570

Arith.MEAN 117.22 25 5.88 50.11 288.44 519.77

Applications

A1 36 9 2 15 131 29

A2 126 8 0 14 343 1329

A3 64 8 2 11 116 774

A4 220 44 6 71 627 547

A5 107 13 0 40 271 727

A6 109 13 0 35 322 140

A7 208 42 13 123 562 471

A8 122 9 0 22 332 461

A9 85 13 0 39 249 264

A10 34 2 0 3 86 79

A11 239 24 4 54 601 1019

A12 75 8 0 24 252 206

A13 43 3 0 6 107 175

A14 140 4 1 6 235 2617

A15 128 24 5 34 265 1806

A16 75 4 0 8 172 1163

A17 69 12 0 19 247 60

A18 136 4 0 12 223 5601

A19 239 25 5 47 637 1473

A20 261 36 2 73 765 688

A21 180 14 0 45 578 1375

A22 200 13 4 26 393 544

A23 128 12 1 38 405 240

A24 58 3 0 7 116 485

A25 160 18 0 47 434 557

A26 2 0 8 121 157 2

A27 128 12 1 38 405 240

A28 77 12 1 20 297 67

A29 52 5 0 11 164 92

A30 410 16 0 61 1131 8369

A31 43 5 0 8 125 26

A32 128 22 0 62 373 165

A33 128 12 1 38 405 240

A34 116 13 0 48 406 370

A36 81 6 0 13 297 377

A37 144 21 2 49 393 291

A38 111 12 0 23 327 181

A45 65 8 0 23 175 116

A48 8 1 0 0 10 8

A49 300 62 21 163 764 569

A50 325 68 22 199 835 700

A52 44 6 0 15 128 63

MIN 2 0 0 0 10 2

MAX 410 68 22 199 1131 8369

Arith. MEAN 128.6667 15.38095 2.404762 40.7381 353.8333 826.3333

Figure 3. Principal component based analysis using C-k metrics for Embedded, SPECjvm98 and DaCapo

benchmarks with mobile phone application suite

B. Object allocation/liveness/locality analysis
This section presents two important program properties namely 1)

memory allocation and management, and 2) code reuse. The

memory allocation and management properties are of greatest

concern to virtual machine designers. The code reuse information

is useful to VM and hardware designers. The memory behavior of

objects is gathered by using the limited support for JVMPI that

IBM J9 VM offers. Due to some of the stability and dependency

issues with JVMPI in IBM J9, the code reuse was done using the

Sprint Wireless Toolkit 3.1[28]. The Sprint Wireless Toolkit is an

emulation of the embedded Java platform with support for some

device and vendor specific libraries, which enables us to execute

most of our application suite.

1) Dynamic Object Memory behavior
To capture the dynamic memory profile of the programs, we

measure some of the metrics suggested by Dieckmann et al [8].

The VM was modified using a plug-in written using JVMPI. This

allowed for data collection and regular (controlled) invocation of

the GC. We invoked the GC once in every 10K of allocation and

measured both object allocation and live object statistics. A brief

discussion on each of the metrics follows.

Allocated bytes: measures the total number of bytes allocated by

this program.

Live bytes: measures the total number of bytes alive at the end of

a 10k allocation cycle, allowing one to compare the data survival

behavior. The amount of the bytes that stay alive can determine

the size of the second level of the heap and the algorithm used to

compact the heap. Since data compaction tends to perform bulk

copy, support for such operations in the architecture could be

helpful; but the level of support needed would be partly

determined by the amount of live bytes.

Allocated to Live bytes ratio: measures the ratio of allocated to

live bytes. This gives an idea of the pressure on the GC in terms of

that data allocation and de-allocation rate. A high ratio would

signal that allocation and de-allocation are happening at a high rate

(i.e. low survival rate with most of the objects being de-allocated

quickly). A high ratio would support the weak generation

hypothesis [20], the hypothesis that most objects die young,

making it a valuable information to the GC designers. The

usefulness of this metric extends to computer architects too. A high

ratio is likely to imply that large amount of data is being allocated

and stored in the high level memory and caches and then being

discarded at a very high rate. This could lead to a low utilization of

the cache hierarchy.

Allocated objects: measures the total number of objects allocated

by this program. Allocation of a large number of objects requires

an appropriately tuned heap management, a useful input to the

Virtual Machine designers. A large number of allocations can

pressure the TLB.

Live objects: measures the total number of objects alive at the

end of a 10k allocation cycle. The larger the number of objects that

survive, the more difficult could be the GC operations and possibly

more number of data copy operation are required.

