
Characterizing Data Analysis Workloads in Data Centers

Zhen Jia1,2, Lei Wang1,2, Jianfeng Zhan 1*, Lixin Zhang1, and Chunjie Luo1

1State Key Laboratory Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences, China

1{jiazhen, wl}@ncic.ac.cn, {zhanjianfeng, zhanglixin, luochunjie}@ict.ac.cn

Abstract—As the amount of data explodes rapidly, more and
more corporations are using data centers to make effective de-
cisions and gain a competitive edge. Data analysis applications
play a significant role in data centers, and hence it has became
increasingly important to understand their behaviors in order
to further improve the performance of data center computer
systems.

In this paper, after investigating three most important
application domains in terms of page views and daily visitors,
we choose eleven representative data analysis workloads and
characterize their micro-architectural characteristics by using
hardware performance counters, in order to understand the
impacts and implications of data analysis workloads on the
systems equipped with modern superscalar out-of-order pro-
cessors. Our study on the workloads reveals that data analysis
applications share many inherent characteristics, which place
them in a different class from desktop (SPEC CPU2006), HPC
(HPCC), and service workloads, including traditional server
workloads (SPECweb2005) and scale-out service workloads
(four among six benchmarks in CloudSuite), and accordingly
we give several recommendations for architecture and system
optimizations.

On the basis of our workload characterization work, we
released a benchmark suite named DCBench for typical
datacenter workloads, including data analysis and service
workloads, with an open-source license on our project home
page on http://prof.ict.ac.cn/DCBench. We hope that DCBench
is helpful for performing architecture and small-to-medium
scale system researches for datacenter computing.

Keywords-Datacenter workloads; Workload characteriza-
tion; Benchmarking

I. INTRODUCTION

In the context of digitalized information explosion, more
and more businesses are analyzing massive amount of data
– so-called big data – with the goal of converting big data
to “big value”. Data center workloads can be classified into
two categories: services and data analysis workloads as men-
tioned in [1] and [2]. Typical data analysis workloads include
business intelligence, machine learning, bio-informatics, and
ad hoc analysis [3][4].

The business potential of the data analysis applications is
a driving force behind the design of innovative data center
systems including both hardware and software[5] [6] [7]. For
example, the recommendation system is a typical example

* The corresponding author is Jianfeng Zhan.

with huge financial implications, aiming at recommending
the right products to the right buyers by mining user behavior
and other logs. For data analysis in data centers is a relatively
new but very important application area, there is a need to
understand various representative workloads’ performance
characteristics and what optimizations will further improve
the performance. So characterizing data analysis workloads
is meaningful for system designers and researchers to gain
insights on optimizing data center computer systems.

There have been much work proposed to evaluate data
mining algorithms or so-called scale-out cloud workloads in
different aspects, such as MineBench [8], HiBench [9], and
CloudSuite [10]. The state-of-the-art work of characterizing
data center workloads on a micro architecture level is Cloud-
Suite [10]. However, CloudSuite is biased towards online
service workloads: among six benchmarks, there are four
scale-out service workloads, (including Data Serving, Media
Streaming, Web Search, Web Serving), and only one data
analysis workload—Naive Bayes. Our work show the data
analysis workloads are significantly diverse in terms of both
speedup performance (Section II-B) and micro-architectural
characteristics (Section IV). In a word, only one application
is not enough to represent various categories of data analysis
workloads.

In this paper, firstly we single out three important appli-
cations domains in Internet services: search engine, social
networks, and electronic commerce (listed in Figure 1)
according to a widely acceptable metrics — the number of
page views and daily visitors. And then, we choose eleven
representative data analysis workloads (especially intersec-
tion workloads) among the three applications domains. In
comparison with that of CloudSuite described in [10], our
experiment approach is more pragmatic. First, we deploy
a larger input data set varying from 147 to 187 GB that
are stored in both the memory and disk systems instead
of completely storing data (only 4.5GB for Naive Bayes in
[10]) in the memory system. Second, for each workload, we
collect the performance data of the whole run time after the
warm-up instead of a short period (180 seconds in [10]).

Our study reveals that data analysis applications share
many inherent characteristics, which place them in a dif-
ferent class from desktop (SPEC CPU2006), HPC (HPCC),

ar
X

iv
:1

30
7.

80
13

v1
 [

cs
.P

F]
 3

0
Ju

l 2
01

3

http://prof.ict.ac.cn/DCBench

and traditional server workload (SPECweb2005), and scale-
out service workloads (four among six benchmarks in Clous-
Suite). Meanwhile, we also observe that the scale-out service
workloads (four among six benchmarks in CloudSuite) share
many similarity in terms of micro-architectural characteris-
tics with that of SPECweb2005, so in the rest of this paper,
we just use the service workloads to describe them. On the
basis of our workload characterization work, we released a
benchmark suite named DCBench for datacenter computing.
Our key findings are as follows:

First, the data analysis workloads have higher IPC than
that of the services workloads while lower than that of
computation-intensive HPCC workloads, e.g., HPC-HPL,
HPC-DGEMM.

Second, corroborating previous work [10], both the data
analysis workloads and service workloads suffer from no-
table front-end stalls, which may be caused by two factors:
deep memory hierarchy with long latency in modern pro-
cessor [10], and large binary size complicated by high-level
language and third-party libraries. However, we note the
significant differences between the data analysis workloads
and the service workloads in terms of stall breakdown: the
data analysis workloads suffer more stalls in the out-of-
order part of the pipeline (about 57% on average), while
the service workloads suffers more stalls before instructions
entering the out-of-order part (about 73% on average).

Third, the third-party libraries and high-level languages
used by the data center workloads may aggravate the in-
efficiency of L1 instruction cache and instruction TLB. So
when writing the program (with the support of third-party
libraries and high-level languages), the engineers should pay
more attention to the code size.

Fourth, for the data analysis workloads, L2 cache is
acceptably effective, and they have lower L2 cache misses
(about 11 L2 cache misses per thousand instructions on aver-
age) than that of the service workloads (about 60 L2 cache
misses per thousand instructions on average) while higher
than that of the HPCC workloads. Meanwhile, for the data
analysis and service workloads, on the average 85.5% and
94.9% of L2 cache misses are hit in L3 cache, respectively.
Considering modern processors dedicate approximately half
of the die area to caches, optimizing the LLC capacity will
improve the energy-efficiency of processor and save the die
size. For the service workloads, our observation corroborate
the previous work [10]: L2 cache is ineffective.

Finally, for the data analysis workloads, the misprediction
ratios are lower than that of most of the service workloads,
which implies that the branch predictor of modern processor
is good. A simpler branch predictor may be preferred so as
to save power and die area.

