
Phoenix Rebirth: Scalable MapReduce on a
Large-Scale Shared-Memory System

Richard M. Yoo, Anthony Romano, Christos Kozyrakis
Computer Systems Laboratory

Stanford University

{rmyoo, ajromano, kozyraki}@stanford.edu

Abstract—Dynamic runtimes can simplify parallel program-
ming by automatically managing concurrency and locality without
further burdening the programmer. Nevertheless, implementing
such runtime systems for large-scale, shared-memory systems
can be challenging. This work optimizes Phoenix, a MapReduce
runtime for shared-memory multi-cores and multiprocessors, on
a quad-chip, 32-core, 256-thread UltraSPARC T2+ system with
NUMA characteristics. We show how a multi-layered approach
that comprises optimizations on the algorithm, implementation,
and OS interaction leads to significant speedup improvements with
256 threads (average of 2.5× higher speedup, maximum of 19×).
We also identify the roadblocks that limit the scalability of parallel
runtimes on shared-memory systems, which are inherently tied to
the OS scalability on large-scale systems.

I. INTRODUCTION

Single-chip multiprocessors (CMPs) are now the norm for all
computing systems, from laptops to server farms. However, due
to the difficulties of thread-based parallel programming, utiliz-
ing multiple hardware cores is still challenging. Specifically,
the thread-based model requires the programmer to manually
manage synchronization, load balancing, and locality, which is
often error-prone (e.g., races and deadlocks) or requires detailed
understanding of the underlying hardware.

An alternative approach is to rely on a runtime system for
concurrency management [1]–[3]. In this model, the program-
mer expresses computation in terms of multiple tasks, and the
dynamic runtime automatically manages synchronization, load
balancing, and locality in order to achieve efficient execution.
Therefore, most of the hard work moves away from the
programmer and into the system. MapReduce [4], for instance,
is a data-parallel programming model that relies on such a
runtime approach. In MapReduce, computation is specified by
the programmer as a set of map and reduce functions. The
runtime system spawns multiple processes or threads that apply
these functions concurrently across the elements of the input
dataset. The applicability of the MapReduce model on a wide
range of applications has led to various implementations for
clusters and CMP systems [5]–[8].

This work focuses on Phoenix [5], a MapReduce imple-
mentation for shared-memory CMPs and SMPs. While the
original Phoenix performed well on small-scale systems with
uniform access latencies [5], we found that the runtime sig-
nificantly underperformed on large-scale systems with non-
uniform memory access (NUMA) characteristics. Due to the
popularity of two-socket and four-socket servers, large-scale
NUMA configurations are already commonplace. If the number

of cores per chip continues to scale, a single CMP chip will
soon exhibit NUMA characteristics as well.

Optimizing a parallel runtime for a large-scale NUMA
machine is challenging, as the runtime must manage complex
interactions with both the application and the operating system.
First, the runtime must enhance locality in order to hide
the additional latency due to the non-uniform characteristics.
Second, to handle parallel computations with large datasets, the
runtime must use scalable and low-overhead data structures for
input, output, and intermediate data. Lastly, the runtime must
be aware that the OS mechanisms for memory management and
I/O may not scale well when hundreds of threads are running
concurrently. To achieve scalable performance while retaining
the simplicity of the runtime-based approach, it becomes crucial
to address these issues.

In this paper, we optimize the Phoenix runtime on a quad-
chip, 32-core, 256-thread shared-memory system with NUMA
characteristics. The specific contributions of this work are:

• We show that efficient execution on a large-scale sys-
tem requires a multi-layered optimization approach. The
runtime developer must carefully select the runtime al-
gorithms, optimize their implementations around NUMA
challenges, and deliberately manage the interactions with
the operating system.

• We demonstrate the approach with the Phoenix runtime us-
ing a 256-thread UltraSPARC T2+ system. The optimized
runtime exhibits significantly improved scalability over the
original system; for 256-threads, the new runtime improves
speedup by 2.5× (maximum improvement of speedup up
to 19×).

• We also identify the important roadblocks that limit further
scaling of the Phoenix runtime on shared-memory NUMA
systems. Specifically, we find that interacting with the
operating system for memory allocation and I/O (i.e.,
sbrk() and mmap()) becomes a crucial issue at large
thread counts.

The rest of the paper is organized as follows. Section II
provides a brief overview of Phoenix and our NUMA system.
Section III details our methodology, while Section IV discusses
the effectiveness of the optimizations. Section V identifies and
discusses the bottlenecks that were critical to further scale the
runtime. Related work is presented in Section VI, and Section
VII concludes the paper.
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Fig. 1. Application speedup for the original Phoenix system.