Allocated to Live objects ratio: measures the ratio of allocated to

live objects. This metric is analogous to the allocated to live bytes

ratio except that now it concerns object count instead of bytes. This

metric gives us an idea of the pressure on the GC in terms of object

count. This data in conjunction to the object size related data can

give further insights to GC designers as well as micro-architects.

For example, a large object count ratio can have implication on the

cache block size. If the objects are small enough a number of them

could fit into the same cache block. This could work to ones

advantage and disadvantage. On the positive side it provides

prefetching but on the negative side it can lead to fragmentation of

the heap and thus reducing the utilization of the caches as well as

causing misaligned reads, typically a costlier operation.

Average Allocated Object size: measures the average size of the

objects allocated by the program. Large objects will have different

VM architecture and micro-architectural requirements compared to

small objects. For example, large objects are better off having

larger cache block sizes and the ability to write larger amount of

data in bulk (the bandwidth).

Average Live Object size: measures the average size of the live

(as defined before) objects allocated by the program. If the objects

that survive are smaller, more data operations are required to

manage them and the efficiency of small data operations become

critical (e.g. latency of data operations).

Table 8 shows the object allocation/liveness metrics for the

various embedded benchmarks and embedded applications. Due to

space limitation, the data for each individual benchmark and each

mobile application is included in Appendix I. On average,

benchmarks allocate more heap than applications, but the variation

in amount of heap allocated is higher in applications than

benchmarks. Thus there is a difference between average behaviors

versus the range of behaviors. Similarly, on average, benchmarks

allocate more objects; however, there is more diversity in object

count allocation between various applications than between the

benchmarks. The average allocated/live ratio is similar for both

applications and benchmarks, although applications have more

diversity. With respect to average object size, the benchmarks

exhibit a wider range than applications, both in allocated and live.

To simplify comparison and visualization we plot the two principal

components PC1 and PC2 that account for more than 72% of the

variance in the data (See Figure 4). The applications occupy a

space distinct from that of the benchmarks (one can draw a line

separating out the applications from the benchmarks). This is true

of all the benchmarks except Morphmark. On PC1, the benchmarks

fall within the range exhibited by the applications, whereas on

PC2, applications and benchmarks exhibit significant difference in

behavior.

Table 8: Dynamic Object behavior of Embedded Benchmarks and Embedded Applications
Heap Volume(MB) Object Count Average Object Size

Allocated Live Alloc/Live Allocated Live Alloc/Live Allocated Live

Benchmarks

 Min 0.06 0.05 1.29 1367 1305 1.05 29.67 31.77

 Max 101.11 25.62 153.82 2792726 655676 174.03 142.08 883.32

 Average 36.47 7.22 30.57 819556 111149 42.96 70.48 220.37

 GM 14.06 1.54 9.13 224925 14178 15.87 62.49 108.58

 Median 29.25 2.70 6.86 420144 6819 16.21 65.84 83.66

Applications

 Min 0.20 0.09 2.30 4162 1773 2.35 32.03 35.12

 Max 211.15 0.52 407.31 6591939 14760 446.61 49.67 90.67

 Average 10.12 0.21 29.36 310842 3997 40.16 38.01 54.10

 GM 1.80 0.19 9.35 47799 3624 13.19 37.73 53.22

 Median 1.18 0.22 6.27 33225 3752 9.50 36.51 53.78

Table 9: Dynamic Object behavior of Desktop Java benchmarks. Generated from [3]
Heap Volume(MB) Object Count Average Object Size

Allocated Live Alloc/Live Allocated Live Alloc/Live Allocated Live

SpecJVM98

 Min 0.7 0.6 1.1 3022 270 1.9 22 25

 Max 270.7 21.1 292.7 9393097 307043 786.1 28031 24425

 Average 152.53 6.31 69.99 5081259.22 142958 142.76 3164 2797

 GM 86.5 3.8 23 1180850 35886 32.9 77 110

 Median 140.5 6.3 19.5 6158131 153555 22.4 32 56

DaCapo

 Min 100.3 0.1 2 2402403 2788 1.4 24 23

 Max 60235.6 72 8104 161069019 3223276 9304.5 392 330

 Average 6564.46 16.07 1055.83 38142567.27 442848 1095.64 79.09 84.09

 GM 907.5 6.2 147.6 18112439 103890 174.3 53 62

 Median 779.7 9.5 186 25940819 168921 224.2 44 55

Figure 5. Principal component based analysis using dynamic object metrics for embedded benchmarks, embedded applications, Specjvm98 and

