
A Comparative Analysis of Microarchitecture Effects on CPU and
GPU Memory System Behavior

Joel Hestness 1, Stephen W. Keckler 2, and David A. Wood 1

1Department of Computer Sciences, The University of Wisconsin at Madison
2NVIDIA and Department of Computer Science, The University of Texas at Austin

Abstract—While heterogeneous CPU/GPU systems have been
traditionally implemented on separate chips, each with their own
private DRAM, heterogeneous processors are integrating these
different core types on the same die with access to a common
physical memory. Further, emerging heterogeneous CPU-GPU
processors promise to offer tighter coupling between core types
via a unified virtual address space and cache coherence. To
adequately address the potential opportunities and pitfalls that
may arise from this tighter coupling, it is important to have a
deep understanding of application- and memory-level demands
from both CPU and GPU cores. This paper presents a detailed
comparison of memory access behavior for parallel applications
executing on each core type in tightly-controlled heterogeneous
CPU-GPU processor simulation. This characterization indicates
that applications are typically designed with similar algorithmic
structures for CPU and GPU cores, and each core type’s memory
access path has a similar locality filtering role. However, the
different core and cache microarchitectures expose substantially
different memory-level parallelism (MLP), which results in differ-
ent instantaneous memory access rates and sensitivity to memory
hierarchy architecture.

I. INTRODUCTION

Desktops, servers and high-performance computing systems
are rapidly incorporating graphics processors (GPUs) as a
means of accelerating computation. Today, most of these sys-
tems employ general-purpose processors (CPUs) and GPUs on
separate chips, each with their own DRAM memory systems. In
the last couple years, these heterogeneous cores have been inte-
grated on the same chip to provide both fast graphics rendering
and accelerated computing. Recent product announcements by
AMD [13], Intel [14], and NVIDIA [26] also indicate that
emerging heterogeneous CPU-GPU processors will provide a
unified virtual address space and cache coherence across these
cores. These fused architectures promise to avoid many of the
overheads associated with discrete GPUs, including interaction
latency, and the time and energy to copy data between the
different memories. When located on the same chip, these
heterogeneous cores will share system resources such as the
on-chip cache hierarchy, interconnect, and the DRAM. This
integration raises the importance of understanding how each
core type uses the memory system.

This paper presents a complete quantitative analysis of the
memory access behavior of multithreaded CPU applications
compared to their GPU counterparts with the aim of illuminat-
ing the application and microarchitectural causes of memory
behavior differences, as well as the common effects of these
differences. We focus on a memory system characterization
to understand how each core type exposes parallel memory
accesses, exploits locality, and leverages capabilities of the
memory hierarchy architecture.

The most significant observations include:

• Memory access vectorization and coalescing reduce
the number of spatially local accesses to cache lines.
Both are fundamental means for exposing MLP to
lower levels of the memory hierarchy.

• For data-parallel workloads, CPU and GPU cache
hierarchies play substantially similar roles in filtering
memory accesses to the off-chip interface.

• Due to threading and cache filtering differences, mem-
ory access patterns show substantially different time-
distributions: CPU applications exhibit regularly time-
distributed off-chip accesses, while GPU applications
produce large access bursts.

• The bursty memory accesses of GPU cores makes them
more sensitive to off-chip bandwidth while the MLP
from multithreading makes them less sensitive to off-
chip access latency than CPU cores.

Overall, CPU cores must extract very wide ILP in order
to expose MLP to the memory hierarchy, and this MLP can
be limited to lower levels of the memory hierarchy due to L1
cache locality. On the other hand, GPU cores and caches aim
to mitigate MLP limitations, allowing the programmer to focus
their efforts on leveraging the available MLP.

The rest of this paper is organized as follows. Section II de-
scribes the characterization methodology. Section III measures
application-level characteristics including algorithm structure,
operation counts, and memory footprint. Section IV details
our measurements of memory access characteristics, including
access counts, locality, and bandwidth demand. Section V
quantifies and describes the performance effects of these dif-
ferent memory access characteristics. We discuss implications
in Section VI and related work in Section VII. Section VIII
concludes.

II. METHODOLOGY

To adjust many various system parameters and to collect
detailed statistics, we simulate and compare the heterogeneous
CPU-GPU processors as described in this section. This section
also describes the benchmarks and simulation environment
used for this comparison.

A. Simulated Systems

Figure 1 diagrams the heterogeneous CPU-GPU processor
architecture that we simulate in each of our tests. The baseline
parameters of this processor are included in Table I. This
basic architecture incorporates CPU and GPU cores on a single
chip, and the different core types are allowed to communicate
through a unified address space shared memory.



TABLE I. HETEROGENEOUS CPU-GPU PROCESSOR PARAMETERS.

GFLOP/s Baseline Approx.
Core Type ISA Key Parameters Per Core Count Area (mm2)

CPU cores x86 5-wide OoO, 4.5GHz, 256 instruction window 22.5 4 5.3
GPU cores PTX 8 CTAs, 48 warps of 32 threads each, 700MHz 22.4 4 6.1

Component Parameters
CPU Caches Per-core 32kB L1I + 64kB L1D and exclusive private L2 cache with aggregate capacity 1MB
GPU Caches 64kB L1, 48kB scratch per-core. Shared, banked, non-inclusive L2 cache 1MB
Interconnect Peak 63 GB/s data transfer between any two endpoints
Memory 2 GDDR5-like DIMMs per memory channel, 32GB/s peak

Cores: CPU and GPU cores are at the top of the hierarchies,
and we list their configurations in Table I. To control for
many of the differences between CPU and GPU cores, we
model an aggressive CPU core with peak theoretical FLOP
rate comparable to the GPU cores for direct comparison of
core efficiency. This core operates at a very high frequency,
has a deep instruction window, and 5-wide issue width as a
way to observe instruction-level parallelism (ILP) limitations
in the per-thread instruction stream. This core is a traditional
superscalar architecture and contains a 4-wide SIMD functional
unit, for which we compiled benchmarks with automatic vec-
torization.

We compare these CPU cores against GPU cores config-
ured similarly to NVIDIA’s Fermi GTX 500 series streaming
multiprocessor (SM) with up to 48 warps and a total of 1536
threads per core. With 32 SIMD lanes per core and a frequency
lower than the CPU cores, this GPU core is capable of 22.4
GFLOP/s for single-precision computations, consistent with the
CPU core.

While core count scalability will be of interest, this study
aims to understand the different effects of core microarchitec-
ture on memory system behavior, so these baseline systems
model fixed core counts for each type. In particular, we
compare 4 CPU cores against 4 GPU cores. For multithreaded
CPU applications, we execute a single thread per core, while
GPU applications are able to concurrently execute up to the
full 1536 threads per core.

Using a modified version of McPAT [21] with CACTI
6.5 [25], we estimate the die area required to implement each
core in a 22nm technology. From this data, we observe that
the GPU core has a slightly larger size of 6.1mm2, which
would require it to achieve about 16% higher functional unit
occupancy than the CPU core in order to achieve the same
compute density.

In addition to the results presented here, we tested varying
CPU and GPU core counts and a broader range of cache
hierarchy and memory organizations while maintaining similar
peak FLOP rate controls. In general, the results from these tests
showed expected changes in the magnitudes of memory access

Fig. 1. Heterogeneous CPU-GPU architecture.

demands, but they did not appreciably change the relative or
qualitative access characteristics. For presentation and analysis
simplicity, we chose to limit our results to the above core
configurations.