The remainder of the paper is organized as follows. Sec-
tion II describes our benchmarking methodology and design
decisions. Section III states our experiment methodology.
Section IV presents the micro-architectural characteristics

40%

25%

15%

5% 15%

Search Engine Social Network
Electronic Commerce Media Streaming
Others

Figure 1. Top sites in the web [11].

of the data analysis workloads in comparison with other
benchmarks suites. Section V introduces our DCBench.
Section VI draws conclusions of the full paper and mentions
the future work.

II. BENCHMARKING METHODOLOGY AND DECISIONS

A. Workloads Requirements

The workloads we choose must meet the following re-
quirements.

Representative
There are many representative workloads in many specific

fields, such as SPEC CPU for processors, SPECweb for
Web servers. Those workloads are representative in their
own fields. For data analysis field in data center, we should
choose representative workloads in the most important ap-
plication domains.

Distributed
In general, most of data analysis workloads in data center

are distributed on several nodes for the large amount of
data can not be processed efficiently in a single node. An
application running on a single computer can not represent
the applications in real world data centers.

Employ State-of-art Techniques [12]
In data centers, workloads change frequently, which Bar-

roso et al. call workload churns [2]. So the workloads we
want to characterize should be recently used and imple-
mented with emerging techniques in different domains.

B. Can one data analysis workload represent all?

In the rest of this paper, in comparison with other bench-
marks, we find that data analysis workloads and scale-out
service workloads have some common characteristics, e.g,
notable frond-end stalls, which is consist with CloudSuite.
However, CloudSuite is biased towards service workloads,
and they choose four service workloads among the six
benchmarks and only include one data analysis workload:
Naive Bayes. Can Naive Bayes workload represent all of
the data analysis workloads? The answer is no.

In this subsection, we perform the experiments on a
9-node Hadoop cluster, including one master node. The

1

2

3

4

5

6

7

8

9

1 slave 4 slaves 8 slaves

Sp
ee

d
U

P

Sort

Grep

WordCount

SVM

HMM

IBCF

hive-bench

Fuzzy K-means

K-means

PageRank

Naive Bayes

Figure 2. Varied speed up performance of eleven data analysis workloads.
Only Bayes is included into CloudSuite.

configuration of the system and the Hadoop environment is
the same as that in Section III. For the conciseness, we leave
the configuration details in Section III. We choose eleven
representative workloads including Naive Bayes, the details
of which can be found at Section II-C, and use the same
input data sets (listed in Table I). We change the number of
slave nodes from 1 to 8, using the run time on the one-slave
system as as a baseline performance data, and then calculate
the speed up. As shown in Figure. 2, for different workloads,
the speed up data on an eight-node system range from 3.3
to 8.2, and the value of Naive Bayes is 6.6, which indicates
that the data analysis workloads are diverse in terms of
performance characteristics. Meanwhile our experiments in
Section IV also show that different data analysis applications
have different micro-architecture level characteristics.

In a word, only one application is not enough to represent
various categories of data analysis workloads.

C. Workloads Choosing

In order to find workloads which meet all the require-
ments listed in Section II-A, we firstly decide and rank the
main application domains according to a widely acceptable
metric—the number of pageviews and daily visitors, and
then single out the main applications from the most impor-
tant application domains. We investigate the top sites listed
in Alexa [11], of which the rank of sites is calculated using
a combination of average daily visitors and page views.
We classified the top 20 sites into 5 categories including
search engine, social network, electronic commerce, media
streaming and others. Figure 1 shows the categories and
their respective share. To keep concise and simple, we focus
on the top three application domains: search engine, social
networks and electronic commerce.

We choose the most popular applications in those three
application domains. Table II shows application scenarios
of each workload, which is characterized in this paper,
indicating most of our chosen workloads are intersections

among three domains.
1) Basic operations: Sort, WordCount and Grep are three

basic operations which are frequently used in data analysis
fields. Several researchers also use them in their work [13].
Sort ranks the records by their key. WordCount reads text
files and counts the number of occurrences of each word.
Grep extracts matching strings from text files and counts the
number of the occurrence of the matching strings.

2) Classification and Clustering: The classification and
clustering algorithms are also widely used in those three
application domains. The goods information in electronic
commerce and key words of search engines are the input
data of classification and clustering applications. We choose
Naive Bayes and Support Vector Machine (in short, SVM)
from numerous classification algorithms. Naive Bayes is a
simple probabilistic classifier which applies Bayes’ theorem
with strong (naive) independence assumptions. SVM, a very
widely used classification algorithm, maps the training sam-
ples as points in a high dimension space so that the samples
of the separate categories can be divided by a clear gap. And
new samples are categorized based on the side of the gap
they fall on.

For the clustering applications, we choose K-means and
Fuzzy K-means algorithms because those two clustering
algorithms are so famous in many application scenarios. K-
means partitions observations into a fixed number clusters in
which each observation belongs to the (only) cluster with the
nearest mean. Fuzzy K-means is an extension of K-means,
but quite different from the latter. It is statistically formalized
and allows soft clusters where an observation can belong to
multiple clusters with given probabilities.

3) Recommendation: The recommendation algorithms
are widely used to recommend goods, friends, and key
words in electronic commerce, social network and search
engine, respectively. We choose an Item Based Collaborative
Filtering (in short IBCF) application. It estimates a user’s
preference towards an item by looking at his/her preferences
towards related items.

4) Segmentation: Segmentation is very important for web
search, especially for a language like Chinese. We imple-
ment a segmentation algorithm using the Hidden Markov
Model (in short, HMM). HMM is a statistical Markov model
in which the system being modeled is assumed to be a
Markov process with unobserved hidden states.

5) Graph calculation: PageRank [14] is a typical graph
calculation algorithm on link analysis, and PageRank-like
algorithms are frequently used in search engine.

6) Data warehouse operations: In the three application
domains we mentioned above, data warehouse are often used
to manage data. The previously published Hive-bench [15] is
a benchmark for the data warehouse operations based on the
Hive [16]. Here, we include a series of representative SQL-
like statements in Hive-bench as a part of our workloads.

Table I
REPRESENTATIVE DATA ANALYSIS WORKLOADS

No. Workload Input Data Size #Retired Instructions (Billions) Source
1 Sort 150 GB documents 4578 Hadoop example
2 WordCount 154 GB documents 3533 Hadoop example
3 Grep 154 GB documents 1499 Hadoop example
4 Naive Bayes 147 GB text 68131 mahout[17]
5 SVM 148 GB html file 2051 our implementation
6 K-means 150 GB vector 3227 mahout
7 Fuzzy K-means 150 GB vector 15470 mahout
8 IBCF 147 GB ratings data 32340 mahout
9 HMM 147 GB html file 1841 our implementation
10 PageRank 187 GB web page 18470 mahout
11 Hive-bench 156 GB DBtable 3659 Hivebench

Table II
SCENARIOS OF DATA ANALYSIS.