DaCapo

Table 10: Code Reuse metrics
 hot fn -

80% calls

hot fn -

90% calls

lib % of

hot fn

calls

hot lib

fns -

90%

calls

% of

lib

calls

hot fn

- 80%

cycles

hot fn

- 90%

cycles

lib %

of hot

fn

cycles

hot lib

fns -

90%

cycles

% of

lib

cycles

total

Cycles

total Calls Total

Fnts

Benchmarks

 Min 3 4 0 0 0.5 1 2 0 0 0.34 2.30E+11 689237 78

 Max 12 19 81.9 7 81.59 10 18 49.38 8 48.61 5.72E+11 65000000 172

 Avg 7 11 31.25 3 30.1 6 11 14.14 2 14.7 3.39E+11 28000000 133

 Median 7.5 11 28.08 4 26.62 7.5 12.5 10.1 2 10.78
3.221E+11 22000000 150.5

Application

 Min 1 1 2.33 1 8.39 2 4 6.59 1 10.94 3.52E+09 1346 43

 Max 29 44 100 11 97.95 18 29 100 16 92.41 6.90E+11 24000000 318

 Avg 12 17 40.19 5 39.63 6 10 65.48 6 63.39 8.44E+10 1182801 122

 Median 12 17 43.16 4 42.18 5 9 67.73 5 63.71
3.332E+10 87097 109

Figure 4. Principal component based analysis using dynamic object

metrics for comparison of Embedded benchmarks with mobile phone

application suite. To avoid cluttering not all points are labeled

Now, let us consider SPECjvm98 and DaCapo. Table 9

presents a summary of the comparison between embedded Java

benchmarks and the SPECjvm98/DaCapo information with the

same IBM J9 tool suite. Due to space limitation, a summary of

the results from Blackburn et al [3] is included as Appendix II.

On average, the object sizes are higher for SPECjvm98 for both

allocated and live. However, live size is higher for DaCapo

compared to SPEC. The PCA plot for the workload space with

embedded benchmarks, embedded applications, SPECjvm98

and DaCapo is shown in Figure 5. Four principal components

are presented, accounting for about 97% of the variance in the

data. As expected, DaCapo’s richness in code complexity

translates to more complex behavior even for object allocation

and management. Once all the Java workloads are presented in

the same figure (as in Fig 5), some outliers from DaCapo and

one from SPECjvm98 programs (compress) define a broad

envelope, however, all embedded benchmarks and applications

and many SPECjvm98 programs are clustered in a small region

of the workload space. The embedded Java benchmarks have

more similarity to SPECjvm98 than DaCapo.

Since many garbage collection algorithms are most concerned

with live object behaviors these demographics are more

indicative for designers of new garbage collection mechanisms.

The object demographics also dictate many other choices such

as the design of per-object metadata, locking mechanisms, etc.

All such decisions in the end affect the performance of the

micro-architecture.

2. Code reuse/hotness:
Modern Virtual Machines implement various techniques to

take advantage of the reuse of code segments; either by caching

bytecode translation or compiling frequently used code

segments into more efficient native code during runtime or

ahead of time. The impact of these techniques depends on the

code hotness behavior of different applications. Hence, to

compare the applications and benchmarks from the perspective

of code hotness, we use some metrics pertaining to code reuse.

We collect reuse information at a function granularity using the

Sprint Wireless Toolkit 3.1[28]. The metrics and the reasoning

behind using them are discussed below.

Hot 80% function call: The number of functions required to

make up 80% of the total function calls. The smaller the

number, the higher the code reuse.

Hot 90% function call: The number of functions required to

make up 90% of the total function calls.

Library % of hot function calls: The percentage of hot

functions calls that are libraries. This metric and the next five

metrics were designed to measure the contribution of library

functions to the top hot functions. A high reuse of library

functions can be exploited by the VM by say pre-compiling

those functions ahead of time or caching or preloading

translations for those functions. This can also affect the

hardware architecture. For example, storing precompiled code

can affect space available in the system memory. Another good

example would be for Java hardware accelerators like Jazelle

[1] in the ARM Cortex architecture. Jazelle, require the

bytecode to be reorganized to make optimum use the hardware

accelerator. If the applications are deployed dynamically over

the network from a third party, such processor specific

optimization might not be possible. That would be less of an

issue if a significant part of the execution time is spent on

library function which can be transformed ahead of time to take

advantage of the hardware and stored in the device

permanently.

Hot lib function calls: The number of library function among

the hot functions (based on call count).