Cache Hierarchies: CPU and GPU cores pump memory
accesses into the top of the cache hierarchy, where each core
is connected to L1 caches. The CPU cache hierarchy includes
private, 64kB L1 data and 32kB instruction caches. Each
core also has a private L2 cache. To maintain a reasonable
comparison of the use of caches between core types, we limit
the aggregate L2 cache size to 1MB for both core types. Full
coherence is maintained over all CPU caches.

The GPU memory hierarchy includes some key differences
compared to the CPU hierarchy. First, each GPU core con-
tains a scratch memory that is explicitly accessible by the
programmer. Data is often moved into and out of this memory
from the global memory space through the caches. Second,
GPU memory requests from threads within a single warp are
coalesced into accesses that go to either the scratch or cache
memories. Each GPU core has an L1 cache, which is allowed
to contain incoherent/stale data. If a line is present in an L1
cache when written to, it is invalidated in the L1 before the
write is forwarded to the GPU L2. Finally, GPU cores share a
unified L2 cache of 1MB. This GPU L2 cache participates in
the coherence protocol with the CPU caches.

Interconnects and Memory: We model two simple in-
terconnects for inter-cache communication. The first connects
GPU L1 caches and the GPU L2 cache, and the second
connects all L2 caches and the directory. These interconnects
faithfully model latency, back-pressure and bandwidth limita-
tions consistent with existing GPU interconnects and multicore
CPU crossbars, respectively. In all configurations we test, each
L2 cache is capable of driving more requested bandwidth than
the peak off-chip bandwidth to ensure that achieved bandwidth
to any single core can fully utilize off-chip memory resources.

Finally, we model a shared directory controller that man-
ages the coherence protocol and off-chip accesses through the
memory controller. To test a spectra of memory parameters,
we use an abstract memory controller design that models first
reads, then first-come-first-served memory access scheduling
(FR-FCFS) [28], and in appropriate tests, we vary the memory
frequency to modulate peak off-chip bandwidth. The memory
technology modeled has timing, channel width, and banking
parameters similar to GDDR5, but without prefetch buffers,
similar to DDR3. Finally, we simulate a spectra of memory
bandwidths in certain tests, but we chose 32GB/s as a base-
line as it is representative of bandwidth-to-compute ratios in
currently available systems.



B. Benchmarks

Selected from the Rodinia benchmark suite [7], we use 9
benchmarks to compare CPU and GPU performance and mem-
ory behavior. The Rodinia suite includes applications from im-
age processing, scientific workloads, and numerical algorithms,
and all benchmarks are designed to exercise heterogeneous
computing systems. The suite includes OpenMP multithreaded
versions of the benchmarks that we run in multicore CPU
systems, and CUDA versions that run their kernels on the GPU.
Table II lists the benchmarks and details about their structure,
which we describe in the next section.

In a few cases, we found that the publicly-available versions
of Rodinia benchmarks lacked algorithmic mapping and tuning
to the target architectures for which they were written. To
address this, we refactored and optimized where these transfor-
mations were simple to ensure that the behavior we see from
the application can be mostly attributed to the underlying core
and memory system microarchitecture. Specific optimizations
included transposing matrices for reasonable cache strided
accesses and GPU coalescing, adding multithreading to un-
parallelized portions of OpenMP benchmarks, and compiling
with optimizations such as loop unrolling and automatic SIMD
vectorization. Later, we show that these optimizations result in
benchmark performance either near peak FLOPs or limited by
some aspect of the memory hierarchy – what we aim to study.

Further, we chose tuning configurations and benchmark
input sets to avoid unfair negative performance impacts for
either the CPU or GPU versions. We ensured memory ac-
cess alignment, and avoided excessive bank contention and
unoccupied compute units that can arise from parallel portion
tail effects [24]. For most applications, the memory access
character changes minimally when increasing input set sizes.

Finally, to compare the same portion of benchmark run time
when run on the CPU or GPU, we annotate each benchmark
to collect simulated system statistics over the portion of the
benchmark that includes thread or kernel launches and the
parallel portion of work executed by these launches. We denote
this portion of the benchmark as the region of interest (ROI).
Portions of each benchmark that are common to both CPU and
GPU versions, including data setup for the parallel portion of
the benchmark and clean-up, are not included in the ROI.

C. gem5-gpu Simulator

To evaluate various heterogeneous CPU-GPU processor
designs, we use the gem5-gpu simulator [27], which integrates
the GPU core model from GPGPU-Sim [2] into the gem5
simulator [5]. gem5-gpu uses gem5’s Ruby memory hierarchy
to model various cache protocols with support for coherence
and shared components between the CPU and GPU cores.
For our CUDA tests, the GPGPU-Sim cores execute PTX
instructions rather than an intermediate instruction set. We have
validated that using the gem5-gpu memory hierarchy more
accurately models NVIDIA Fermi hardware than stand-alone
GPGPU-Sim executing PTX.

III. APPLICATION-LEVEL CHARACTERISTICS

Before delving into memory access behavior, this section
briefly discusses the algorithmic structure of the Rodinia bench-
marks and their mapping to each core type. In the aggregate,

application-level characteristics and statistics for CPU and GPU
benchmarks tend to be very similar, but we describe a few
notable differences.

A. Algorithm Structure

The structure of the algorithms that are mapped to each
core architecture drive all of the benchmark behavior that we
present. Here, we describe a taxonomy of these algorithm
structures and how they are mapped to CPU or GPU hardware.
Table II lists the benchmarks considered in our characteriza-
tion, and columns under “Static Structure” list their algorithm
classifications in this taxonomy.

First, we describe two classes of applications that employ
iterative data processing. The first class of iterative algorithms
are listed as “Iterative” and they stream heap data a number
of times proportional to I , the number of iterations (O(I)).
This structure is generally needed for applications in which
either data is transformed over progressive time steps, such
as heartwall and hotspot, or separate iterations successively
refine a solution in search of an optimum, as in kmeans
and strmcluster. These algorithms typically spin off parallel
computation once or a constant number of times per iteration.

A second class of iterative algorithms divides heap data into
chunks, either based on the number of parallel compute units or
based on the portions of data that can be efficiently processed
per iteration. This iteration structure can be employed when the
data for each computation is local to small portions of overall
heap. Wider data dependencies make it difficult to chunk the
data to be efficiently processed across separate iterations. These
algorithms access heap data roughly a constant number of
times, so we denote these applications as having constant-order
(O(c)) heap reads.

The structure of work per iteration in iterative algorithms
can be variable or fixed. If data dependencies may change
across iterations, the amount of available parallel work may
also change. We list these algorithms as having “Variable”
iteration size, while algorithms that have unchanging parallel
work over iterations are denoted as “Constant”. Varying-work
iterative algorithms are typically the hardest to parallelize
to leverage data-parallel microarchitecture constructs such as
vectorization and coalescing, because the data-level parallelism
may not be regular to fit nicely into these constructs.

We distinguish one other iterative-like algorithm structure,
“Incremental”, from iterative algorithms due to the differences
in synchronization. The two classes of iterative algorithms
described above commonly employ barrier-like synchronization
of worker threads between iteration epochs, since the data
touched by each thread can typically be isolated from the
data of other threads during parallel regions. In contrast,
our modified OpenMP version of nw employs fine-grained
locking to communicate small chunks of data between threads.
Compared to the GPU version, this structure elides the barrier
synchronization to reduce thread launch overheads and the
locking reduces per-thread working set size to reduce cache
contention and load imbalance.