Name Domain Scenarios
search engine Log analysis

Grep social network Web information ex-
traction

electronic commerce Fuzzy search
Bayes social network Spam recognition

electronic commerce Web page classifica-
tion

social network Image Processing
SVM electronic commerce Data Mining

Text Categorization
PageRank search engine Compute the page

rank
Fuzzy search engine Image processing
K-means social network High-resolution land-

form
K-means electronic commerce classification

social network Speech recognition
HMM search engine Word Segmentation

Handwriting recogni-
tion

search engine Word frequency count
WordCount social network Calculating the TF-

IDF value
electronic commerce Obtaining the user

operations count
Sort electronic commerce Document sorting

search engine Pages sorting
social network

III. EXPERIMENTAL SETUP

This section firstly describes the experimental environ-
ments on which we conduct our study, and then explains
our experiment methodology.

A. Hardware Configurations

We use a 5-node Hadoop cluster (one master and four
slaves) to run all data analysis workloads. The nodes in
our Hadoop cluster are connected through 1 Gb ethernet
network. Each node has two Intel Xeon E5645 (Westmere)
processors and 32 GB memory. A Xeon E5645 processor
includes six physical out-of-order cores with speculative
pipelines. Each core has private L1 and L2 caches, and
all cores share the L3 cache. Table III lists the important

Table III
DETAILS OF HARDWARE CONFIGURATIONS.

CPU Type Intel R©Xeon E5645
Cores 6 cores@2.4G

threads 12 threads
#Sockets 2

ITLB 4-way set associative, 64 entries
DTLB 4-way set associative, 64 entries

L2 TLB 4-way associative, 512 entries
L1 DCache 32KB, 8-way associative, 64 byte/line
L1 ICache 32KB, 4-way associative, 64 byte/line
L2 Cache 256 KB, 8-way associative, 64 byte/line
L3 Cache 12 MB, 16-way associative, 64 byte/line
Memory 32 GB , DDR3

hardware configurations of the processor.

B. Hadoop Cluster Environments

All the workloads are implemented on the Hadoop system,
which is an open source MapReduce implementation. The
version of Hadoop and JDK is 1.0.2 and 1.6.0, respectively.
For data warehouse workloads, we use Hive of the 0.6
version. Each node runs Linux CentOS 5.5 with the 2.6.34
Linux kernel. Each slave node is configured with 24 map
task slots and 12 reduce task slots. For each map and reduce
task, we assigned 1 GB Java heap in order to achieve better
performance.

C. Compared Benchmarks setups

In addition to data analysis workloads, we deployed
several benchmark suites, including SPEC CPU2006, HPCC,
and SPECweb 2005, CloudSuite—a scale-out benchmark
suite for cloud computing [10], and compared them with
data analysis workloads.

1) Traditional benchmarks setups: SPEC CPU2006: we
run the official applications with the first reference input, re-
porting results averaged into two groups, integer benchmarks
(SPECINT) and floating point benchmarks (SPECFP). The
gcc which we used to compile the SPEC CPU is version
4.1.2.

HPCC: we deploy HPCC –a representative HPC bench-
mark suite. The HPCC version is 1.4. It has seven bench-

marks1, including HPL, STREAM, PTRANS, RandomAccess,
DGEMM, FFT, and COMM. We run each benchmark re-
spectively.

SPECweb 2005: we run the bank application as the Web
server on one node with 24 GB data set. We use distributed
clients to generate the workloads, and the number of the
total simultaneous sessions is 3000.

2) CloudSuite Setups: CloudSuite has six benchmarks,
including one data analysis workload— Naive Bayes. We
also choose Naive Bayes as one of the representative data
analysis workloads with a larger data input set (147 GB). In
[10], the data input size is only 4.5 GB.

We set up the other five benchmarks following the intro-
duction on the CloudSuite web site [18].

Data Serving: we benchmark Cassandra 0.7.3 database
with 30 million records. The request is generated by a YCSB
[19] client with a 50:50 ratio of read to update.

Media Streaming: we use Darwin streaming server 6.0.6.
We set 20 Java processes and issue 20 client threads by
using the Faban driver [20] with GetMediumLow 70 and
GetshortHi 30.

Software Testing: we use the cloud9 execution engine,
and run the printf.bc coreutils binary file.

Web Search: we benchmark a distributed Nutch 1.1 index
server. The index and data segment size is 17, and 35 GB,
respectively.

Web Serving: we characterize a front end of Olio server.
We simulate 500 concurrent users to send requests with 30
seconds ramp-up time and 300 seconds steady state time.

3) Data Analysis Workload Setups: Table I presents the
size of input data set and the instructions retired of each data
analysis workload. The input data size varies from 147 to
187 GB. In comparison with that of CloudSuite described
in [10], our approach are more pragmatic, and we deploy a
larger data input that are stored in both memory and disk
systems instead of completely storing data (only 4.5 GB for
Naive Bayes in [10]) in memory. The number of instructions
retired of the data analysis workloads ranges from thousand
of billions to tens of thousands of billions, which indicate
that those applications are not trivial ones.

D. Experimental Methodology

Modern superscalar Out-of-Order (OoO) processors pre-
vent us from breaking down the execution time precisely
due to overlapped work in the pipeline [10] [21] [22]. The
retirement centric analysis is also difficult to account how
the CPU cycles are used because the pipelines will continue
executing instructions even though the instruction retirement
is blocked [23]. So in this paper we focus on counting

1HPL solves linear equations. STREAM is a simple synthetic benchmark,
streaming access memory. RandomAccess updates (remote) memory ran-
domly. DGEMM performs matrix multiplications. FFT performs discrete
fourier transform. COMM is a set of tests to measure latency and bandwidth
of the interconnection system.

0

0.2

0.4

0.6

0.8

1

1.2

N
ai

ve
 B

ay
es

SV
M

Gr
ep

W
or

dC
ou

nt
K-

m
ea

ns
Fu

zz
y

K-
m

ea
ns

Pa
ge

Ra
nk

So
rt

Hi
ve

-b
en

ch
IB

CF
HM

M av
g

So
ft

w
ar

e
Te

st
in

g
M

ed
ia

 S
tr

ea
m

in
g

Da
ta

 S
er

vi
ng

W
eb

 S
ea

rc
h

W
eb

 S
er

vi
ng

SP
EC

FP
SP

EC
IN

T
SP

EC
W

eb
HP

CC
-C

O
M

M
HP

CC
-D

GE
M

M
HP

CC
-F

FT
HP

CC
-H

PL
HP

CC
-P

TR
AN

S
HP

CC
-R

an
do

m
Ac

ce
ss

HP
CC

-S
TR

EA
MIn

st
ru

ct
io

n
pe

r c
yc

le
 (I

PC
)

Figure 3. Instructions per cycle for each workload.

cycles stalled due to resource conflict, e.g. the reorder buffer
full stall, which prevents new instructions from entering the
pipelines.