% of lib calls: The percent of the total function calls that are to

library functions.

Library % of hot function cycles: The percentage of hot

functions cycles that are libraries.

Hot lib function cycles: The number of library function among

the hot functions (based on cycle count).

% of lib cycles: The percent of the total function cycles that

are contributed by library functions.

Hot 80% function cycles: The number of functions required to

make up 80% of the total cycles.

Hot 90% function cycles: The number of functions required to

make up 90% of the total cycles.

Total Cycles: The total number of cycles it takes to execute the

program. This gives on an idea of the typical execution length

of programs.

Total Calls: The total number of function calls invoked.

Total Function Count: The total number of unique

functions present.

Summary of the data is presented in Table 10(detailed data is

included as Appendix III) From the summarized statistics we

observe that the applications exhibit wider range of reuse

metrics than the benchmarks. For example, it takes 1-29

functions to amount for 80% of the function calls in the case of

applications while it takes only 3-12 functions to do the same

for embedded java benchmarks. The locality of applications is

as not as high that suggested by the benchmarks. The

benchmarks need improvement in this respect. This finding

also suggests that the effort in implementing even light weight

JIT compilation is higher than what is projected by the current

benchmarks. It is also interesting to note that the composition

of libraries in the execution behavior is higher for applications

when compared to the benchmarks. For example, in the

applications, 65% of the cycles on average are library functions

as opposed to 14% for the benchmarks. A higher contribution

of library function has special significance for embedded Java

because it allows for ahead of time compilation and

optimization of key libraries to be worthwhile. This allows one

to side-step JIT to some degree and to attain the same benefits

by employing ahead-of-Time compilation and ROMizing of the

library functions.

V. Related Work
Prior work [17, 18, 2, 3, 10, 19] in understanding the nature of

Java workloads has focused on characterizing the performance

of standard client and server applications using industry

benchmarks such as SPECjvm98 and SpecJbb [24]. In the

embedded domain, prior work includes Chen et al. [6] which

characterized the performance of embedded Java applications

through the development of their PennBench suite. Even

though this study concerns Java in the embedded space, the

analysis is limited to method and object distribution across the

proposed suite. Furthermore, our study focuses on industry

standard benchmarks and performs the analysis of the method

and object level properties elaborately. In another study by

Chen et al [5], the impact of various garbage collection

properties and allocation strategies, that can take advantage of

banked memory, are studied. Griffin et al [13] also proposed

improvements to the garbage collection strategies with the

objective of being energy efficient for embedded systems. They

use a small suite of application to model embedded Java

applications and only focus on relative benefit of their scheme,

but no characterization of the applications is presented. We

perform an elaborate characterization of standard embedded

benchmarks and embedded applications. We also present a

comparison between desktop and embedded Java benchmarks.

VI. Conclusion
With the goal of understanding embedded Java benchmarks

and their representativeness of real-world embedded

applications, we gathered and characterized industry

benchmarks such as MIDPmark, Morphmark, Caffeine,

EEMBC Java benchmarks, and an actual cell phone application

suite. Using a versatile embedded virtual machine, a Sprint

wireless toolkit, and a JVMPI based module, we obtained the

characteristics of embedded benchmarks and approximately 50

applications from the cell phone Java application suite. On

code complexity metrics, as well as object allocation and live

properties, there are differences between the properties of

embedded benchmarks and embedded applications. On most

characteristics, the range of variability represented by the

applications is much higher than the range of variability

exhibited by the benchmarks. On the object allocation and live

properties, the benchmarks and applications occupy an almost

disjoint space. Furthermore, we find that the applications

exhibit less code reuse/hotness compared to the

embedded benchmarks. Future embedded Java benchmarks

can be designed to include benchmarks with a wider range of

complexity characteristics as well as object allocation

properties.

We also compared the embedded programs to desktop/client

benchmarks such as SPECjvm98 and DaCapo. Utilizing

Principal Component Analysis and clustering techniques we

present a similarity/dissimilarity analysis of the different Java

benchmarks. As expected, desktop Java benchmarks, especially

DaCapo, is significantly richer in code complexity metrics and

object allocation/liveness characteristics. Embedded

benchmarks and embedded applications are seen to be different

from SPECjvm98 and DaCapo programs.

We also find that, embedded applications spend a significant

part of the time executing bytecodes from the standard library;

on average 65% of the time. This suggests that software and

hardware techniques that aid ahead of time compilation of

library functions can provide a significant performance boost

without having to incur the resource overhead of just-in-time

compilation of code. Compared to the applications, embedded

java benchmarks spend far less time, an average of 14%, in

libraries.