The final class of algorithms lacks any iterative nature, and
instead, can be parallelized with one or a constant number of
parallel work phases. When results from one parallel phase
are consumed by a subsequent phase, these applications are



TABLE II. RODINIA BENCHMARK APPLICATION CHARACTERISTICS.
Static Structure Run Time Characteristics

Algorithm Structure Heap Iteration Size Add’l Structure Comp. Mem. Heap
Benchmark CPU / GPU Reads CPU / GPU CPU / GPU Op (M) Op (M) (MB)
backprop Pipeline O(c) Constant Reduction 155 34 35.0
bfs Iterative O(c) Variable — 395 39 6.7
heartwall Iterative O(I) Constant — 12,750 1,924 41.4
hotspot Iterative O(I) Constant — / Pyramid 1,474 242 7.0
kmeans Iterative O(I) Constant Reduction 2,485 571 7.5
nw Incremental / Iterative O(c) Constant / Variable — 303 50 81.0
pathfinder Iterative O(c) Constant Pyramid 305 76 36.6
srad Pipeline O(c) Constant — 780 171 96.0
strmcluster Iterative O(I) Constant Reduction 1,074 248 2.8

referred to as “Pipeline” parallel. Backprop and srad are both
pipeline parallel and access heap data a constant number
of times, typically proportional to the number of pipeline
stages. Note that both these benchmarks employ barrier-like
synchronization between pipeline stages, but other pipeline-
parallel applications could use finer-grained synchronization
within pipeline stages.

We note two additional algorithm structures that are em-
ployed during or between parallel work epochs: data pyramid-
ing and reduction operations. These are common structures and
tend to have substantial effects on memory access behavior.
Data pyramiding is a common technique employed in image
processing (iterative) algorithms that access a small neighbor-
hood of data for each computation [29]. By gathering a slightly
larger neighborhood of data, a parallel thread is able to compute
the result of multiple outer loop iterations, while avoiding the
need to stream that data neighborhood multiple times. The
“pyramid” term refers to the way that the data neighborhood
grows as the number of merged outer loop iterations grows.

Reduction operations are employed in cases where a large
set of data, typically produced by multiple threads, must be
inspected to find one or a small number of results. Common
cases include reduction sums and searches for extrema. These
operations often come with extra computation and memory
overhead to store intermediate values as the number of parallel
threads is increased. In general, as more threads participate in
a reduction operation, there is more overhead to synchronizing
the handling of intermediately reduced data. While many
efficient constructs do exist, for GPU applications, we will see
that reduction operations are tricky to coordinate between CPU
and GPU cores, and can lead to large data communication and
run time overheads.

B. Dynamic Run Time Characteristics

Table II also includes region of interest dynamic run time
statistics for each benchmark executed with a single thread
on a CPU core. These statistics include the count of dynamic
compute and memory operations, and the size of the heap
data accessed during the region of interest. In general, these
statistics are often similar across core types, so we only briefly
touch on the similarities and pay more attention to specific
cases that cause the stats to vary across the core types.

For CPU compute operations, we count integer and floating-
point micro-instructions that occupy an execution unit rather
than the x86 macro-instructions they comprise, and we compare
these counts to PTX instructions executed by GPU cores.
Memory operations under x86 count micro-instructions that
involve a cache request, and we compare these counts to

PTX memory instructions. PTX does not provide a memory-
indirect addressing mode, so the count of memory instructions
is equal to the number of cache requests. Note that GPU request
coalescing reduces the actual number of GPU cache accesses
and we describe this in the next section.

The benchmarks, nw, srad, and strmcluster show compute
op count differences of at most 10% across the core types. The
benchmarks, heartwall, kmeans, nw, and pathfinder show mem-
ory op count differences of at most 15%. In the geometric mean
across all benchmarks, we find that the number of compute
and memory ops varies by at most 38% and memory footprint
varies by less than 6% across the system configurations. The
large geometric mean differences for compute and memory ops
indicates that on a per-benchmark basis, large differences can
arise. We find this is due to use of registers, number of threads,
and coordinating work between core types.

A fairly common factor in compute and memory op count
differences between system configurations is due to register
handling. For x86 CPU applications, the small architected
register set (16) can cause register spilling to the stack and
recomputation of previously computed values. In contrast, GPU
cores have some flexibility in register use due to their core
multithreading. By running fewer GPU threads per core and
late binding register specifiers to physical registers, there is
more flexibility for each thread to access more registers, which
can avoid spilling and recomputation.

The CPU versions of bfs, kmeans, and strmcluster require
numerous calls to small functions or pointer-chasing in their
inner loops, which results in an elevated number of address
calculations, memory requests, and register spills. This causes
up to 1.33× more cache requests compared to their GPU
counterparts. Also on the CPU, heartwall is written with a
large, flat function that heavily overloads architected register
specifiers, causing the CPU cores to execute almost twice
as many compute ops to recompute values. Both of these
differences result in a performance disadvantage for CPU cores.

A less common factor in compute and memory op count
differences is the width of multithreading employed by an
application. Specifically, in cases such as backprop, where
each thread must incur some fixed number of ops for setup
before performing a share of computation, linearly increasing
the number of threads also linearly increases the total number
of these fixed ops that must be performed.

For most Rodinia applications, care was taken to ensure
that thread counts are kept small to avoid these fixed ops, and
the extra threading op counts are often within 8% across the
different platforms. However, compared to the single-threaded



Fig. 2. Breakdown of memory requests and accesses normalized to single
thread CPU execution.

CPU version, backprop employs numerous GPU threads, which
increases op counts by approximately 1.5×. Strmcluster’s nu-
merous CPU thread launches cause approximately 1.7× extra
ops. Often, these extra ops can be hidden off the application
critical path, because they are executed in parallel by execution
units that may have been mostly idle with fewer threads.

Finally, for benchmarks that coordinate reduction opera-
tions between CPU and GPU cores, there is elevated commu-
nication and synchronization overhead compared to running the
application only on CPU cores. In general, the late stages of
reduction operations tend to perform poorly on GPUs, because
the limited data-level parallelism causes poor occupancy of the
GPU’s numerous thread contexts. This limitation suggests that
the late stages of the reductions should be performed by a
small number of threads, perhaps on CPU cores. However,
by transferring control to CPU cores, the GPU versions of
backprop, kmeans, and strmcluster incur up to 1.5× as many
reduction memory ops to move the intermediately-reduced data
from the GPU to the CPU. Reduction performance ends up
being a primary factor in performance for these applications.

IV. MEMORY ACCESS CHARACTERISTICS

In this section, we characterize the memory behavior effects
of the microarchitectural differences between CPU and GPU
cores and cache hierarchies. While we noted in the last section
that CPU and GPU applications show many similarities, the
different core types expose and leverage MLP in very different
ways; CPU cores use a small set of deep per-thread instruction
windows, and high-frequency pipelines and caches to expose
parallel memory accesses. In contrast, GPU cores expose par-
allel memory accesses by executing 100s–1000s more threads
at lower frequencies, and threads are grouped for smaller per-
thread instruction windows and memory request coalescing.