II. BACKGROUND AND MOTIVATION

MapReduce [4] is a parallel programming framework and
runtime system proposed originally for cluster-based systems.
Since it is representative of high-level, data-parallel runtimes,
the lessons learned from scaling MapReduce can be generalized
to other similar frameworks.

A. The Phoenix Implementation of MapReduce

The original MapReduce system was designed for clus-
ters [4], which spawned multiple processes to achieve paral-
lelism. In contrast, Phoenix [5] is a shared-memory version of
MapReduce targeted for multi-core and multiprocessor systems.
Phoenix uses shared-memory threads to implement parallelism.

First, a user provides the runtime with the map / reduce
functions to apply on the data. The runtime then launches
multiple worker threads to execute the computation. In the
map phase, the input data is split into chunks, and the user-
provided map function is invoked on each chunk. This generates
intermediate key / value pairs, which reside in memory. In the
reduce phase, for each unique key, the reduce function is called
with the values for the same key as an argument, to reduce them
to a single key / value pair. Results from all the reduce tasks
are merge sorted by keys to produce the final output.

Compared to the cluster version, the most striking aspect of
Phoenix is that the workers communicate by accessing a shared
address space. Unlike the cluster system where communication
takes place through the distributed file system and remote pro-
cedure calls [4], [7], the communication overheads for shared-
memory MapReduce are low. On the other hand, because the
threads contend over the single address space, the way threads
access memory and perform I/O can have a first-order impact
on the overall performance. This can be a limitation in a large-
scale parallel system, as we show in Section V.

B. The Large-Scale Shared-Memory System

The most popular form of large-scale, shared-memory ma-
chines today are multi-socket servers that use two to four
multi-core chips, with caches and main memory channels
physically distributed across those chips. Such a system can
readily support hundreds of threads in a single unit, but exhibits
variable memory access latencies. Next generation multi-core

Hardware Settings

CPU

4 UltraSPARC T2+ chips
8 cores per chip, 8 HW contexts per core
total of 256 hardware contexts on system

Per Core L1 Cache
8 KB, 16 B lines, 4-way assoc
write through, physically tagged / indexed

Shared L2 Cache
4 MB, 64 B lines, 8-banked, 16-way assoc
write back, physically tagged / indexed

Memory
128 GB over 16 FBDIMM channels
4 channels local to each chip
300-cycle latency for local access
100-cycle overhead for remote access
85 GB/sec for read, 42 GB/sec for write

Interconnect
single external coherence hub
130 GB/sec bisection for coherence
Software Settings

Operating System Sun Solaris 5.10
Compiler GCC 4.2.1 with -O3 optimization

TABLE I
THE CHARACTERISTICS OF THE LARGE-SCALE SHARED-MEMORY SYSTEM

USED IN THE STUDY.
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Fig. 2. The latency of synchronization primitives.

chips with hundreds of cores on a single die will likely exhibit
similar NUMA characteristics.

The original Phoenix runtime targeted CMP and SMP sys-
tems with uniform memory access characteristics and 24 to 32
hardware threads. We target the Sun SPARC Enterprise T5440
system [9], [10], summarized in Table I. Each of the four T2+
chips supports 64 hardware contexts for a total of 256 in the
whole system. Each chip has 4 channels of locally attached
main memory (DRAM) as well. Notice that the accesses to
remote DRAM are 33% slower than the accesses to locally
attached memory; any program that uses more than 64 threads
will experience such non-uniform latency.

Figure 1 shows the scalability of the original Phoenix runtime
measured on T5440 with the released applications. Despite the
parallelism available in these applications, none of them scales
beyond 64 threads, and most of them actually slow down when
more threads are involved. This is the result of the increased
memory latency, loss of locality, and high contention when
utilizing threads across multiple chips. We explain these issues
in detail in Section IV.
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Fig. 3. Phoenix data structure for intermediate key / value pairs.

It is interesting to also note that the performance of several
OS primitives deteriorates when using more than 64 threads
on T5440. Figure 2 shows the latency of synchronization
operations as we scale the number of threads. We measured the
time needed for a half million lock acquisitions and releases in
order to increment a shared counter. Similar to the behavior in
Figure 1, the cost for synchronization increases drastically as
we cross the chip boundary.

We also observed similar behavior with Phoenix and with
low-level OS primitives on an 8-chip, 32-core, 32-thread
Opteron system running x86 Linux. This verifies that the
challenges observed are fundamental to large-scale systems and
not the artifacts of the T5440 machine we used. We omit the
x86 results due to space limitations. However, the optimizations
presented in this paper led to significant performance improve-
ments on this system as well.