VII. Acknowledgement
We would like to acknowledge Kathryn S McKinley

(Department of Computer Sciences, The University of Texas at

Austin) for her guidance and help in the selection of metrics

and the evaluation methodology for Java. The authors are

supported in part by NSF grants 0429806 & 0702694, the IBM

Systems and Technology Division, IBM CAS Program, and

AMD.

REFERENCES

[1] ARM Inc, "Jazelle.",

http://www.arm.com/products/esd/jazelle_home.html

[2] Barisone, A., Bellotti, F., Berta, R., and Gloria, A. D.,

"Instruction Level Characterization of Java Virtual Machine

Workload," presented at Workload Characterization for

Computer System Design, 1999.

[3] Blackburn, S.M., et. al, "The DaCapo Benchmarks: Java

Benchmarking Development and Analysis," The ACM SIGPLAN

Conference on Object Oriented Programming Systems,

Languages and Applications (OOPSLA), 2006.

[4] Chidamber, S. R. and Kemerer, C. F. "A Metrics Suite for

Object Oriented Design," IEEE Trans. Softw. Eng., vol. 20, pp.

476-493, 1994.

[5] Chen, G., Shetty, R., Kandemir, M., Vijaykrishnan, N.,

Irwin, M.J., Wolczko, M.,"Tuning garbage collection in an

embedded Java environment", Proceedings. Eighth International

Symposium on High-Performance Computer Architecture, 2002.

[6] Chen, G., Kandemir, M., Vijaykrishnan, N., and Irwin, M.

J., "PennBench: a benchmark suite for embedded Java," presented

at IEEE International Workshop on Workload Characterization,

2002.

[7] Club Java, "MIDP Mark.", http://www.club-

java.com/TastePhone/MIDP.jsp/

[8] Dieckmann, S., Hölzle, U., "A Study of the Allocation

Behavior of the SPECjvm98 Java Benchmark", Proceedings of

the 13th European Conference on Object-Oriented Programming,

p.92-115, June 14-18, 1999

[9] G. Dunteman, Principal Components Analysis, Sage

Publications, 1989.

[10] Eeckhout, L., Georges, A., and Bosschere, K. D., "How Java

programs interact with virtual machines at the microarchitectural

level," presented at OOPSLA '03: Proceedings of the 18th annual

ACM SIGPLAN conference on Object-oriented programing,

systems, languages, and applications, Anaheim, California, USA,

2003.

[11] Eeckhout, L., Vandierendonck, H., and Bosschere, K. D.,

"Workload Design: Selecting Representative Program-Input

Pairs," presented at PACT '02: Proceedings of the 2002

International Conference on Parallel Architectures and

Compilation Techniques, Washington, DC, USA, 2002.

[12] EEMBC. Ltd., "Java GrinderBench.",

http://www.grinderbench.com/.

[13] Griffin, P., Srisa-an,W. and Chang, J. M., "An energy

efficient garbage collector for java embedded devices",

Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on

Languages, compilers, and tools for embedded systems,2005.

[14] Hugues J. De La Vergne, "Dataquest Insight: Java and

BREW in Mobile Devices", Gartner, April, 2007.

[15] IBM Inc, "WebSphere Everyplace Micro Environment",

http://www-306.ibm.com/software/wireless/weme/

[16] Infoworld,

http://weblog.infoworld.com/techwatch/archives/006425.html.

[17] Kim, J.-S., and Hsu, Y., "Analyzing Memory Reference

Traces of Java Programs," presented at Workload

Characterization for Computer System Design, 2000.

[18] Kim, J.-S., and Hsu, Y., "Memory system behavior of Java

programs: methodology and analysis," presented at SIGMETRICS

'00: Proceedings of the 2000 ACM SIGMETRICS international

conference on Measurement and modeling of computer systems,

Santa Clara, California, United States, 2000.

[19] Li, T., John, L. K., Narayanan, V., Sivasubramaniam, A.,

Sabarinathan, J. and Murthy, A., "Using complete system

simulation to characterize SPECjvm98 benchmarks", Proceedings

of the 14th international conference on Supercomputing., pp 22-

33. 2000.

[20] Lieberman, H. and Hewitt, C., "A real-time garbage collector

based on the lifetimes of objects", Communications of the ACM,

Vol 26, Issue 6, pp 419--429, 1983.

[21] McKinley, K. S. and Blackburn, S. M., "O Java, Java!