The results here reveal the primary differences in CPU
and GPU core memory access. Specifically, while CPU cores
rely heavily on L1 caches to capture locality, GPU cores
capture most locality with coalescing and lessen the L1 cache
responsibilities by providing scratch memory. Beyond the L1
caches, the memory systems tend to capture very similar
locality. Further, we see that different core threading and cache
filtering result in extreme differences in instantaneous memory
access rates; CPU caches tend to filter accesses down to regular
intervals, while GPU cores tend to issue bursts of accesses.

A. Access Counts

Despite large CPU and GPU core threading differences,
two core-microarchitecture design characteristics account for

the majority of the difference between CPU and GPU cache
hierarchy access counts and sizes: scratch memory and address
coalescing. We describe their effects here.

Figure 2 plots a breakdown of cache access counts for the
CPU version (left group of bars) and the GPU version (right
group of bars), normalized to a single-threaded execution of
each benchmark on a CPU core. We see that the multithread
CPU version has small additional memory accesses compared
to a single core CPU due to extra threads. Next, for the
GPU, the plot separates memory requests (the absolute number
of load/store instructions on the GPU) from cache hierarchy
accesses, each of which may be a coalesced set of memory
requests. The ghosted portions of the GPU bars represent
the number of requests saved by coalescing down to a small
number of memory accesses.

Scratch memory: GPU cores provide scratch memory,
which can function as local storage for groups of threads to
expand the space of local storage with register-like accessibil-
ity. In CUDA benchmarks that use the GPU scratch memory,
kernels are typically organized into three stages: (1) read a
small portion of data from global memory into the scratch
memory, (2) compute on the data in scratch memory, and (3)
write results back to global memory. Since numerous threads
are executing these same stages – often in lock-step – stages 1
and 3 appear as stream operations to the memory hierarchy, and
we describe this behavior more deeply below. Besides register
files, CPU cores do not have an analogous scratch-like memory,
so instead, they typically spill local variables to the L1 caches
temporarily.

In the common case, CPU stack accesses and GPU scratch
memory accesses account for similar portions of memory
requests. These similarities are reflected in the proportion
of heap versus non-heap (stack or scratch) memory requests
depicted in Figure 2. Most GPU applications employ scratch
memory for local data handling, and these requests account
for 25–80% of all requests. Moving these requests to scratch
memory instead of caches, as on the CPU, reduces the number
of requests to the cache hierarchy by a geometric mean of
3.9× before coalescing. Similarly on the CPU, local memory
requests account for upwards of 50% of total requests. We also
note that CPU stack accesses generally hit in a small number
of cache lines in the L1 caches. The high rate of access to CPU
stack memory and GPU scratch memory suggests that even a
small scratch memory capacity can be useful to mitigate cache
hierarchy memory accesses.

A couple benchmarks, bfs and kmeans, do not use scratch
memory and opt instead to access all data from the global
memory space through the caches. In both cases, global data
and access patterns are such that it would be complex to use
scratch memory. We will see later that both of these applica-
tions are more sensitive to cache and memory capabilities as a
result.

Request coalescing: Second, in contrast to CPUs, which
execute up to tens of separate concurrent threads, GPUs
maintain contexts for thousands of threads through hierarchical
grouping. These groups of threads can exploit spatial locality
by coalescing requests from separate threads into a small
number of cache accesses when the requests are to neighboring
addresses.



2 4 8 16 32
0

2

4

6

8

10

12

Threads In Coalescing Group

M
em

or
y 

A
cc

es
s 

R
ed

uc
tio

n

2 4 8 16 32
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Threads In Coalescing GroupS
pe

ed
up

 O
ve

r 
N

o 
C

oa
le

sc
in

g

Fig. 3. Coalescing: memory access reductions and resulting ROI speedup,
normalized to no coalescing.

To understand the impacts of request coalescing, we ran
tests that vary the coalescing degree from no GPU coalescing
to full 32-thread group coalescing. Figure 3 shows the geo-
metric mean reduction in number of cache accesses and the
ROI speedup for varying coalescing degree normalized to the
case with no coalescing. In the common case, full 32-thread
coalescing reduces the number of global memory accesses by
10–16× as the GPU is frequently able to coalesce 16 or 32
integer or floating-point requests to a single cache line access.

This data also shows that most of the performance gains
come from coalescing across sets of 4–8 threads, as further
gains are limited to less than 3% run time in the common case.
With wider coalescing, any existing memory bottlenecks would
manifest at cache hierarchy levels below the core-L1 interface.
Despite the small potential for performance gains, coalescing
beyond 8 threads continues to decrease the total number of
memory accesses (2× in the geometric mean), which may
result in a decrease in cache access power/energy.

Since GPU request coalescing behaves similarly to CPU
single-instruction, multiple-data (SIMD) vectorization, we also
ran tests to find the effect of SIMD vectorization on memory
access counts. We use the gcc compiler automatic SSE 4
vectorization, which allows the CPU to load, operate on, and
store data on up to 4-wide integer or single-precision floating
point vectors with single instructions, and has a similar effect
to coalescing in terms of the width of memory accesses to
the cache hierarchy. Gcc is able to vectorize ROI portions of
four benchmarks from our set: backprop, hotspot, srad and
strmcluster. For these four benchmarks, vectorization reduces
the total number of memory accesses by 1.32–1.69× (1.44×
geometric mean), and that most of the eliminated accesses are
to heap data. Compared to GPU 4-thread coalescing, automat-
ically vectorizable CPU code sees more limited reduction in
memory access counts.

Overall, GPU scratch memory and request coalescing re-
duce the number of global memory accesses by 18–100×
compared to CPU applications (27× in the geometric mean).
Compared to CPU cores, this reduction alleviates pressure
on caches, which in turn allows GPU cores to operate at
lower frequencies while still serving data to threads at rates
comparable to or greater than CPU cores.

B. Spatial Locality

As we observe memory accesses flowing through the cache
hierarchy, we see that L1 caches play different locality filtering
roles for the CPU and GPU sides of the architecture. Specif-
ically, in contrast to mostly-scalar CPU cache accesses which
must hit in cache to provide strong performance, GPU request

TABLE III. MEMORY ACCESS LOCALITY METRICS BY CORE TYPE.

OpenMP: Access CUDA: Access
% L1 % L2 Per % L1 % L2 Per

Benchmark Hits Hits Line Hits Hits Line
backprop 95.6 68.1 42.2 39.6 75.7 5.6
bfs 95.5 18.1 4.0 37.6 62.2 3.7
heartwall 99.7 89.3 273 87.7 93.2 19.1
hotspot 98.9 16.2 57.4 37.1 65.3 4.5
kmeans 99.4 0.5 132 44.1 18.9 4.9
nw 99.0 0.6 74.0 0.5 74.6 1.3
pathfinder 98.8 45.8 35.6 46.6 17.0 2.3
srad 97.7 61.0 54.0 19.7 57.3 2.5
strmcluster 97.4 17.0 5.3 25.5 66.5 2.8

coalescing dramatically cuts the accesses to each cache line,
which in turn alleviates L1 cache pressure and can expose more
MLP to lower levels of the hierarchy.

For these data-parallel applications, CPU threads have
extremely high spatial locality, typically striding through all
elements in a heap cache line in subsequent algorithm loop
iterations. These access patterns, which also include accesses to
stack/local memory that is persistent over many loop iterations,
result in high L1 cache hit rates that even exceed those expected
by simple strided read memory access. Table III lists these hit
rates and the average number of accesses per heap cache line
per algorithm pipeline stage.