III. OPTIMIZING PHOENIX FOR LARGE-SCALE & NUMA

A parallel runtime such as Phoenix continuously interacts
with the user application and the operating system. Therefore,
it is natural that the optimization strategies for large-scale,
NUMA systems are multi-layered. The approach we propose
comprises three layers: algorithm, implementation, and OS
interaction.

A. Algorithmic Optimizations

To perform well on a NUMA machine, the basic algorithms
used in the runtime must be scalable and NUMA aware. For
instance, the original Phoenix algorithm is not NUMA aware
in that local and remote worker threads are indistinguishable
at the algorithm level. While this is not an issue for small-
scale systems, it becomes important for locality-aware task
distribution in a large-scale, NUMA environment. When the
input data for the application is brought into memory via
mmap(), Solaris distributes the necessary physical frames
across multiple locality groups, i.e., chips and their separate
memory channels [11]. If Phoenix blindly assigns map tasks
to threads, it could end up having a local thread continuously
work on remote data chunks, thus causing additional latency
and unnecessary remote traffic.

We resolved the issue by introducing a task queue per locality
group, and by distributing tasks according to the location of
the pertaining data chunk. Map threads retrieve tasks from

their local task queue first, and when the queue runs out,
they start stealing tasks from remote task queues. Although
similar in spirit to the work stealing algorithm utilized in other
runtimes [1], the difference here is that we maintain one task
queue for each locality group (instead of each thread), hence
creating a load balancing approach that is compatible with
NUMA memory hierarchies.

B. Implementation Optimizations

To fully utilize a large-scale machine, applications must
include a non-trivial amount of work. This typically implies
large input datasets that the runtime system must handle
efficiently. Meeting this requirement in MapReduce is quite
challenging, since a typical MapReduce application generates
a commensurate amount of intermediate and output data as
well. Unlike the original MapReduce where data storage and
retrieval are limited by the raw bandwidth of the network and
the disk subsystem [4], we found that in Phoenix, the design
and performance of the in-memory data structures used to store
and retrieve intermediate data are crucial in overall system
performance.

Figure 3 gives a simplistic view of the core data structure of
the original Phoenix, which is used to store the intermediate key
/ value pairs generated from the map phase. In particular, Figure
3(a) depicts the typical access pattern to this structure in the
map phase, where a worker thread is storing an <“orange”, 1>
intermediate pair. Phoenix internally maintains a 2-D array of
pointers to keys array, where the width is determined as the
number of map workers, and the height is fixed by a default
value (256). During the map phase, each map worker uses its
thread id to index into this array column-wise. Once the column
is determined, the element is indexed by the hash value of the
key. All the threads use the same hash function. Therefore, for
each thread, a column of pointers acts as a fixed-sized hash
table, and one keys array amounts to a hash bucket.

Specifically, each keys array is implemented as a contiguous
buffer, and keys are stored sorted to facilitate binary search.
Each entry in the keys array also has a pointer to a vals array;
this structure stores all the values associated with a particular
key. To maximize locality, vals array is implemented as a single
contiguous array as well. During the map phase, both the keys
array and vals array are thread local.



application input dataset description
histogram 1.4 GB BMP image Computes the RGB histogram of an image
kmeans 500,000 data points Performs k-means clustering analysis over data points
linear regression 3.5 GB data Applies linear regression best-fit over data points
matrix multiply 3,000 × 3,000 matrices Matrix multiplication
pca 3,000 × 3,000 matrix Performs principal components analysis over a matrix
string match 500 MB dictionary Pattern matches a set of strings against streams of data
word count 500 MB random texts Counts the number of unique word occurrences

TABLE II
THE WORKLOADS USED WITH THE PHOENIX MAPREDUCE SYSTEM.

0

20

40

60

80

100

120

1 2 4 8 16 32 64 128 256

sp
ee

du
p

#threads

histogram kmeans linear_regression matrix_multiply

pca string_match word_count

(a) Application speedup with the optimized version of Phoenix.
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Fig. 4. Performance improvements summary.

Next, during the reduce phase (Figure 3(b)), each row
amounts to a reduce task; a reduce thread grabs a row from the
matrix and invokes the reduce function over all the keys array
in that row. Notice the disparity between how the threads access
the 2-D array structure during the map phase (column-wise)
and the reduce phase (row-wise); pictorially, every ‘crossing’
in the access pattern signifies that a worker thread has to access
data structures prepared by another thread, which could require
remote memory accesses in the NUMA environment. On the
other hand, since Phoenix is implemented in C, the 2-D array
structure is represented as a row-major array in memory. Hence,
the above design optimizes for the locality of reduce phase;
map phase exhibits little locality since the sequence of keys
confronted during the phase is close to random.