Wherefore Art Thou Java?", Invited paper, Workshop on

Computer Architecture Evaluation using Commercial Workloads

(CAECW), Phoenix, AZ, January 2007.

[22] Morpheme Ltd., "Morphmark.",

http://www.morphmark.com/index.jsp.

[23] Pendragon Software, "Caffeine Mark 3.0.",

http://www.pendragon-software.com/.

[24] Standard Performance Evaluation Corporation, "SPEC Java

Business Benchmark (SPECjbb2000)."

http://www.spec.org/jbb2000/

[25] Sun Microsystems, "Java.", http://java.sun.com/.

[26] Standard Performance Evaluation Corporation, "SPEC

JVM98 Benchmarks.", http://www.spec.org/jvm98/.

[27] Spinellis, D. D., "ckjm Chidamber and Kemerer metrics

Software", http://www.spinellis.gr/sw/ckjm/.

[28] Sprint Nextel Inc, "Sprint Wireless Toolkit.",

http://developer.sprint.com

[29] Sun Microsystems, "J2ME Building Blocks for Mobile

Devices."

 11

Appendix II. Average allocated and live object size and count data – Desktop Java Benchmarks(Data from [3])

 Heap Volume(MB)

Heap objects Mean Object Size

Benchmark Alloc Live Alloc/Live Alloc Live Alloc/Live Alloc Live

SPEC

201.compress 105.4 6.3 16.8 3942 270 14.6 28031 24425

202.jess 262 1.2 221.3 7955141 22150 359.1 35 56

205.raytrace 133.5 3.8 35.1 6397943 153555 41.7 22 26

209.db 74.6 8.5 8.8 3218642 291681 11 24 31

213.javac 178.3 7.2 24.8 5911991 263383 22.4 32 29

222.mpegaudio 0.7 0.6 1.1 3022 1623 1.9 245 406

227.mtrt 140.5 7.2 19.5 6689424 307043 21.8 22 25

228.jack 270.7 0.9 292.7 9393097 11949 786.1 30 81

pseudojbb 207.1 21.1 9.8 6158131 234968 26.2 35 94

DaCapo

antlr 237.9 1 248.8 4208403 15566 270.4 59 64

bloat 1222.5 6.2 195.6 33487434 149395 224.2 38 44

chart 742.8 9.5 77.9 26661848 190184 140.2 29 53

eclipse 5582 30 186 104162353 470333 221.5 56 67

fop 100.3 6.9 14.5 2402403 177718 13.5 44 41

hsqldb 142.7 72 2 4514965 3223276 1.4 33 23

jython 1183.4 0.1 8104 25940819 2788 9304.5 48 55

luindex 201.4 1 201.7 7202623 18566 387.9 29 56

lusearch 1780.8 10.9 162.8 15780651 34792 453.6 118 330

pmd 779.7 13.7 56.8 34137722 419789 81.3 24 34

xalan 60235.6 25.5 2364 161069019 168921 953.5 392 158

 12

Appendix I. Average allocated and live object size and count data

 Heap Volume(MB) Heap objects Mean Object Size

Benchmarks Allocated Live Alloc/Live Allocated Live Alloc/Live Allocated Live

CaffeineMark 31.04 0.20 153.82 300202 1725 174.03 103.38 116.96

EEMBC_chess 82.33 5.48 15.02 2775187 172512 16.09 29.67 31.77