CPU vectorization and GPU coalescing are designed to
capture address spatial locality before memory requests are
sent to the caches. Thus, these techniques cause a reduction in
the available spatial locality to caches by a factor equal to the
effective access width (i.e. up to 1.69× for 4-wide vectorization
and more than 14× for 32-wide coalescing in common cases).

To get a sense for the remaining spatial locality in the
GPU cache access stream, we observe counts of the number of
accesses to each unique global memory cache line during GPU
kernels, and we find that lines are typically accessed between
2 and 5 times. Note that most GPU kernels move data from
global memory into scratch for local handling, so the small
number of remaining spatially local accesses is likely due to
separate thread groups accessing the same data rather than
thread groups being unable to fully coalesce accesses. In either
case, there is little spatial locality left to exploit within each
kernel without increasing cache line sizes, and GPU thread
group and coalescing widths.

Since vectorization and coalescing cut down the number of
spatially local accesses to each cache line, they have the effect
of exposing wider access parallelism below the L1 caches. This
is a subtle effect in lock-up free caches: Fewer accesses to each
cache line reduces the number of accesses that may occupy
miss-status handling registers (MSHRs) queued for a small set
of outstanding accesses to lower levels of the cache hierarchy.
We find that GPU 32-wide coalescing increases the number
of concurrent memory accesses to the L2 cache by 1.3–3×
over uncoalesced GPU memory accesses. Hence, vectorization
and coalescing are both fundamental means for better exposing
MLP to lower levels of the memory hierarchy by decreasing
MSHR pressure caused by accesses that queue for a small set
of lines.

C. Temporal Locality

The prior subsection described how core microarchitecture
and L1 caches capture a significant portion of access spatial



locality for both CPU and GPU applications. This suggests that
little spatial locality is left for L2 caches to capture. Instead,
they serve to extract access temporal locality from separate data
sharers.

In all OpenMP benchmarks, the CPU L1 hit rate is above
95%, as each heap cache line is accessed numerous times, and
many local variables are accessed some number of times across
loop iterations. By comparing the L1 cache hit rates with the
common number of memory accesses per cache line, we can
see that in all benchmarks, the L1 caches must be capturing
nearly all of the intrathread spatially local accesses to each line.
For example, strided accesses to 32 consecutive data elements
in each cache line would result in a 31/32 = 96.9% hit rate in
the absence of intervening accesses. This suggests that the per-
thread working set of most benchmarks fits in the CPU 64kB
L1 cache. Given this observation, this leaves the L2 caches
mostly responsible for capturing temporally local accesses to
data shared across cores rather than temporally or spatially
local accesses to data previously evicted from the L1 caches
due to limited capacity.

Since GPUs typically only access cache lines a small
number of times during a kernel compared to CPU cores, there
is diminished importance to ensuring temporally local accesses
to cache lines. Observing the GPU L1 cache hit rates and
common access counts per line, we note that the L1 caches
capture fewer than half of the multiple accesses to each cache
line in the common case, and more accesses go to the GPU
L2 cache than in CPU applications. To establish whether this
is a result of contention for GPU L1 cache capacity or data
sharing across GPU cores, we ran tests that vary the GPU L1
cache capacity up to 256kB, and we found that L1 hit rates
improve by at most 5% with the extra capacity. This indicates
that instead of competing for L1 capacity, GPU threads from
separate cores are generating most of the temporally local
accesses to single cache lines, similar to the CPU L2.

Based on the above observations, we find that CPU and
GPU L1 caches have very different importance, though their
filtering roles are similar. In the aggregate for data-parallel
workloads, CPU L1 caches have many responsibilities; they
must be designed to capture both the spatial locality for heap
data accesses and the temporal locality of stack accesses.
Fortunately for data-parallel workloads, these responsibilities
rarely conflict given sufficient L1 capacity, so CPU L1s are
quite effective and important for capturing locality.

For GPU applications, register and scratch memory can
shift local variable accesses away from the caches, which
eliminates the L1 responsibility for capturing temporally local
stack requests. Further, GPU coalescing greatly reduces the
importance of spatial locality across separate heap accesses,
so the L1 caches are mostly responsible for capturing the
small number of temporally local accesses from separate GPU
threads on the same core, diminishing the overall responsibility
of the GPU L1s compared to CPU L1s.

In contrast to L1 caches, L2 caches play a similar role for
both CPU and GPU cores. For both core types, the majority of
spatial and temporal request locality is captured by components
at higher levels of the memory hierarchy, which usually leaves
the L2 caches responsible for capturing access locality to data
that may be shared among separate cores. We did not find any

Fig. 4. Number of off-chip memory accesses, normalized to CPU version.

circumstances in which the L2s function to capture significant
temporal request locality from L1 capacity spills.

D. Number of Off-Chip Accesses

When observing memory request locality, we noted that
L2 caches play a similar role in filtering memory requests for
both CPU and GPU cores. This suggests that there may be
strong similarities between the off-chip memory accesses for
both CPU and GPU applications. Here, we observe off-chip
access counts in support of this hypothesis. Figure 4 plots the
number of off-chip memory accesses for all GPU benchmarks
normalized to the multithreaded CPU version.

We start by noting some important similarities between
CPU and GPU applications. In particular, for applications that
execute similar code per output data element (backprop, bfs,
heartwall, pathfinder, srad and strmcluster), the number of off-
chip memory accesses from the GPU is nearly identical to
the analogous portions of the CPU version. In addition, we
note that the GPU version of hotspot uses a pyramid iterative
algorithm that completes two timesteps per GPU kernel launch,
which cuts the number of times that the GPU streams data on-
chip by a factor of precisely two compared to the CPU version.
While a non-trivial transformation, the CPU version could also
implement pyramiding to gain potential benefits of reduced
off-chip data access.

The major differences between CPU and GPU off-chip
access counts typically arise due to the overheads of off-loading
computation to the GPU cores. The CPU-GPU coordinated
reduction operations in backprop, kmeans, and strmcluster
require that the CPU stream GPU-generated intermediate data,
which is too large to fit in on-chip caches. In each case, these
accesses account for roughly as many off-chip accesses as the
OpenMP versions of the applications. As we will see later, this
extra data streaming, rather than elevated op counts, accounts
for the performance overhead in these applications.

Second, we note that the way that the kmeans algorithm is
mapped to the GPU, it does not take advantage of local memory
in its inner loop as does the CPU version. This results in the
GPU streaming all data points once for each of the k centers
that are being considered in a single iteration. The input set
we consider in this work has k = 5, and indeed, we see that
kmeans on the GPU must stream data on-chip nearly 5 times
more than the CPU version. While the transformation would
be non-trivial, the CUDA version could be modified to store
the same local variables as the CPU version to eliminate these
extra off-chip accesses.

Finally, we find that memory footprint can contribute to
second order effects on off-chip accesses. In particular, heart-
wall and nw double-buffer data in their GPU and CPU versions,



TABLE IV. ROI REQUESTED OFF-CHIP BANDWIDTH (GB/S).

CPU cores GPU cores
Avg Stdev Max Avg Stdev Max

backprop 7.0 4.1 20.3 11.1 10.4 83.9
bfs 7.0 6.8 30.0 13.8 12.0 94.0
heartwall 0.3 0.9 20.8 1.1 4.8 77.3
hotspot 3.6 1.8 16.3 2.9 4.0 35.6
kmeans 1.0 0.6 11.7 23.8 6.0 80.8
nw 4.3 1.7 16.8 7.5 7.8 82.4
pathfinder 5.0 1.6 16.3 6.2 4.2 79.3
srad 4.9 3.0 20.3 10.1 8.1 87.9
strmcluster 5.2 3.0 16.8 16.5 13.1 114.9

respectively. These extra buffers result in up to 10% differences
in memory footprint for their respective cores, and we find that
access counts are analogously affected.