We get the micro-architectural data by using hardware
performance counters to measure the architectural events.
In order to monitor micro-architectural events, a Xeon
processor provides several performance event select MSRs
(Model Specific Registers), which specify hardware events
to be counted, and performance monitoring counter MSRs,
which store results of performance monitoring events. We
use Perf—a profiling tool for Linux 2.6+ based systems [24],
to manipulate those MSRs by specifying the event numbers
and corresponding unit masks. We collect about 20 events
whose number and corresponding unit masks can be found
in the Intel Developer’s Manual [25]. In addition, we access
the proc file system to collect OS-level performance data,
such as the number of disk writes.

We perform a ramp-up period for each application, and
then start collecting the performance data. Different from
the experiment methodology of CloudSuite, which only
performs 180-second measurement, the performance data
we collected cover the whole lifetime of each application,
including map, shuffle, and reduce stages. We collect the
data of all the four working nodes and report the mean value.

IV. RESULTS

We provide a detailed analysis of the inefficiencies of
running data analysis workloads on modern OoO processors
in the rest of this section.

A. Instructions Execution

Instruction per cycle (in short IPC) is used to measure
instruction level parallelism, indicating how many instruc-
tions can execute simultaneously. Our processors have 6
cores, and each core can commit up to 4 instructions on
each cycle in theory. However, for different workloads, IPC
can be limited by pipeline stall and data or instructions
dependencies.

Figure 3 shows IPC of each workload. The CloudSuite has
six benchmarks, among which we report the Naive Bayes on
the leftmost side, separated from the other five workloads (in

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
N

ai
ve

 B
ay

es
SV

M
Gr

ep
W

or
dC

ou
nt

K-
m

ea
ns

Fu
zz

y
K-

m
ea

ns
Pa

ge
Ra

nk
So

rt
Hi

ve
-b

en
ch

IB
CF

HM
M av
g

So
ft

w
ar

e
Te

st
in

g
M

ed
ia

 S
tr

ea
m

in
g

Da
ta

 S
er

vi
ng

W
eb

 S
ea

rc
h

W
eb

 S
er

vi
ng

SP
EC

FP
SP

EC
IN

T
SP

EC
W

eb
HP

CC
-C

O
M

M
HP

CC
-D

GE
M

M
HP

CC
-F

FT
HP

CC
-H

PL
HP

CC
-P

TR
AN

S
HP

CC
-R

an
do

m
Ac

ce
ss

HP
CC

-S
TR

EA
M

kernel application

Figure 4. User and Kernel Instructions Breakdown.

the middle side), since Naive Bayes is also included into our
eleven workloads.

The main workloads of CloudSuite (four among six)
are service workloads: Media Streaming, Data Services,
Web Services, and Web Search. From Figure 3, we can
observe that service workloads, including four of CloudSuite
and SPECweb has the lower IPC (all less than 0.6) in
comparison with the other workloads, including our chosen
data analysis workloads, SPECFP, SPECINT, and most of
HPCC workloads.

Most of data analysis workloads have middle-level IPC
values, greater than that of the service workloads. The IPC of
the eleven data analysis workloads ranges from 0.52 to 0.95
with an average value of 0.78. The avg bar in Figure 3 means
the average IPC of the eleven data analysis workloads.
Naive Bayes has the lowest IPC value among the eleven
data analysis workloads. The IPCs of the HPCC workloads
have a large discrepancy among each workload since they
are all micro-benchmark designed for measuring different
aspects of systems. For example, HPCC-HPL and HPCC-
DGEMM are computation-intensive, and hence have a higher
IPC (close to 1.2). While HPCC-STREAM are designed to
stream access memory, it has poor temporal locality, causing
long-latency memory accesses, and hence it has lower IPCs
(less than 0.5).

Figure 4 illustrates the retired instructions breakdown of
each workload. We also notice that the service workloads
(four of CloudSuite and SPECweb) execute a large percent-
age of kernel-mode instructions (greater than 40%), while
most data analysis workloads execute a small percentage of
kernel-mode instructions. The service workloads have higher
percentages of kernel-mode instructions because serving a
large amount of requests will result in a large number of
network and disk activities.

Among the data analysis workloads, only Sort has a high
proportion (about 24%) of kernel-mode instructions whereas
on average the data analysis workloads only have about
4% instructions executed in kernel-mode. This is caused
by the two unique characteristics of Sort. The first one is
that different from most of the data analysis workloads, the
input data size of Sort is equal to the output data size.

0

50

100

150

200

250

300

350

Di
sk

 W
rit

e
pe

r S
ec

on
d

Figure 5. Disk Writes per Second.

So in each stage of the MapReduce job, the system will
write large amount of output data to local disk or transfer
a large amount of data over network. This characteristic
makes Sort have more I/O operations than other workloads.
The second unique characteristic is that Sort has simple
computing logic, only comparing. So it can process a large
amount data in a short time. Those characteristics let Sort
involve more frequently I/O operations (disk and network).
So in comparison with other data analysis workloads, Sort
are more OS-intensive. Figure 5 depicts disk writes per
second of each data analysis workload. We can find that
Sort has the highest disk writes frequency. We also observed
that network communication activities of Sort are also more
frequent than that of the other data analysis workloads.

Among the HPCC workloads, RandomAccess has a large
percentage of kernel-mode instructions (about 31%). Ran-
domAccess measures the rate of integer random updates
of (remote) memory. An update is a read-modify-write
operation on a table of 64-bit words, and it involves a large
amount of copy user generic string system calls. The
other factors contributing a large percentage of kernel-mode
instructions need further investigations.

Observations:
Data analysis workloads have higher IPC than that of

services workloads, which are characterized by CloudSuite
and traditional web server workloads, e.g., SPECweb2005,
while lower than that of computation-intensive workloads,
e.g., HPC-HPL, HPC-DGEMM. Meanwhile we also observe
that the most of data analysis workloads involve less kernel-
mode instructions than that of the services workloads.