With the medium-sized datasets used on small-scale systems,
this data structure design was acceptable. But when the input
was significantly increased on the 256-thread NUMA system,
we observed some performance pathologies. As described ear-
lier, the keys array structure was implemented as a sorted array
to utilize binary search. Although it provided fast lookup, the
downside of this implementation was that when the buffer ran
out of space, the entire array had to be reallocated. Even worse,
when a new key was inserted in the middle of the array, all
the keys coming lexicographically after the new key had to be
moved. As we increased the input dataset, this problem became
more prominent. Similar buffer reallocation issues occurred on
the vals array as well.

Improving the keys array structure was more complicated
than we first expected. Since massive amounts of intermediate
pairs were being inserted into the hash table, slight latency
increases such as pointer indirection obliterated any perfor-
mance gains. For example, we tried a design that implemented
keys array as a linked list, but failed to improve performance.
Replacing the structure with a tree was not an option either,
since frequent rebalancing would have been costly. Instead, we
settled by significantly increasing the number of hash buckets so
that on average only one key resides in a keys array. Detailed
reasoning behind this decision will follow (Section IV-C1), but
simply put, increasing the number of hash buckets linear to the
number of unique keys was sufficient.

For the vals array, we implemented an iterator interface
to the buffer and exposed this interface to the user reduce
function. This allowed us to have a buffer that is comprised of
few disjoint memory chunks (good for locality purposes) while
still maintaining the sequential accessibility through the iterator
interface. This design completely removed the reallocation is-
sue. Additionally, to tolerate the increased memory latencies in
the NUMA system, we implemented prefetching functionality
behind the interface. Note that unlike the map phase where we
can avoid accessing remote memory by assigning tasks based
on locality, in the reduce phase a worker might not be able to
avoid performing remote accesses since the intermediate pairs
with the same key may be produced by workers across all the
locality groups. Therefore, sequential accesses and prefetching
to vals array become important.



We also experimented with combiners [4], where each thread
invoked the combiner at the end of the map phase to decrease
the amount of reduce phase remote memory traffic. However,
with the prefetching in place for the reduce phase, combiners
made little difference.

After the data structure was improved, other minor factors
such as task generation time were affected by the increased
input size as well. We detail the issue in Section IV-C2.

C. OS Interaction Optimizations
Once the algorithm and the implementation are optimized,

interactions with the OS are apt to become the next bottleneck.
Specifically, Phoenix frequently uses two OS services: memory
allocation and I/O.

Phoenix exerts significant pressure on memory allocators due
to its large memory footprint as well as its peculiar allocation
pattern. First, Phoenix generates a significant amount of inter-
mediate and output data. Even worse, the memory needs per
key are usually unpredictable. As for the allocation pattern, in
Phoenix, the thread that allocates memory (e.g., a map thread)
rarely is also the thread that deallocates the memory (e.g.,
a reduce thread). This mismatch can incur contention on the
per-thread heap locks when multiple threads try to manipulate
the same thread heap. We experimented with a sizable number
of memory allocators to compare their performance. However,
at high thread count, we noticed that the parallel allocator
performance was limited by the scalability of the sbrk() system
call. We discuss the issues in detail in Section V.

The mmap() system call is used to read in input data. Once
the user passes the pointer to the mmap()ed region as a runtime
input, multiple threads will concurrently fault in the input data
while invoking their map functions. Therefore, as we increased
the number of worker threads, we observed the mmap() scala-
bility being crucial to some of the workloads. More importantly,
however, mmap() was also being used to implement thread
stacks. Using the SunStudio [12] profiler, we found that thread
join was a major bottleneck at large thread counts. Further
analysis revealed that the increased thread join time was due
to the calls to munmap(), which was used to deallocate thread
stacks. To address the issue, we implemented a thread pool
that reused threads across different MapReduce phases and
iterations (multiple sets of map and reduce functions), reducing
the total number of calls to munmap() to a strict minimum.

IV. EVALUATION

A. Performance Improvements Summary
We implemented the optimizations in Section III on Phoenix

and measured its performance by executing the applications
included in the original release. Table II describes the work-
loads and their input datasets. We omitted the reverse index
workload because it was I/O bound. Compared to the original
release [5], we significantly increased the input datasets to stress
all the hardware contexts available on our system. In all the
experiments we bound threads so that we filled up a chip (64
threads) first before providing for the other chips.