We also note that we find little difference in the volume
of off-chip memory accesses (< 1%) for GPU applications as
we vary the coalescing degree. This indicates that, like their
CPU counterparts, the GPU cache hierarchy is able to capture
the majority of spatially local accesses to heap cache lines
when coalescing is unable to, albeit with possible overheads in
performance or power.

E. Bandwidth Demands

While we have noted that CPU and GPU L2 caches play
similar roles in capturing memory access locality, here, we
demonstrate that CPU and GPU cores expose very different
MLP over time that results in a substantial difference in their
requested memory bandwidth rates.

To evaluate differences in off-chip memory bandwidth
demand, we simulated both benchmark versions with a 32GB/s
off-chip memory interface and collected memory access inter-
arrival times at the memory controller. From these interarrivals,
we calculated instantaneous requested bandwidth over time
intervals of 500 memory controller cycles and used them
to estimate the average, standard deviation, and maximum
requested bandwidth as listed in Table IV.

This data shows that GPU cores nearly always demand
greater average bandwidth and greater variance over time than
the CPU. Compared to the CPU versions, all GPU applications
here show a greater frequency of high instantaneous requested
bandwidth. Further, the GPU’s instantaneous requested band-
width regularly exceeds the peak theoretical limit of the off-
chip interface by more than 2.5×, while CPU cores only
request up to the peak.

To tie requested bandwidth back to application-level char-
acteristics, we observe requested bandwidth over time for a
representative portion of the nw benchmark. Figure 5 plots
the requested off-chip bandwidth from both core types for this
region. The blue line shows the aggregate requested bandwidth
from the CPU cores over time. The behavior in this plot
is common to most CPU applications, namely CPU cache
accesses miss in fairly regular intervals, which cause regular
accesses through time and consistent requested bandwidth
through each phase of the benchmark.

By contrast, GPU cores expose very bursty memory ac-
cesses, frequently exceeding the peak available bandwidth. The
green line plots the GPU requested bandwidth with annotations
for the start/end of GPU kernels (“Kernel Launch”), and it de-
picts the common GPU kernel stages we described previously.

0 10 20 30 40 50 60
0

8

16

24

32

GPU VersionGPU VersionCPU VersionCPU Version

Peak Off-chipPeak Off-chip

KernelKernel
LaunchLaunch

KernelKernel
LaunchLaunch

KernelKernel
ReadRead

KernelKernel
WriteWrite

Time (1000 Cycles)

Fig. 5. NW requested off-chip bandwidth (GB/s) over time.

Shortly after a kernel launch, numerous thread blocks issue
parallel memory accesses that begin reading data from the
global memory space into the core’s scratch memory. These
reads are issued en masse, causing the cache hierarchy and
memory system to fill with buffered accesses. After reading
data, the GPU often accesses data in scratch - a time period
with few or no global accesses from each thread block - and
then the data is written back to global memory as a burst
(“Kernel Write”).

Burst access behavior is common to all GPU benchmarks
we tested, and the character tends to be largely similar to
nw. We chose to plot nw because it clearly demonstrates the
read-compute-write character of GPU thread blocks. However,
nw has low GPU thread occupancy, which limits its ability
to further push bandwidth limitations while thread blocks are
computing on data. Many benchmarks execute more concurrent
thread blocks/groups or have lower ops-to-byte ratios, which
often result in larger or more frequent access bursts. When
near bandwidth saturation, the distinction of kernel read/write
bursts can blur as buffers fill and dependent memory accesses
modulate the issue of further outstanding accesses.

The key takeaway here is that GPU burst access behavior
results from the way that GPUs group and launch threads.
Specifically, at the beginning of a kernel, all capable thread
block contexts begin executing at roughly the same time, so this
can cause very large bursts of independent accesses. Following
this initial burst, smaller but still significant access bursts occur
each time a new thread block begins executing or when thread
groups pass synchronization events. By contrast, CPU cache
access filtering tends to modulate the core’s ability to issue
nearly as many parallel accesses to off-chip memory.

V. APPLICATION PERFORMANCE IMPLICATIONS

The last section showed CPU and GPU memory access
similarities and differences, and we want to understand their
application-level effects. Here, we show that the majority of
performance differences between CPU and GPU versions is,
in fact, directly attributable to the memory access behavior
differences. Specifically, the CPU versions struggle to keep
up with GPU versions due to MLP limitations which cause
memory stalling. This memory stalling results in elevated
memory access latency sensitivity for CPU cores, while GPU
cores are better able to leverage available bandwidth.



Fig. 6. ROI run time normalized CPU version.

A. Performance Depends on Memory Stalling

First, we show that the primary difference in performance
between CPU and GPU applications is a result of memory
stalling. Figure 6 plots the ROI run times of applications run
on CPU cores (left cluster of bars) and GPU cores (right
cluster) normalized to the CPU’s run time. The figure indicates
that CPU versions tend to struggle to keep up with the GPU
versions despite comparable peak FLOP rates.

To establish that memory access is the substantial portion of
the difference in run time between CPU and GPU versions, we
ran tests which cut the memory hierarchy latency to nearly zero
cycles as a way to estimate the portion of run time attributable
to memory hierarchy performance. Cache and memory bank
conflicts were minimal, so we describe that the resulting stalls
come largely from each core’s ability to expose MLP. The run
time gains shifting from the realistic memory hierarchy design
to the optimal hierarchy are reflected in the “Memory Stalls”
portion of each run time bar.

These memory stall estimates indicate that in the common
case, CPU applications suffer memory stalls for 30–50% of run
time. If these stalls could be removed from the CPU version
run times, four CPU applications - bfs, hotspot, nw, and srad
- would come within 25% of their respective GPU versions,
and the geometric mean across all applications would be
within 8%. Remaining, second-order performance differences
are attributable to data communication overhead (backprop,
kmeans, streamcluster), elevated CPU compute ops (heartwall),
and control-flow ILP limitations (pathfinder).

B. Latency Sensitivity

Ultimately, memory request dependencies in CPU thread
instruction streams regulate their ability to issue many concur-
rent outstanding memory requests below the L1 caches and to
hide memory access latency. In contrast, GPU cores leverage
their deep multithreading to expose wide MLP and issue access
bursts to lower levels of the cache hierarchy. It is a common
belief that this difference allows GPU cores to hide very long
memory access latency.

We confirm this belief by running simulations with ad-
ditional no-load, off-chip access latencies of 200, 400 and
600 memory cycles, which bump the baseline off-chip access
latency roughly 3–7×. Figure 7 presents, for both versions,
the geometric mean ROI slowdowns over all benchmarks nor-

B
as

e

+2
00

+4
00

+6
00

B
as

e

+2
00

+4
00

+6
00

0%
25%
50%
75%

100%
125%
150%
175%
200%

GPU ExecutionGPU Execution

GPU VersionsCPU Versions

G
eo

m
ea

n 
S

lo
w

do
w

n

CPU ExecutionCPU Execution

Fig. 7. Geometric mean slowdown over all benchmarks from 200, 400, and
600 additional off-chip memory access cycles.