B. Pipeline Behaviors

Modern processor implements dynamic execution using
out of order and speculative engine. The whole processor
architecture can be divided into two parts: including an
in-order front end, which fetches, decodes, and issues in-
structions, and an out-of-order back end, which executes
instructions and write data back to register files. A stall can
happen in any part of the pipeline. In this paper we focus
on the major pipeline stalls (not exhausted), including front
end (instruction fetch), register allocation table (in short
RAT), load-store buffers, reservation station (in short RS),

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
ai

ve
 B

ay
es

SV
M

Gr
ep

W
or

dC
ou

nt
K-

m
ea

ns
Fu

zz
y

K-
m

ea
ns

Pa
ge

Ra
nk

So
rt

Hi
ve

-b
en

ch
IB

CF
HM

M av
g

So
ft

w
ar

e
Te

st
in

g
M

ed
ia

 S
tr

ea
m

in
g

Da
ta

 S
er

vi
ng

W
eb

 S
ea

rc
h

W
eb

 S
er

vi
ng

SP
EC

FP
SP

EC
IN

T
SP

EC
W

eb
HP

CC
-C

O
M

M
HP

CC
-D

GE
M

M
HP

CC
-F

FT
HP

CC
-H

PL
HP

CC
-P

TR
AN

S
HP

CC
-R

an
do

m
Ac

ce
ss

HP
CC

-S
TR

EA
M

Instruction fetch_stall Rat_stall load_stall RS_full stall store_stall ROB_full stall

Figure 6. Pipeline Stall Break Down of Each Workload

and re-order buffer (in short ROB). For modern X86 archi-
tecture, front end will fetch instructions from L1 Instruction
cache and then decode the CISC instructions into RISC-
like instructions, which Intel calls micro-operation. RAT
will change the registers used by the program into internal
registers available. Load-store buffers are also known as
memory order buffers, holding in-flight memory micro-
operations (load and store), and they ensure that writes to
memory take place in the right order. RS queues micro-
operations until all source operands are ready. ROB track
all micro-operations in-flight and make the out-of-order
executed instructions retire in order.

Figure 6 presents those major stalls in pipelines for each
workload including instruction fetch stalls, RAT stalls, load
buffer full stalls, store buffer full stalls, RS full stalls,
and ROB full stalls. We can get the blocked cycles of
those kind of stalls mentioned above by using hardware
performance counters. Different kinds of pipeline stalls may
occur simultaneously, that is to say, the stall cycles may
overlap. For example, when the back end is stalled due to
RS full, the front end can also be stalled due to L1 instruction
cache misses. So in Figure 6, we report the normalized
values of the stalled cycles. We calculate the normalized
value by using the following way: we sum up all the blocked
cycles for all kinds of stalls as the total blocked cycles. Then
we divide each kind of stall’s blocked cycles by the total
blocked cycles as their percentage in Figure 6.

Different from HPCC and SPEC CPU2006 workloads,
the data analysis workloads and service workloads suffer
from notable front end stalls, which are mainly caused by
L1 instruction cache miss, ITLB (Instruction Translation
Lookaside Buffer) miss or ITLB fault, reported in front-
end performance data in Section IV-C . The notable front
end stalls indicates the instruction fetch unit inefficiency.
Our observation corroborates the previous work [10]. The
front end inefficiency may caused by high-level languages
and third-party libraries used by the data analysis and service
workloads. The complicated framework and middleware will
increase the binary size of the whole application even though
they only implement a simple algorithm.

We also find that there are notable differences in terms
of stalls breakdown between the data analysis workloads
and service workloads (including four service workloads
of CloudSuite and SPECWeb). The latter workloads own
a large percentage of RAT stalls, which may be caused by
partial register stall or register read port conflicts. While the
data analysis workloads suffer from more RS stalls and ROB
stalls, which are caused by limited RS and ROB entries.
RAT and instruction fetch stalls occur before instruction
entering the out-of-order part of the pipeline while the RS
and ROB stalls occur at the out of order part of the pipeline.
The service workloads (including Media Streaming, Data
Severing, Web Severing, Web Search and SPECweb) have
60% RAT stalls and 13% instruction fetch stalls on average,
whereas the data analysis workloads have about 37% RS
full stalls and 20% ROB full stalls on average. So we
can find that the data analysis workloads suffer more stalls
in the out-of-order part of the pipeline, while the service
workloads suffers more stalls in the in-order part of the
pipeline. Further investigation is necessary to understand
the root cause behind the differences between two kinds of
workloads.

For the HPCC workloads are composed of micro bench-
marks and kernel programs, different programs focus on
a specific aspect of the system. So their stall data vary
dramatically from each other in Figure 6.

Implications:
Corroborating previous work [10], both the data analysis

workloads and the service workloads suffer from notable
front-end stalls (i.e. instruction fetch stall). The instruction
fetch stalls means that the front end has to wait for fetching
instructions, which may be caused by two factors: deep
memory hierarchy with long latency in modern processor
[10], and large binary size complicated by high-level lan-
guage and third-party libraries.

However, we note the significant differences between
the data analysis workloads and the service workloads in
terms of stall breakdown: the data analysis workloads suffer
more stalls in the out-of-order part of the pipeline, while
the service workloads suffer more stalls before instructions
entering the out-of-order part. This observation can give us
some implications about how to alleviate the bottlenecks
in pipeline, although one well known consequence is that
right after of alleviating the bottleneck, the next bottleneck
emerges [26].

C. Front-end Behaviors

The instruction-fetch stall will prevent core from making
forward progress due to lack of instructions. Instruction
cache and instruction Translation Look-aside Buffer (TLB)
are two fundamental components, which must be accessed
when fetching instructions from memory. Instruction cache
is the place where the fetch unit directly get instructions.
TLB stores page table entries (PTE), which are used to

0

20

40

60

80

100
N

ai
ve

 B
ay

es
SV

M
Gr

ep
W

or
dC

ou
nt

K-
m

ea
ns

Fu
zz

y
K-

m
ea

ns
Pa

ge
Ra

nk
So

rt
Hi

ve
-b

en
ch

IB
CF

HM
M av
g

So
ft

w
ar

e
Te

st
in

g
M

ed
ia

 S
tr

ea
m

in
g

Da
ta

 S
er

vi
ng

W
eb

 S
ea

rc
h

W
eb

 S
er

vi
ng

SP
EC

FP
SP

EC
IN

T
SP

EC
W

eb
HP

CC
-C

O
M

M
HP

CC
-D

GE
M

M
HP

CC
-F

FT
HP

CC
-H

PL
HP

CC
-P

TR
AN

S
HP

CC
-R

an
do

m
Ac

ce
ss

HP
CC

-S
TR

EA
M

L1
 IC

ac
he

 M
is

s p
er

 K
-In

st
ru

ct
io

n

Figure 7. L1 Instruction Cache misses per thousand instructions.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N
ai

ve
 B

ay
es

SV
M

Gr
ep

W
or

dC
ou

nt
K-

m
ea

ns
Fu

zz
y

K-
m

ea
ns

Pa
ge

Ra
nk

So
rt

Hi
ve

-b
en

ch
IB

CF
HM

M av
g

So
ft

w
ar

e
Te

st
in

g
M

ed
ia

 S
tr

ea
m

in
g

Da
ta

 S
er

vi
ng

W
eb

 S
ea

rc
h

W
eb

 S
er

vi
ng

SP
EC

FP
SP

EC
IN

T
SP

EC
W

eb
HP

CC
-C

O
M

M
HP

CC
-D

GE
M

M
HP

CC
-F

FT
HP

CC
-H

PL
HP

CC
-P

TR
AN

S
HP

CC
-R

an
do

m
Ac

ce
ss

HP
CC

-S
TR

EA
M

Pa
ge

 W
al

ks
 p

er
 K

-in
st

ru
ct

io
n

Figure 8. ITLB miss caused completed page walks per thousand instruc-
tions.

translate virtual addresses to physical addresses. If a TLB
entry is found with a matching virtual page number, a TLB
hit occurs and the processor can use the retrieved physical
address to access memory. Otherwise there is a TLB miss,
the processor has to look up the page table, which called a
page walk. The page walk is an expensive operation.