EEMBC_crypto 19.57 7.15 2.73 137712 8100 17.00 142.08 883.32

EEMBC_kXML 101.11 25.62 3.95 2792726 655676 4.26 36.21 39.08

EEMBC_parallel 18.51 2.70 6.86 420144 4687 89.64 44.07 576.13

EEMBC_png 43.50 23.21 1.87 465707 147129 3.17 93.41 157.75

EEMBC_regex 2.83 0.20 14.19 38700 2387 16.21 73.21 83.66

MIDPMarkMain 29.25 0.39 75.41 444260 6819 65.15 65.84 56.88

MorphMark 0.06 0.05 1.29 1367 1305 1.05 46.44 37.80

AVG 36.47 7.22 30.57 819556.11 111148.89 42.95 70.48 220.37

Applications

A1 0.20 0.09 2.30 4162 1773 2.35 48.33 49.43

A2 2.35 0.28 5.88 28368 3902 7.27 36.21 44.79

A3 1.11 0.13 2.63 11811 3721 3.17 46.91 56.64

A4 36.21 0.26 7.48 31395 3018 10.40 36.76 51.13

A5 18.25 0.26 8.25 42702 3577 11.94 36.26 52.49

A6 1.03 0.17 9.59 36627 2481 14.76 35.84 55.16

A7 1.09 0.29 9.34 36487 2445 14.92 35.69 57.01

A9 7.85 0.26 5.13 32146 2864 11.22 35.30 77.27

A10 0.46 0.12 5.01 40652 4195 9.69 37.67 72.88

A11 41.15 0.26 8.83 34303 3242 10.58 35.19 42.17

A12 0.73 0.19 9.63 50333 3669 13.72 43.41 61.84

A13 0.39 0.11 8.44 67827 5137 13.20 34.58 54.12

A14 1.10 0.25 8.47 28039 3015 9.30 39.62 43.48

A16 13.38 0.25 140.06 1127123 5324 211.71 32.13 48.56

A17 0.55 0.21 70.33 565806 4857 116.49 32.26 53.43

A21 3.95 0.26 3.71 28626 4777 5.99 38.17 61.69

A22 1.15 0.15 30.10 240104 4533 52.97 32.68 57.50

A23 1.55 0.19 3.68 10632 2137 4.98 43.14 58.30

A24 0.83 0.19 160.03 1281856 4855 264.03 32.10 52.96

A27 1.31 0.14 3.84 18117 4086 4.43 40.32 46.54

A28 1.60 0.26 3.59 9642 2060 4.68 40.34 52.53

A29 0.98 0.10 4.40 28919 4477 6.46 37.98 55.71

A31 0.85 0.26 54.25 413785 5108 81.01 32.34 48.29

A32 0.52 0.10 15.18 115933 6085 19.05 34.08 42.77

A33 1.30 0.14 4.27 18889 3489 5.41 43.94 55.71

A35 1.13 0.22 6.07 45637 5092 8.96 34.98 51.69

A36 1.53 0.31 9.88 28227 1833 15.40 34.87 54.35

A38 0.88 0.32 3.28 21764 2853 7.63 39.01 90.67

A40 211.15 0.52 5.28 11953 1780 6.72 43.79 55.65

A41 0.70 0.12 2.75 17643 5394 3.27 49.67 59.04

A43 1.34 0.24 407.31 6591939 14760 446.61 32.03 35.12

A44 1.44 0.24 5.94 18347 2711 6.77 37.99 43.32

A49 2.04 0.15 5.55 36941 4278 8.64 36.14 56.20

A50 1.21 0.14 6.10 37694 4545 8.29 38.21 51.93

A51 0.77 0.12 13.97 59250 3782 15.67 34.38 38.56

A52 2.18 0.23 6.44 16644 2025 8.22 46.06 58.80

AVG 10.12 0.21 30.02 319247.97 4053.00 41.08 37.78 53.97

 13

Appendix III: Code/function reuse characteristics.