Figure 4(a) summarizes the scalability results for the
optimized runtime. Specifically, workloads matrix multiply,
kmeans, pca, and string match scaled up to 256 threads.
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Fig. 5. Locality group hit rate improvement on string match.

workload populated bkts. keys per bkt. vals per key

histogram 256 2 256
kmeans 100 1 78
linear regression 5 1 905
matrix multiply 0 0 0 (bypasses reduce)

pca 21 2 1 (phase 1)
256 274 1 (phase 2)

string match 0 0 0 (bypasses reduce)

word count 256 156 34 (phase 1)
244 31 1 (phase 2)

TABLE III
HASH TABLE KEY DISTRIBUTION.

However, some of the workloads still did not scale particularly
well. We discuss their bottlenecks in detail in Section V, but in
the remainder of this section we first focus on the optimizations
that turned out to be successful.

Figure 4(b) measures the relative speedup of the new runtime
over the original. It essentially compares Figure 4(a) and
Figure 1 using the same dataset. In the figure, the top and
bottom of each vertical bar denotes the maximum and mini-
mum performance improvement achieved at a particular thread
count, respectively; the horizontal line that connects those bars
represent the harmonic means of speedups obtained from the
entire workload. The optimized runtime led to improvements
across all thread counts. For less than 64 threads (single chip),
the average improvement was 1.5×, and the variation across
applications was rather small (maximum of 2.8×). For large-
scale, NUMA configurations with 128 or 256 threads, the
optimizations were significantly more effective, reaching 19×
in maximum and 2.53× on average. We saw similar differences
between the two runtimes on the 8-socket, 32-core Opteron
system as well.

Since the various optimizations had interrelated effects on
the overall performance, e.g., iterators interacting with memory
allocation pressure, we could not fully isolate the contributions
of each class of optimization for all the workloads. Qualitatively
speaking, OS interaction optimizations had the most impact,
implementation optimizations next, and algorithmic optimiza-
tions the least. We provide insights into the impact of each
optimization class in the following subsections.
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B. Impact of Algorithmic Optimizations
We implemented the per locality group task queue and task

distribution as described in Section III-A. We utilized the
meminfo() interface in Solaris [11], which returns the locality
group of the physical memory that backs the virtual address
being queried. According to the locality group information for
an input data chunk, a task was queued to the pertaining locality
group task queue. Note that the locality aware task distribution
is orthogonal to the use of an application specific splitter on the
input data; once the input is split in whatever means necessary,
map tasks are distributed in a locality aware manner.

Figure 5 compares the locality group hit rate of the optimized
runtime against that of the baseline for the string match
application. The hit rate represents the percentage of map
task data that was served by a memory channel attached to
the same chip (low latency memory access). When threads
were confined to one chip, they were forced to take locality
group misses when accessing data on remote memory. Hence,
both schemes exhibited about 17% locality group hit rate for
this case. However, when threads were created across multiple
chips, careful placement of tasks could readily improve locality
group hit rate. The proposed optimization effectively utilized
this opportunity, which led to 30% and 44% locality group hit
rate at 128 and 256 threads, respectively. On the average, this
optimization led to 8% speedup improvement over the baseline
at 256 threads.

C. Impact of Implementation Optimizations
1) Hash Table Improvements: In Section III-B, we discussed

how large datasets led to performance issues with the core
Phoenix data structure that stored the intermediate key / value
pairs. We addressed this issue by increasing the number of hash
buckets and by implementing the iterator interface. Especially,
the increased hash bucket count avoided buffer reallocation and
copying. However, not all the workloads benefited from the
optimization. Table III shows the distribution of keys in the
hash table for 64 threads, when the number of hash buckets
was set to 256. Note that these are the averages taken over
all the threads; the actual number of keys or values for each
thread can be significantly higher. From the table, it can be
seen that although workloads such as pca and word count
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Fig. 8. pca execution time breakdown.

generated significant amount of unique keys, other workloads,
e.g., kmeans and linear regression, did not.

The problematic workloads generated a fixed number of
unique keys regardless of the input size. Therefore, increasing
the hash table size ended up in a net slowdown for such
applications, and this slowdown actually became worse with
more threads. Figure 6 shows the normalized execution time of
kmeans increasing with higher bucket counts (time normalized
to that with 256 buckets). Our analysis showed that when a
reduce worker traversed down a row of the 2-D array (see
Section III-B), there was a fixed cost just to find a remote
keys array structure empty. Due to NUMA effects, this cost
increased when more chips were used. In Figure 6, this effect
manifests as worse performance with increasing number of
threads. So, for workloads that did not generate a large number
of unique keys, the hash bucket count had to be kept small.