Figure 7 and Figure 8 present the L1 instruction cache
misses and the completed page walks caused by instruction
TLB misses per thousand instructions, respectively. On
average, the data analysis workloads generate about 23 L1
instruction cache misses per thousand instructions. They own
higher L1 instruction cache misses than that of SPECINT,
SPECFP, and all the HPCC workloads. Most of the data
analysis applications have less L1 instruction cache misses
than that of the service workloads including Media Stream-
ing, Data Severing, Web Serving and SPECweb. Media
streaming has a larger instruction footprint and suffers from
severe L1 Instruction cache misses, whose L1 Instruction
cache misses are about three times more than the average of
that of the data analysis workloads. Higher L1 instruction
cache misses result in higher instruction fetch stalls as shown
in Figure 6, indicating less efficiency of the front-end. For
most of the others benchmarks, the L1 instruction cache
misses are really very rare, especially the HPCC workloads,
whose instruction footprint is relatively small.

Consistent with the performance trend of L1 instruction

cache misses, the data analysis workloads’ completed page
walks caused by instruction TLB miss are more frequently
than that of SPECINT, SPECFP, and all HPCC workloads.
Some service workloads (Media Streaming and Data Serving
workloads) have more completed page walks than that of
the data analysis workloads. Page walks will cause a long
latency instruction fetch stall, waiting for correct physical
addresses so as to fetch instructions, and hence result in
inefficiency of front end. Among the data analysis work-
loads, Naive Bayes is an exception with the smallest L1
instruction cache misses and completed page walks caused
by instruction TLB misses, so it can not represent the
spectrum of all data analysis workloads.

Implications:
Improving the L1 instruction cache and instruction TLB

hit ratios can improve the performance of data analysis
workloads, especially the service workloads. The third-
party libraries and high-level languages used by datacenter
workloads may enlarge the binary size of applications and
further aggravate the inefficiency of instruction cache and
TLB. So when writing the program (with the support of
third-party libraries and high-level languages), the engineers
should pay more attention to the code size.

D. Unified Cache and Data TLB Behaviors

The manufacturers of processors introduce a deep memory
hierarchy to reduce the performance impacts of memory
wall. Modern processors own three-level caches. A miss
penalty of last-level cache can reach up to several hundred
cycles in modern processors.

Figure 9 shows the L2 cache misses per thousand in-
structions. Figure 10 reports the ratio of L3 cache hits over
L2 cache misses. This ratio can be calculated by using
Equation 1. Please note that we do not analyze the L1 data
cache statistics for the miss penalty can be hidden by the
out-of-order cores [27].

ratio =
L2 cache misses− L3 cache misses

L2 cache misses
(1)

For most of the data analysis workloads, they have lower
L2 cache misses (about 11 L2 cache misses per thousand
instructions on average) than that of the service workloads
(about 60 L2 cache misses per thousand instructions on
average) while higher than that of the HPCC workloads.
The L2 cache statistic indicates the data analysis workloads
own better locality than the service workloads. The HPCC
workloads have different localities as the official web site
mentioned, which can explain the different cache behaviors
among the HPCC workloads.

From Figure 10, we can find that for both the data analysis
workloads and service workloads, the average ratio of L2
cache misses that are hit in L3 cache (85.5% for the data
analysis workloads and 94.9% for the service workloads) is
higher than that of the HPCC workloads. We can conclude

0

20

40

60

80

100
N

ai
ve

 B
ay

es
SV

M
Gr

ep
W

or
dC

ou
nt

K-
m

ea
ns

Fu
zz

y
K-

m
ea

ns
Pa

ge
Ra

nk
So

rt
Hi

ve
-b

en
ch

IB
CF

HM
M av
g

So
ft

w
ar

e
Te

st
in

g
M

ed
ia

 S
tr

ea
m

in
g

Da
ta

 S
er

vi
ng

W
eb

 S
ea

rc
h

W
eb

 S
er

vi
ng

SP
EC

FP
SP

EC
IN

T
SP

EC
W

eb
HP

CC
-C

O
M

M
HP

CC
-D

GE
M

M
HP

CC
-F

FT
HP

CC
-H

PL
HP

CC
-P

TR
AN

S
HP

CC
-R

an
do

m
Ac

ce
ss

HP
CC

-S
TR

EA
M

L2
 C

ac
he

 m
is

se
s p

er
 k

-In
st

ru
ct

io
n

Figure 9. L2 cache misses per thousand instructions.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
ai

ve
 B

ay
es

SV
M

Gr
ep

W
or

dC
ou

nt
K-

m
ea

ns
Fu

zz
y

K-
m

ea
ns

Pa
ge

Ra
nk

So
rt

Hi
ve

-b
en

ch
IB

CF
HM

M av
g

So
ft

w
ar

e
Te

st
in

g
M

ed
ia

 S
tr

ea
m

in
g

Da
ta

 S
er

vi
ng

W
eb

 S
ea

rc
h

W
eb

 S
er

vi
ng

SP
EC

FP
SP

EC
IN

T
SP

EC
W

eb
HP

CC
-C

O
M

M
HP

CC
-D

GE
M

M
HP

CC
-F

FT
HP

CC
-H

PL
HP

CC
-P

TR
AN

S
HP

CC
-R

an
do

m
Ac

ce
ss

HP
CC

-S
TR

EA
M

Th
e

ra
tio

 o
f L

3
Ca

ch
e

sa
tis

fe
d

 L
2

Ca
ch

e
M

is
s

Figure 10. The ratio of L3 cache satisfying L2 cache misses.

that for most of the data analysis and service workloads,
modern processor’s LLC is large enough to cache most of
data missed from L2 cache.

Figure 11 shows the completed page walks caused by
data TLB misses per thousand instructions. For most of
the data analysis workloads with the exception of Naive
Bayes, the completed page walks caused by data TLB misses
are less than most of the service workloads and SPEC
CPU2006 workloads (SPECINT and SPECFP), but higher
than most of the HPCC workloads with the exception of
HPCC-RandomAcess and HPCC-PTRANS. That means the
data locality of most of the data analysis workloads is much
better than that of the service workloads.