40
G

B
/s

32
G

B
/s

24
G

B
/s

16
G

B
/s

8G
B

/s

40
G

B
/s

32
G

B
/s

24
G

B
/s

16
G

B
/s

8G
B

/s

0%
25%
50%
75%

100%
125%
150%

CPU ExecutionCPU Execution
GPU ExecutionGPU Execution

CPU Versions GPU Versions

G
eo

m
ea

n 
S

lo
w

do
w

n

Fig. 8. Geometric mean slowdown over all benchmarks from limiting
bandwidth, normalized to 40 GB/s off-chip.

malized to the baseline memory. The CPU benchmarks show
immense sensitivity (>2×) to additional latency compared to
the GPU versions. Even in the GPU benchmarks, the vast
majority of latency sensitivity comes from the CPU portion
of execution time, while the GPU portions of execution show
a maximum slowdown of 5% across all benchmarks.

C. Bandwidth Sensitivity

Since GPU applications tend to demand greater instanta-
neous bandwidth from off-chip memory than CPU applications,
we would expect that GPU cores should be more sensitive
to changes in the peak theoretical bandwidth of the off-chip
interface. We quantify the difference in bandwidth sensitivity
by running tests that vary off-chip bandwidth from 8 to 40
GB/s. Figure 8 plots, for each system, the geometric mean ROI
slowdown over all benchmarks normalized to a system with 40
GB/s peak off-chip bandwidth. These tests confirm that for the
complete ROI, GPU applications are 6–10% more sensitive to
available memory bandwidth. Further, the GPU parallel portion
of these applications is up to 60% more sensitive to bandwidth
than the CPU benchmarks.

D. Discussion

The performance and memory sensitivity of these applica-
tions is directly related to a core’s ability to expose MLP, and if
we follow CPU and GPU memory access paths, we see where
constraints on MLP arise. CPU cores executing fewer threads
must extract most MLP from ILP, which poses challenges for
parallel accesses below L1 caches, while GPU cores tend to
extract greater MLP across a large set of concurrent grouped
threads, and to spread memory accesses over a larger instanta-
neous set of cache lines.

Given the latency sensitivity of CPU cores, there is perfor-
mance incentive for programmers to aim for high L1 cache
hit rates as we see with these applications. These high hit
rates typically result from tight code loops and strided memory
access, which result in many sequential cache hits to each cache
line. Unfortunately, these program structures limit the core’s



ability to expose MLP to lower levels of the cache hierarchy,
because L1 cache spatial access locality triggers infrequent
cache misses to cause accesses to lower levels. As our tests
show, this is even the case with the aggressive out-of-order
CPU cores, which are capable of continuing execution well
beyond waiting cache misses.

By restructuring loop iterations as separate threads and
gathering spatial locality across threads, GPU applications tend
to avoid the sequential accesses to single cache lines. GPU
request coalescing and the use of scratch memory substantially
reduce the number of memory accesses that go to the caches,
and we described how this reduced number of accesses can
increase MLP. Specifically, fewer, less-local accesses reduce
pressure on MSHR queuing and increase the number of con-
current parallel memory accesses that can proceed to lower
levels of the memory hierarchy.

There are a few options for multicore CPUs to mitigate the
effects of low-exposed MLP. First, programmers can parallelize
the memory access portion of instruction streams by managing
multiple strided access streams in each loop iteration. This
tends to be difficult, so other hardware techniques have been
developed. Simultaneous multithreading gives the perspective
that there are more CPU threads, and indeed, our test show
that adding threads can help hide some of the memory stalls.
However, this elevates contention for the sequential access to
L1 caches. CPU SIMD vectorization can mitigate the number
of L1 cache accesses, but does not reduce the number of ac-
cesses as dramatically as GPU request coalescing. Finally, CPU
cache access prefetching can eliminate much of the latency
spent waiting for regular or strided memory access. However,
we expect that applications, such as bfs, with irregular memory
access will still tend to perform better on GPU cores by being
able to issue many parallel accesses to hide latency.

VI. KEY IMPLICATIONS

We expect that most of the challenges and opportunities in
heterogeneous system design will arise in shared components
that will need to balance GPU bursty access behavior against
CPU access latency sensitivity. It is likely that applications will
find it useful to share data between CPU and GPU cores, and
this could mean sharing caches, on-chip interconnect and off-
chip memory.

A. Cache Hierarchy Sharing

Trying to share caches between CPU and GPU cores will
likely require techniques to ensure latency-critical CPU data
remains on-chip as appropriate. GPU cache filtering behavior
and bursty memory access results in high volumes and high
instantaneous rates of data invalidations and writebacks. If
shared caches give equal capacity priority to CPU and GPU
data, it is likely that CPU data will be turned over very quickly
and erratically when the GPU is operating. Assuming there are
applications that could benefit from sharing caches, we expect
that new techniques will look to more advanced partitioning
schemes, capacity prioritization, and replacement policies to
address this challenge.

B. Interconnect and Off-chip Memory Scheduling

Sharing interconnect and off-chip memory among CPU and
GPU cores will require quality-of-service (QoS) techniques

to appropriately balance bandwidth and prioritize memory
accesses. Many prior QoS techniques (e.g. [9, 18]) consider
longer-run average statistics as proxies to approximate the
application-level performance impact of bandwidth allocation
options or delaying memory accesses to prioritize others.
However, given the substantial differences in CPU and GPU
core architectures and instantaneous memory bandwidth de-
mands, these existing proxies may be insufficient to adequately
predict and compare CPU and GPU application performance
impacts. Further, most prior techniques are applied in the
context of symmetric multicore processors in which there is an
assumption that even bandwidth allocation is likely to impact
application performance evenly. Our results show that this
assumption is not likely to hold up in the context of general-
purpose heterogeneous processors, because GPUs tend to be
more sensitive to effective bandwidth, while CPUs tend to be
more sensitive to access latency. Prior work does investigate
scheduling techniques to meet real-time graphics processing
constraints in heterogeneous processors [1, 15], but it is likely
that estimating appropriate bandwidth balance and finer-grained
access prioritization for general-purpose heterogeneous proces-
sors will be a broad area of future work.

C. Emerging Memory Technologies

In addition to the challenges posed above, we see oppor-
tunity to leverage emerging memory technologies to improve
memory latency, bandwidth, and power efficiency. Stacked
and on-package DRAM options promise small latency and
power improvements, and are likely to provide bandwidth
comparable to existing discrete GPUs [22]. We estimate that
these improvements will increase CPU benchmark performance
by upwards of 5% and GPU performance by as much as 15%.

A shortcoming of available stacked and on-package DRAM
options is their small capacity, which is limited by area and
thermal constraints. To effectively use these memories, it will
be important to store latency- and bandwidth-critical data in
them. System designers will need to consider methods for
allowing data to be mapped and migrated between memories,
while programmers may desire means to intelligently control
data placement.

VII. RELATED WORK

To the best of our knowledge, this work is the first to present
a quantitative characterization comparing the application and
memory system behavior of applications mapped to both CPU
and GPU cores with the express aim of illuminating their
microarchitectural similarities and differences. We perform this
analysis for data-parallel applications.

Memory System Characterizations: A wide range of
papers have characterized memory system behavior for parallel
applications [4, 30], cloud/server applications [3, 23], GPU
applications [6, 16], and mobile/embedded applications [8, 11,
12]. While these prior studies characterized the applications
on a single type of platform, our work examines different
implementations of the same applications for two different core
types with the express goal of understanding the differences in
architectural mapping.