Even for the workloads that did benefit from the increased
bucket count, the improvements were not uniform. Figure 7
shows the normalized execution time of word count when the
number of hash buckets was increased. Again, the execution
time is normalized to the 256 buckets case. At low thread
counts (∼32 threads), increasing the hash table size resulted
in speedup. However, as more threads were added, the benefit
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was reversed due to the increased time spent in the merge phase.
In Phoenix, worker threads output one result structure for each
reduce task, which were merged by a tree-based parallel merge
sort at the end. Since each hash bucket amounted to one reduce
task, having an excessive amount of hash buckets resulted in
a ‘wider’ merge tree. At the same time, increasing the thread
count made the merge tree ‘deeper.’ When the overhead in the
merge phase outweighed the savings from the reduced memory
reallocation, increasing the number of hash buckets resulted in
a net slowdown.

To summarize, no single hash table size worked best for all
the workloads. For applications that generated small number
of keys, the hash table size had to be kept to a minimum. On
the other hand, for workloads with large amount of keys, the
hash bucket count could only be increased as long as it did
not negatively affect the merge phase execution time. In the
optimized version of Phoenix, we made the hash table size
user tunable, while providing the default values for efficient
execution on each workload. As a rule of thumb, increasing
the number of hash buckets linearly to the number of unique
keys was sufficient.

2) Task Generation Time: We also made an interesting
observation concerning the effect of map task chunk size on
the overall execution time. As reported in [5], it was generally
understood that varying the chunk size relative to the cache
size did not have a significant impact on locality, due to
the streaming nature of MapReduce applications. However,
the chunk size had a direct impact on the map phase task
generation time, which started to consume a noticeable amount
of execution as the input datasets became larger. Figure 8 shows
the breakdown of the pca execution time as we varied the input
chunk size from 64 KB to 512 KB. At the default value of 64
KB, pca generated millions of map tasks, which is captured as
the prominent map overhead portion in the figure. At higher
number of threads, this overhead actually dominated the entire
execution time.

In our case, increasing the chunk size up to 512 KB was
sufficient to reduce the task generation time to a minimum
(right columns in Figure 8). However, for systems of larger
scale, it might be necessary to parallelize the task generation
phase altogether.

Without Thread Pool
� threads time (sec) � calls time / call (msec)

8 0 20 0
16 0.31 1947 0.16
32 0.689 4499 0.15
64 1.695 9956 0.17

128 4.548 14661 0.31
256 8.219 14697 0.56

With Thread Pool
� threads time (sec) � calls time / call (msec)

8 0 10 0
16 0.002 13 0.15
32 0.002 18 0.11
64 0.008 33 0.24

128 0.016 44 0.36
256 0.065 102 0.64

TABLE IV
THE EFFECT OF THE munmap() SYSTEM CALL ON kmeans.

D. Impact of OS Interaction Optimizations

As described in Section III-C, the mmap() and munmap()
system calls used to implement and destroy thread stack intro-
duced high overhead at large thread counts. Especially, kmeans
was affected the most since it iterated over multiple MapReduce
instances, which resulted in repeatedly creating / destroying a
large number of threads. The upper half of Table IV shows the
effect of munmap() on kmeans measured with truss. It was
expected that the number of calls to munmap() increased with
increasing number of threads; but the problem was that each
call to munmap() took longer as we used more threads.

To alleviate this problem, we implemented a thread pool.
The lower half of Table IV presents the same data when the
thread pool was enabled. The thread pool reduced the number
of calls to munmap(), which made the time spent inside
munmap() negligible. In result, the workload showed notably
improved scalability (Figure 9). However, notice that the time
spent for each call to munmap() stayed more or less the same.
We discuss the issue in detail in Section V-B.

V. CHALLENGES AND LIMITATIONS

Although we were able to significantly improve the scala-
bility of Phoenix, workloads histogram, linear regression,
and word count still did not scale up to 256 threads. We
used /usr/bin/time to assess where the execution time was
being spent. Figure 10 shows the result with effective time
defined as user + sys time. It was clear that the 3 non-scaling
workloads shared two common trends. First, the idle time
increased with increasing number of threads, dominating the
total execution time at high thread count. Second, the portion
of actual computation time assumed by kernel code (sys /
effective) significantly increased as we went beyond the single
chip boundary.