0

0.5

1

1.5

2

2.5

N
ai

ve
 B

ay
es

SV
M

Gr
ep

W
or

dC
ou

nt
K-

m
ea

ns
Fu

zz
y

K-
m

ea
ns

Pa
ge

Ra
nk

So
rt

Hi
ve

-b
en

ch
IB

CF
HM

M av
g

So
ft

w
ar

e
Te

st
in

g
M

ed
ia

 S
tr

ea
m

in
g

Da
ta

 S
er

vi
ng

W
eb

 S
ea

rc
h

W
eb

 S
er

vi
ng

SP
EC

FP
SP

EC
IN

T
SP

EC
W

eb
HP

CC
-C

O
M

M
HP

CC
-D

GE
M

M
HP

CC
-F

FT
HP

CC
-H

PL
HP

CC
-P

TR
AN

S
HP

CC
-R

an
do

m
Ac

ce
ss

HP
CC

-S
TR

EA
M

Pa
ge

 W
al

ks
 p

er
 K

-In
st

ru
ct

io
n

Figure 11. Completed Page Walks Caused by DTLB Misses per Thousand
Instructions Retired.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

N
ai

ve
 B

ay
es

SV
M

Gr
ep

W
or

dC
ou

nt
K-

m
ea

ns
Fu

zz
y

K-
m

ea
ns

Pa
ge

Ra
nk

So
rt

Hi
ve

-b
en

ch
IB

CF
HM

M av
g

So
ft

w
ar

e
Te

st
in

g
M

ed
ia

 S
tr

ea
m

in
g

Da
ta

 S
er

vi
ng

W
eb

 S
ea

rc
h

W
eb

 S
er

vi
ng

SP
EC

FP
SP

EC
IN

T
SP

EC
W

eb
HP

CC
-C

O
M

M
HP

CC
-D

GE
M

M
HP

CC
-F

FT
HP

CC
-H

PL
HP

CC
-P

TR
AN

S
HP

CC
-R

an
do

m
Ac

ce
ss

HP
CC

-S
TR

EA
M

Br
an

ch
 m

is
pr

ed
ic

tio
n

ra
tio

Figure 12. Branch Miss-prediction ratio.

Implications:
For the data analysis workloads, L2 cache is acceptably

effective, and they have lower L2 cache misses than that of
the service workloads, while higher than that of the HPCC
workloads. Meanwhile, for the data analysis and service
workloads, most of L2 cache misses are hit in L3 cache,
indicating L3 cache is pretty effective. Modern processors
dedicate approximately half of the die area for caches, and
hence optimizing the LLC capacity properly will improve
the energy-efficiency of processor and save the die area.
For the service workloads, our observation corroborate the
previous work [10]: the L2 cache is ineffective.

E. Branch Prediction

The branch instruction prediction accuracy is one of the
most important factor that directly affects the performance.
Modern out-of-order processors introduce a functional unit
(e.g. Branch Target Buffer) to predict the next branch to
avoid pipeline stalls due to branches. If the predict is correct,
the pipeline will continue. However, if a branch instruction is
mispredicted, the pipeline must flush the wrong instructions
and fetch the correct ones, which will cause at least a dozen
of cycles’ penalty. So branch prediction is not a trivial issue
in the pipeline.

Figure 12 presents the branch miss prediction ratios of
each workload. We find that most of the data analysis work-
loads own a lower branch misprediction ratio in comparison
with that of the service workloads and SPEC CPU work-
loads. The HPCC workloads own very low misprediction
ratios because the branch logic codes of the seven micro
benchmarks are simple and the branch behaviors have great
regularity. The low misprediction ratios of the data analysis
workloads indicate that most of the branch instructions in the
data analysis workloads have simple patterns. The simple
patterns are conducive to BTB (Branch Target Buffer) to
predict whether the next branch needs to jump or not. For the
data analysis workloads, simple algorithms chosen for big
data always beat better sophisticated algorithms[28], which
may be the possible reason for their low misprediction ratios.

Implications:
Modern processors invest heavily in silicon real estate

and algorithms for the branch prediction unit in order

to minimize the frequency and impact of wrong branch
prediction. For the data analysis workload, the misprediction
ratio is lower than most of the compared workloads, even
for the CPU benchmark — SPECINT, which implies that
the branch predictor of modern processor is good enough
for the data analysis workloads. A simpler branch predictor
may be preferred so as to save power and die area.

V. THE SUMMARY OF DCBENCH

Researchers in both academia and industry pay great
attention to innovative date center computer systems and
architecture. Since benchmarks, as the foundation of quanti-
tative design approach, are used ubiquitously to evaluate the
benefits of new designs and new systems [29], we released a
benchmark suite named DCBench for datacenter computing
with an open-source license on our project home page on
http://prof.ict.ac.cn/DCBench.

According to our workload characterization work, the
data analysis applications share many inherent characteris-
tics, different from traditional server (SPECweb2005) and
scale-out service workloads (four among six benchmarks
in CloudSuite), so DCBench includes two different kinds
of workloads: data analysis and service workloads. In our
research work, we also notice the significant effects of dif-
ferent programming models, e. g., MPI vs. MapReduce, on
the application behaviors, which is beyond the scope of this
paper, so we also include the implementation of DCBench
with different programming models on our homepage. Other
important factors include OS [30] and VM executions,
so we also provide some VM images on our homepage
for downloading. We hope that DCBench is helpful for
performing architecture and small-to-medium scale system
researches for datacenter computing.

In addition to DCBench, we also release a big data bench-
mark suite—BigDataBench from Internet services [31], and
a cloud computing benchmark suite—CloudRank [32]. The
purpose of BigDataBench is for large-scale system and
architecture researches. We believe that the focus of cloud
computing is to consolidate different workloads on a data-
center, which provides elastic resource management. So the
goal of CloudRank is to model complex usage scenarios
of cloud computing for the purpose of capacity planning,
system evaluation and researches.

VI. CONCLUSION AND FUTURE WORK

In this paper, after investigating most important appli-
cation domains in terms of page views and daily visitors,
we chosen eleven representative data analysis workloads
and characterized their micro-architectural characteristics on
the systems equipped with modern superscalar out-of-order
processors by using hardware performance counters.

Our work shows that the data analysis workloads are
significantly diverse in terms of both speedup performance
and micro-architectural characteristics. In a word, only one

application is not enough to represent various categories of
data analysis workloads.

Our study on the workloads reveals that the data analysis
applications share many inherent characteristics, which place
them in a different class from desktop, HPC, traditional
server and scale-out service workloads, and accordingly we
give several recommendations for architecture and system
optimizations. Meanwhile, we also observe that the scale-out
service workloads (four among six benchmarks in Cloud-
Suite) share many similarity in terms of micro-architectural
characteristics with that of the traditional server workload
characterized by SPECweb 2005. We will investigate more
workloads to confirm this observation.