Performance Comparisons: Another class of related work
seeks to compare the performance of applications implemented
for different architectures or using different parallelization



techniques [10, 17, 19]. Of particular significance, Lee et al.
compare the performance of a set of applications parallelized to
run on either CPU or GPU hardware [20]. That work focuses
on the application tuning required to push hard performance
limitations: peak FLOP rates and bandwidth limitations. Our
work echoes many of the findings of [20], but goes beyond by
using tightly controlled simulations to illuminate the precise
memory system microarchitecture behavior differences that can
cause performance differences.

VIII. CONCLUSION

As heterogeneous cores become more tightly integrated
onto the same die and share the same system resources,
understanding the memory system requirements of the cores
becomes more critical. In this paper, we presented the first
detailed analysis of memory system behavior and effects for
applications mapped to both CPU and GPU cores.

Our results show that while the applications are designed
with similar algorithmic structures, their mapping to different
core types can result in dramatically different memory sys-
tem characteristics. Specifically, GPU coalescing and scratch
memory greatly reduce the importance of L1 caches compared
to CPU L1s, which must capture immense spatial locality to
ensure performance. GPUs, with their deep multithreading,
more readily expose wide bursts of parallel memory accesses
to the off-chip interface, which results in greater sensitivity
to bandwidth and diminished sensitivity to memory access
latency. These memory behaviors are the primary factor in their
performance differences.

REFERENCES
[1] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and

O. Mutlu, “Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems,” in 39th International Sym-
posium on Computer Architecture (ISCA), June 2012, pp. 416–427.

[2] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in In-
ternational Symposium on Performance Analysis of Systems and Software
(ISPASS), April 2009, pp. 163–174.

[3] L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory System
Characterization of Commercial Workloads,” in International Symposium
on Computer Architecture (ISCA), June 1998, pp. 3–14.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” Princeton Uni-
versity, Tech. Rep. TR-811-08, January 2008.

[5] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. Hill, and D. Wood, “The Gem5 Simulator,”
SIGARCH Computer Architecture News, pp. 1–7, August 2011.

[6] M. Burtscher, R. Nasre, and K. Pingali, “A Quantitative Study of Irregular
Programs on GPUs,” in IEEE International Symposium on Workload
Characterization (IISWC), November 2012, pp. 141–151.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Comput-
ing,” in IEEE International Symposium on Workload Characterization
(IISWC), October 2009, pp. 44–54.

[8] J. Clemons, H. Zhu, S. Savarese, and T. Austin, “MEVBench: A
Mobile Computer Vision Benchmarking Suite,” in IEEE International
Symposium on Workload Characterization (IISWC), November 2011, pp.
91–102.

[9] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu,
and Y. N. Patt, “Parallel Application Memory Scheduling,” in 44th
IEEE/ACM International Symposium on Microarchitecture (MICRO),
December 2011, pp. 362–373.

[10] C. Gregg and K. Hazelwood, “Where is the Data? Why You Cannot
Debate CPU vs. GPU Performance Without the Answer,” in IEEE Inter-

national Symposium on Performance Analysis of Systems and Software
(ISPASS), April 2011, pp. 134–144.

[11] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,
“MiBench: A Free, Commercially Representative Embedded Benchmark
Suite,” in IEEE International Workshop on Workload Characterization
(WWC), December 2001, pp. 3–14.

[12] A. Gutierrez, R. Dreslinski, T. Wenisch, T. Mudge, A. Saidi, C. Emmons,
and N. Paver, “Full-System Analysis and Characterization of Interactive
Smartphone Applications,” in IEEE International Symposium on Work-
load Characterization (IISWC), November 2011, pp. 81–90.

[13] “HSA Foundation Presented Deeper Detail on HSA and HSAIL,”
HotChips, August 2013.

[14] “OpenCL Programmability on 4th Generation Intel Core
Processors,” http://software.intel.com/sites/billboard/article/
opencl-programmability-4th-generation-intel-core-processors?wapkw=
gpu%20opencl, June 2013.

[15] M. K. Jeong, C. Sudanthi, N. Paver, and M. Erez, “A QoS-Aware Memory
Controller for Dynamically Balancing GPU and CPU Bandwidth Use in
an MPSoC,” in 2012 Design Automation Conference (DAC), June 2012.

[16] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and Improving
the Use of Demand-Fetched Caches in GPUs,” in 26th ACM International
Conference on Supercomputing (ICS), June 2012, pp. 15–24.

[17] S. Karlsson and M. Brorsson, “A Comparative Characterization of
Communication Patterns in Applications Using MPI and Shared Memory
on an IBM SP2,” in Network-Based Parallel Computing Communication,
Architecture, and Applications, ser. Lecture Notes in Computer Science,
D. Panda and C. Stunkel, Eds. Springer Berlin Heidelberg, 1998, vol.
1362, pp. 189–201.

[18] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread
Cluster Memory Scheduling: Exploiting Differences in Memory Access
Behavior,” in 43rd IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2010, pp. 65–76.

[19] G. Krawezik, “Performance Comparison of MPI and Three OpenMP
Programming Styles on Shared Memory Multiprocessors,” in 15th ACM
Symposium on Parallel Algorithms and Architectures (SPAA), June 2003,
pp. 118–127.

[20] V. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and
P. Dubey, “Debunking the 100X GPU vs. CPU Myth: An Evaluation
of Throughput Computing on CPU and GPU,” in 37th International
Symposium on Computer Architecture (ISCA), June 2010, pp. 451–460.

[21] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in International
Symposium on Microarchitecture (MICRO), December 2009, pp. 469–
480.

[22] G. H. Loh, “3D-Stacked Memory Architectures for Multi-core Proces-
sors,” in 35th International Symposium on Computer Architecture (ISCA),
June 2008, pp. 453–464.

[23] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
Up: Increasing Utilization in Modern Warehouse Scale Computers Via
Sensible Co-locations,” in 44th IEEE/ACM International Symposium on
Microarchitecture (MICRO), June 2011, pp. 248–259.

[24] P. Micikevicius, “GPU Performance Analysis and Optimization,” in GPU
Technology Conference, May 2012.

[25] N. Muralimanohar and R. Balasubramonian, “CACTI 6.0: A Tool to
Understand Large Caches,” University of Utah and Hewlett Packard
Laboratories, Tech. Rep. HPL-2009-85, 2009.

[26] “NVIDIA Brings Kepler, Worlds Most Advanced Graphics Archi-
tecture, to Mobile Devices,” http://blogs.nvidia.com/blog/2013/07/24/
kepler-to-mobile/, July 2013.

[27] J. Power, J. Hestness, M. Orr, M. Hill, and D. Wood, “gem5-gpu: A
Heterogeneous CPU-GPU Simulator,” Computer Architecture Letters,
vol. 13, no. 1, January 2014.

[28] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory Access Scheduling,” in International Symposium on Computer
Architecture (ISCA), June 2000, pp. 128–138.

[29] M. Strengert, M. Kraus, and T. Ertl, “Pyramid Methods in GPU-based
Image Processing,” in Vision, Modeling, and Visualization. IOS Press,
November 2006, p. 169.

[30] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-
2 Programs: Characterization and Methodological Considerations,” in
International Symposium on Computer Architecture (ISCA), June 1995,
pp. 24–36.