From the profiler analysis we also found that at 256 threads,
histogram and linear regression spent 64% and 63% of their
execution time idling for data page fault, and that word count
spent 28% of its execution time in sbrk() called inside the
memory allocator. word count spent an additional 27% of



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

32 64 128 256

ra
ti

o

ex
ec

ut
io

n 
ti

m
e 

(s
ec

)

#threads

sys user idle sys / effective

(a) Execution time breakdown on histogram.
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(b) Execution time breakdown on linear regression.
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(c) Execution time breakdown on word count.

Fig. 10. Execution time breakdown for non-scalable workloads.

execution time idling for data pages as well. In short, scalability
on these three workloads were hampered by two OS services:
memory allocation and I/O.

We would like to be clear that these issues are not related
to the physical I/O performance. We observed the same issue
even when we warmed up the OS file system cache by
running the same workload with the same input multiple times.
Measurements were taken only when the workload execution
time had been stabilized. Hence, all the scalability issues we
report here are due to the serialization introduced by the
memory management portion of the operating system. It is also
important to point out that simply substituting mmap() with
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Fig. 11. Memory allocator scalability comparison on word count.

read() resulted in unacceptable performance for those work-
loads that depended heavily on mmap(): namely, histogram
and linear regression.

A. Memory Allocator Scalability
Compared to the libc sequential allocator, the Solaris concur-

rent allocator mtmalloc provided improved performance. How-
ever, when it frequently called sbrk(), the allocator exhibited
scalability problems. Inside sbrk(), a single user-level lock kept
other threads from expanding the process’s data segment, while
per-address space locks protected in-kernel virtual memory
object. As more threads relied on sbrk() to satisfy allocation
requests, sbrk() became the point of contention.

We experimented with various allocators1. Figure 11 com-
pares the scalability of different memory allocators on
word count. Solaris alone provided (at least) 5 different mem-
ory allocator implementations: malloc, bsdmalloc, mtmal-
loc, libumem, and mapmalloc. Among those, mtmalloc and
libumem had concurrency support. Especially, libumem could
be paired with a backend using mmap() instead of sbrk();
in Figure 11, libumem mmap denotes the performance of
libumem with mmap() backend. Also, the hoard trend line
denotes the performance of the Hoard [14] memory allocator.

In summary, no allocator successfully scaled up to 256
threads; once the sbrk() became the bottleneck, no allocator
was able to scale. We believe this issue opens up a new re-
search opportunity for concurrent allocators and virtual memory
subsystems on large-scale shared-memory systems. Comparing
the results of libumem and libumem mmap allowed us to
arrive at the surprising conclusion that the mmap() backend
performed even worse than the sbrk() backend; despite having
no user-level lock like sbrk(), the mmap() backend managed
to scale worse than the sequential malloc.

B. mmap() Scalability
The scalability of the mmap() system call is critical to

shared-memory runtimes like Phoenix since workloads typi-
cally mmap() user input data and use multiple threads to fault
them in. To quantify the problem, we created a microbenchmark

1We could not experiment with TCMalloc, an open-source memory allocator
with NUMA extensions [13], since the library was not ported to SPARC.
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Fig. 12. mmap() microbenchmark scalability results.
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Fig. 13. Ideal vs. actual speedup for non-scalable workloads.

that assessed mmap() scalability. It simply mmap()ed a user
input file and statically assigned the data chunks across threads.
Then, the threads computed the total sum of all the data by
streaming through the chunks assigned to them. No user level
synchronization primitives were called, and memory allocation
was only performed in the sequential portion of the program
(an array to hold pthread ts).

Figure 12 shows the results for the microbenchmark over
varying page sizes. In short, mmap() exhibited serialization as
we crossed the chip boundary. The fact that the performance
was identical regardless of the page size also suggested that the
problem was not related to TLB pressure. The issue was not
limited to Solaris, either; executing the same microbenchmark
on Linux produced similar results.

C. Importance of OS Scalability

To investigate to which degree these workloads were affected
by the poor scalability of OS primitives, we tried to predict the
ideal scalability of each one. Figure 13 shows the achievable
speedup for each workload, when only the time spent executing
the user code was considered (including the Phoenix runtime).
It was clear that the operating system scalability was a signif-
icant issue, as the user time on these applications scaled well.