Benchmarks total Cycles
total
Calls

Total
Fnts

hot fn -
80%
calls

hot fn -
80%
cycles

hot fn -
90%
calls

hot fn - 90%
cycles

lib % of
hot fn
calls

lib % of
hot fn
cycles

hot lib
fns - 90%
calls

hot lib
fns -
90%
cycles

% of
lib
calls

% of lib
cycles

CaffeineMark 5.718E+11 1737511 78 4 2 6 4 56.67 49.38 4 3 54.28 48.61

eembc_chess 2.301E+11 2E+07 172 12 9 15 16 43.75 10.10 4 3 40.56 10.78

eembc_crypto 3.216E+11 3.5E+07 162 8 9 12 16 2.65 0.00 1 0 2.40 1.14

eembc_kxml 2.678E+11 2.4E+07 153 7 10 19 18 12.40 33.17 7 8 12.69 31.74

eembc_parallel 3.226E+11 689237 83 4 1 5 2 81.90 10.35 4 1 81.59 13.54

eembc_png 3.836E+11 6.5E+07 97 3 3 4 4 0.00 0.00 0 0 0.50 0.71

eembc_regex 3.827E+11 6.1E+07 148 8 6 10 9 8.87 0.00 1 0 8.19 0.34

midpmark 2.301E+11 2E+07 172 12 9 15 16 43.75 10.10 4 3 40.56 10.78

AVG 3.388E+11 2.8E+07 133 7 6 11 11 31.25 14.14 3 2 30.10 14.70

Apps

A1 5.242E+09 1346 66 16 5 24 8 34.21 66.51 8 4 34.10 62.79

A2 4.813E+10 409796 150 15 5 22 12 20.61 52.10 2 4 19.18 50.10

A3 9.828E+09 25006 80 17 8 21 13 46.02 79.19 6 11 46.27 75.14

A4 6.903E+11 2.4E+07 233 13 5 18 12 24.58 54.52 4 4 23.58 52.39

A5 1.875E+11 91531 112 14 3 18 4 44.56 6.59 4 1 42.48 10.94

A6 1.553E+10 72717 120 10 6 20 12 38.77 93.68 8 8 38.27 90.06

A7 9.156E+09 917141 207 1 10 1 16 100.00 78.60 1 12 97.95 75.00

A10 1.74E+10 8833 61 8 6 11 8 38.82 37.54 4 4 39.67 38.42

A11 1.632E+11 4328264 224 19 7 30 16 13.33 70.57 4 7 13.00 65.35

A12 2.301E+10 22310 83 8 4 10 6 19.13 19.30 2 3 19.91 22.13

A13 2.536E+10 32687 73 8 6 11 10 52.69 42.04 5 6 49.97 41.84

A14 3.604E+10 187220 121 26 4 38 7 49.56 100.00 8 7 45.28 92.41

A15 6.364E+10 448268 120 10 5 17 9 46.14 94.59 6 7 46.43 90.29

A16 8.518E+10 789351 109 6 8 13 13 19.58 67.73 4 9 21.76 63.71

A17 8.423E+09 3084 99 16 4 21 7 38.37 90.43 7 5 38.78 88.80

A21 8.715E+09 98117 137 6 10 11 15 45.64 77.21 6 10 45.16 76.26

A22 1.966E+10 131164 121 18 7 26 12 16.49 93.29 5 8 16.34 86.56

A23 4.89E+10 51242 119 14 6 18 9 46.56 53.00 7 6 45.21 52.20

A24 4.845E+10 40477 72 7 3 9 6 76.61 76.24 5 4 72.06 76.01

A25 9.623E+09 23753 122 21 5 24 9 26.19 94.79 5 7 24.83 91.52

A27 7.929E+10 79413 120 13 6 17 9 47.46 49.96 7 6 45.56 48.94

A28 1.271E+10 37932 87 2 5 5 7 48.80 78.25 2 4 48.33 76.19

A29 5.922E+10 94008 73 12 6 17 9 40.47 75.38 4 6 41.75 69.98

A30 8.906E+10 1847010 225 7 18 14 29 2.33 43.13 2 16 8.39 44.39

A31 5.296E+10 118068 62 8 3 11 5 70.19 41.04 4 3 66.33 41.50

A32 6.856E+09 15317 130 12 8 23 11 54.64 94.98 7 10 51.27 88.31

A33 9.97E+10 94699 120 13 6 17 8 47.40 47.59 7 5 45.33 47.64

A34 3.449E+11 252335 142 5 3 11 5 59.65 15.12 5 3 54.79 15.63

A35 2.299E+10 38546 61 8 3 9 4 53.59 46.44 3 2 56.15 47.29

A36 3.332E+10 59541 104 17 7 23 10 31.68 52.45 6 8 31.88 52.83

A38 1.179E+10 40091 104 12 6 18 9 51.31 95.26 9 7 49.69 90.89

A39 8.227E+09 9244 51 9 5 11 8 43.16 62.52 3 5 41.26 61.66

A40 6.002E+11 1.3E+07 307 17 5 24 10 27.44 87.23 4 5 27.85 81.30

A41 1.911E+10 8564 47 6 3 7 6 17.44 63.47 2 3 18.97 61.81

A42 4.078E+11 2505370 125 5 4 10 5 53.21 74.02 3 3 50.22 71.73

A43 1.669E+10 38771 71 12 4 15 6 5.60 34.35 2 2 10.74 35.51

A44 6.391E+10 45491 96 7 4 10 8 26.21 52.68 3 4 27.52 52.78

A45 1.498E+10 172246 79 7 3 11 8 42.96 76.01 3 5 42.18 72.49

A47 3.521E+09 1350 43 13 6 16 11 46.03 59.12 7 7 50.59 60.81

A48 3.6E+10 87097 94 4 4 7 7 45.20 88.22 2 5 45.24 84.08

A49 2.37E+10 129003 304 29 7 44 13 26.44 97.03 11 12 25.76 90.77

A50 3.772E+10 228200 318 27 9 42 17 19.10 92.13 10 12 19.55 86.35

A52 5.954E+10 118594 67 4 2 7 4 70.21 41.27 2 2 64.66 41.06

AVG 8.436E+10 1182801 122 12 6 17 10 40.19 65.48 5 6 39.63 63.39

 14