ACKNOWLEDGMENT

We are very grateful to anonymous reviewers. This
work is supported by the Chinese 973 project (Grant
No.2011CB302502), the Hi-Tech Research and Develop-
ment (863) Program of China (Grant No. 2011AA01A203,
2013AA01A213), the NSFC project (Grant No.60933003,
61202075), the BNSF project (Grant No.4133081) and the
242 project (Grant No.2012A95).

REFERENCES

[1] J. Zhan, L. Zhang, N. Sun, L. Wang, Z. Jia, and C. Luo, “High
volume throughput computing: Identifying and characterizing
throughput oriented workloads in data centers,” in Parallel
and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2012 IEEE 26th International. IEEE,
2012, pp. 1712–1721.

[2] L. Barroso and U. Hölzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines,”
Synthesis Lectures on Computer Architecture, vol. 4, no. 1,
pp. 1–108, 2009.

[3] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain,
J. Sen Sarma, R. Murthy, and H. Liu, “Data warehousing
and analytics infrastructure at facebook,” in Proceedings of
the 2010 international conference on Management of data.
ACM, 2010, pp. 1013–1020.

[4] http://wiki.apache.org/hadoop/PoweredBy.

[5] J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang, and
X. Zang, “Cost-aware cooperative resource provisioning for
heterogeneous workloads in data centers,” Computers , IEEE
Transactions on.

[6] L. Wang, J. Zhan, W. Shi, and Y. Liang, “In cloud, can
scientific communities benefit from the economies of scale?”
Parallel and Distributed Systems, IEEE Transactions on,
vol. 23, no. 2, pp. 296–303, 2012.

[7] B. Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, Z. Zhang,
and Z. Jia, “Precise, scalable, and online request tracing for
multitier services of black boxes,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 23, no. 6, pp. 1159–
1167, 2012.

http://prof.ict.ac.cn/DCBench
http://wiki.apache.org/hadoop/PoweredBy

[8] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik,
and A. Choudhary, “Minebench: A benchmark suite for data
mining workloads,” in Workload Characterization, 2006 IEEE
International Symposium on. Ieee, 2006, pp. 182–188.

[9] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang,
“The hibench benchmark suite: Characterization of the
mapreduce-based data analysis,” in Data Engineering Work-
shops (ICDEW), 2010 IEEE 26th International Conference
on. IEEE, 2010, pp. 41–51.

[10] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. Popescu, A. Ailamaki, and B. Fal-
safi, “Clearing the clouds: A study of emerging workloads on
modern hardware,” Architectural Support for Programming
Languages and Operating Systems, 2012.

[11] http://www.alexa.com/topsites/global;0, February, 2013.

[12] C. Bienia, S. Kumar, J. Singh, and K. Li, “The parsec
benchmark suite: Characterization and architectural implica-
tions,” in Proceedings of the 17th international conference
on Parallel architectures and compilation techniques. ACM,
2008, pp. 72–81.

[13] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[14] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pager-
ank citation ranking: bringing order to the web.” 1999.

[15] https://issues.apache.org/jira/browse/HIVE\discretionary{-}
{}{}396.

[16] http://hive.apache.org/.

[17] http://mahout.apache.org/.

[18] http://parsa.epfl.ch/cloudsuite/cloudsuite.html.

[19] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in Proceedings of the 1st ACM symposium on Cloud comput-
ing. ACM, 2010, pp. 143–154.

[20] “Faban harness and benchmark framework,” http://java.net/
project/faban.

[21] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and
W. E. Baker, Performance characterization of a quad Pentium
pro SMP using OLTP workloads. IEEE Computer Society,
1998, vol. 26, no. 3.

[22] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A
performance counter architecture for computing accurate cpi
components,” in ACM SIGOPS Operating Systems Review,
vol. 40, no. 5. ACM, 2006, pp. 175–184.

[23] D. Levinthal, “Cycle accounting analysis on Intel Core 2
processors,” assets. devx. com/goparallel/18027. pdf.

[24] “Performance counters for linux,” https://perf.wiki.kernel.org/
index.php/Main Page.

[25] Intel 64 and IA-32 Architectures Software Developers Man-
ual, Intel R©, 2011.

[26] M. E. Thomadakis, “The architecture of the nehalem proces-
sor and nehalem-ep smp platforms,” Resource, vol. 3, p. 2,
2011.

[27] T. S. Karkhanis and J. E. Smith, “A first-order superscalar
processor model,” in Computer Architecture, 2004. Proceed-
ings. 31st Annual International Symposium on. IEEE, 2004,
pp. 338–349.

[28] A. Rajaraman, “More data usually beats better algorithms,”
Datawocky Blog, 2008.

[29] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D.
dissertation, Princeton University, 2011.

[30] Z. Chen, Z. Jianfeng, J. Zhen, and Z. Lixin, “Characterizing
os behavior of scale-out data center workloads,” The Seventh
Annual Workshop on the Interaction amongst Virtualization,
Operating Systems and Computer Architecture (WIVOSCA
2013), 2013.

[31] W. Gao and etc., “Bigdatabench: a big data benchmark
suite from web search engines,” in The Third Workshop
on Architectures and Systems for Big Data(ASBD 2013)
in conjunction with The 40th International Symposium on
Computer Architecture, May 2013.

[32] C. Luo, J. Zhan, Z. Jia, L. Wang, G. Lu, L. Zhang, C. Xu, and
N. Sun, “Cloudrank-d: benchmarking and ranking cloud com-
puting systems for data processing applications,” Frontiers of
Computer Science, vol. 6, no. 4, pp. 347–362, 2012.

http://www.alexa.com/topsites/global;0
https://issues.apache.org/jira/browse/HIVE\discretionary {-}{}{}396
https://issues.apache.org/jira/browse/HIVE\discretionary {-}{}{}396
http://hive.apache.org/
http://mahout.apache.org/
http://parsa.epfl.ch/cloudsuite/cloudsuite.html
http://java.net/project/faban.
http://java.net/project/faban.
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

	I Introduction
	II Benchmarking Methodology and Decisions
	II-A Workloads Requirements
	II-B Can one data analysis workload represent all?
	II-C Workloads Choosing
	II-C1 Basic operations
	II-C2 Classification and Clustering
	II-C3 Recommendation
	II-C4 Segmentation
	II-C5 Graph calculation
	II-C6 Data warehouse operations

	III Experimental Setup
	III-A Hardware Configurations
	III-B Hadoop Cluster Environments
	III-C Compared Benchmarks setups
	III-C1 Traditional benchmarks setups
	III-C2 CloudSuite Setups
	III-C3 Data Analysis Workload Setups

	III-D Experimental Methodology

	IV Results
	IV-A Instructions Execution
	IV-B Pipeline Behaviors
	IV-C Front-end Behaviors
	IV-D Unified Cache and Data TLB Behaviors
	IV-E Branch Prediction

	V The summary of DCBench
	VI Conclusion and Future Work
	References