To better support our claim, we also created a synthetic
benchmark that tried to get rid of sbrk() and mmap() effects on
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Fig. 14. word count performance without sbrk() and mmap() effects.

word count application by, first, pre-allocating all the memory
it needed, and second, by reading in all the data into the user
address space before it started executing. In Figure 14, we can
see that removing each OS bottleneck gradually improved the
application performance. The workload scaled well up to 256
threads when both the bottlenecks had been removed.

D. Discussions

Scaling operating systems for large-scale, shared-memory
systems is an active field of research [15], [16]. Nonetheless,
we have shown that the problems are more severe and readily
encountered than expected, even with a highly optimized oper-
ating system like Solaris. Clearly, further research is warranted.

It is also important to point out that these issues are specific
to shared-memory MapReduce. Unlike the cluster implemen-
tation, in shared-memory MapReduce, worker threads share
a single address space. Therefore, how one thread allocates
memory and performs I/O has a direct impact on the overall
system performance. In an effort to localize OS interactions
as much as possible, we also tried MapReducing-MapReduce:
instantiating one MapReduce instance per locality group and
crossing the chip boundaries only at the final phase to merge the
results. However, since those MapReduce instances essentially
constituted a single process, they still suffered from similar OS
scalability issues.

One other way to overcome the problems we faced on the
NUMA system would be to have each MapReduce worker
implemented as a separate process running on a dedicated OS
instance (virtual machine) but on the same physical machine.
Unlike the cluster environment where workers communicate
over the network infrastructure, we could build virtual machine
mechanisms that would allow communications across different
virtual machines to take place through shared memory, without
even invoking the hypervisor every time. We leave this topic
as future work.

VI. RELATED WORK

Previous efforts in scaling runtimes for large-scale shared-
memory systems include optimizations performed on the
OpenMP [17]–[19] and Java [20] systems. However, none of
these efforts focused on the unique position of the runtime in



a software stack, to propose a comprehensive, multi-layered
approach. Moreover, compared to our system, the NUMA sys-
tems utilized in these projects were typically small in scale or
density. Hence, the OS scalability issues were not as profound.

A variety of production operating systems offer interfaces
to reason about and enforce NUMA placement [11], [21].
However, we have shown that the problems are more severe
and imminent, even when these mechanisms are used. For the
future CMP systems and NUMA machines to be successful,
significant research should be dedicated to OS scalability.
Current investigations into OS scalability are a step in this
direction [15], [16].

Kunz [22] observed similar locality and scalability issues
with respect to OS in his study of a 64-chip FLASH machine
that spanned across multiple racks. We concluded that we were
facing the same issues within smaller form factors (as small as a
single unit) due to the high density made available by modern
multi-core systems. Unfortunately, the reduced latencies due
to smaller distances do not change the picture significantly.
These facts all the more stress the importance of a systematic
approach to optimizing a runtime system on a large-scale
NUMA machine.

VII. CONCLUSION

Dynamic runtime systems are a promising approach to
solve parallel programming issues for parallel systems. How-
ever, optimizing a runtime for a large-scale, shared-memory
environment with NUMA characteristics can be non-trivial,
because of the complex interactions among the runtime, the
user application, and the operating system. Such interactions
can reduce locality and introduce scalability issues.

In this paper we point out that optimizing a runtime on a
large-scale NUMA system calls for a comprehensive approach
that considers all the layers of algorithm, implementation,
and OS interaction. We demonstrated this approach by op-
timizing Phoenix, a shared-memory MapReduce system, and
measured its performance on a 256-thread NUMA system. We
significantly improved the scalability over the original version,
achieving an average speedup improvement of 2.5×, and a
peak speedup improvement of 19×. Moreover, we documented
scalability limitations that are inherently tied to operating
system services and can motivate further work on this topic.

The optimized version of Phoenix is publicly available at
http://mapreduce.stanford.edu.
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[19] D. S. Nikolopoulos, E. Ayguadé, and C. D. Polychronopoulos, “Runtime
vs. manual data distribution for architecture-agnostic shared-memory
programming models,” International Journal of Parallel Programming,
vol. 30, no. 4, pp. 225–255, 2002.

[20] M. M. Tikir and J. K. Hollingsworth, “NUMA-aware Java heaps for server
applications,” in IPDPS ’05: Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05) - Papers,
vol. 1, 2005, p. 108b.

[21] Silicon Graphics, “Local and remote memory: Memory in a Linux/NUMA
system,” White Paper, 2006. [Online]. Available: http://www.kernel.org/
pub/linux/kernel/people/christoph/pmig/numamemory.pdf

[22] R. C. Kunz, “Performance bottlenecks on large-scale shared-memory
multiprocessors,” Ph.D. Thesis, Stanford University, December 2004.


