
Characterizing and Subsetting Big Data Workloads

Zhen Jia1,2, Jianfeng Zhan 1*, Lei Wang1, Rui Han1, Sally A. McKee3, Qiang Yang1, Chunjie Luo1, and Jingwei Li1

1State Key Laboratory Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences, China

3Chalmers University of Technology, Sweden
Email: {jiazhen, zhanjianfeng, wanglei 2011, hanrui}@ict.ac.cn, mckee@chalmers.se,

{yangqiang,luochunjie,lijingwei}@ict.ac.cn

Abstract—Big data benchmark suites must include a diversity
of data and workloads to be useful in fairly evaluating big data
systems and architectures. However, using truly comprehensive
benchmarks poses great challenges for the architecture commu-
nity. First, we need to thoroughly understand the behaviors of a
variety of workloads. Second, our usual simulation-based research
methods become prohibitively expensive for big data. As big data
is an emerging field, more and more software stacks are being
proposed to facilitate the development of big data applications,
which aggravates these challenges.

In this paper, we first use Principle Component Analysis
(PCA) to identify the most important characteristics from 45
metrics to characterize big data workloads from BigDataBench,
a comprehensive big data benchmark suite. Second, we apply
a clustering technique to the principle components obtained
from the PCA to investigate the similarity among big data
workloads, and we verify the importance of including different
software stacks for big data benchmarking. Third, we select
seven representative big data workloads by removing redundant
ones and release the BigDataBench simulation version, which
is publicly available from http://prof.ict.ac.cn/BigDataBench/
simulatorversion/.

I. INTRODUCTION

Today, huge amounts of data are being collected in many
areas, creating new opportunities to understand phenomena in
meteorology, health, finance, and many other sectors. Every
two days we create as much information as we did from the
dawn of civilization up until 2003, and the pace is increas-
ing [1]. Reports from IDC forecast that from 2005 to 2020,
the digital universe will grow by a factor of 300, from 130
exabytes to 40,000 exabytes (i.e., 40 trillion gigabytes) [2].
Turning such big data into valuable information requires the
support of big data systems, and the design of such systems
is a growing research topic in both academia and industry. In
this context, the pressure to develop innovative theories and
technologies to improve the performance, energy-efficiency,
and cost-effectiveness of big systems rises.

The cornerstone of such research are big data benchmarks
that facilitate accurate evaluation of big data systems and a
better understanding of the behaviors of big data workloads
(applications). Fair evaluation requires diversity in both the
data sets and the workloads used in benchmarking big data
systems and architectures. Generating such comprehensive and
representative benchmarks raises two great challenges for the

* The corresponding author is Jianfeng Zhan.

architecture community. First, the plethora of microarchitec-
tural metrics that can be tracked creates a potentially huge
amount of characterization data that can be hard to analyze.
Second, the simulation-based approaches that are widely used
in architecture research are very time-consuming: simulating
complete workloads amounts to an impossible mission. How
to address these challenges remains an open question.

More and more software stacks are being proposed to
facilitate the development of big data applications. Previous
work [3] [4] has shown that software stacks can cause big
data workloads to have different user-observed performance.
For instance, compared to Hadoop, Spark improves runtime
performance by factors of up to 100. Different software stacks
should thus be included in the benchmarks, but that aggravates
the above challenges by multiplying the number of workloads.

To date, the major efforts on big data benchmarking either
propose a comprehensive but a large amount of workloads or
only select a few workloads according to so-called popular-
ity [5]. And hence, achieving benchmark comprehensiveness
while enabling efficient experimentation is particularly acute in
big data systems research. Although many workload subsetting
approaches have been proposed [6], [7], [8], [9], these are
designed for workloads having significantly different charac-
teristics from big data applications.

In this paper, we propose a general approach to 1) identify
the most important metrics for characterizing big data work-
loads and 2) cull redundant workloads. To demonstrate the
effectiveness of the approach, we select two prevalent big data
processing software stacks (Hadoop [10] and Spark [3]), single
out 32 workloads from BigDataBench [11] to run on these
stacks, and evaluate them via 45 typical microarchitectural
metrics that represent basic characteristics of modern proces-
sors. After applying Principle Component Analysis (PCA) and
hierarchical clustering, we find the following:

Software stacks have significant impact on the microar-
chitectural behaviors of big data workloads. This finding is
based on the five observations in Section V-A. We observe that
workloads implementing different algorithms running on the
same software stack are more likely to have similar behaviors
than same-algorithm workloads running on different software
stacks (in the first clustering iteration, 80% of clusters consist
of workloads that are based on the same software stack). This
indicates that (in our experimental setting, at least) the impact
of software stacks is greater than that of algorithms. Hence,

ar
X

iv
:1

40
9.

07
92

v1
 [

cs
.P

F]
 1

 S
ep

 2
01

4

http://prof.ict.ac.cn/BigDataBench/simulatorversion/
http://prof.ict.ac.cn/BigDataBench/simulatorversion/

it is reasonable to say that different software stacks must be
included in performing representative and credible evaluations
of big data systems. Compared to traditional software stacks,
big data software stacks usually have more complex structures.
Such designs enable programmers to write less code to achieve
their intended goals. The upshot is that the ratio of system
software and middleware instructions executed compared to
user applications instructions tends to be large, which makes
their impact on system behavior large, as well.

We can identify the most important microarchitectural-
level metrics for studying the impact of different soft-
ware stacks. We apply PCA to 45 microarchitectural metrics,
finding that the L3 cache miss rate, instruction fetch stalls,
data TLB behaviors, and snoop responses are the most impor-
tant metrics in differentiating Hadoop-based and Spark-based
workloads.

We can successfully subset big data workloads. Based
on our derived principle components, we employ another
clustering technique to select seven representative workloads
(out of the original 32) by retaining those exhibiting unique
behaviors. We also use a statistical method (Bayesian Informa-
tion Criterion) to ensure that the clustering is a “good fit” to
our workloads. We deploy the representative workloads on a
full-system simulator and release the BigDataBench simulator
version, which is publicly available from http://prof.ict.ac.cn/
BigDataBench/simulatorversion/.

II. BACKGROUND

Measuring big data systems and architectures quantitatively
is the foundation of innovative big data research, and a good
benchmark suite can make this task much more efficient. When
constructing such benchmarks, making their behavior represen-
tative of real workloads is important to their success [12], [13].
We choose BigDataBench [11], a recent benchmark suite, for
our workload characterization for the following reasons:

1) It covers representative application domains. Big-
DataBench includes microbenchmarks and applica-
tions from search engines, social networks, and e-
commerce — i.e., the most important internet services
from typical big data application domains.

2) It covers representative workloads. As in the widely
used TPC-C benchmark[14], units of computation
that appear frequently in the benchmarked application
domain are used in benchmark construction.

3) It covers diverse software stacks [15]. In Big-
DataBench, the offline analytics workloads use
Hadoop and Spark, and the interactive analytics and
OLAP workloads use Shark, Hive, and etc.

4) It considers data volume and veracity. BigDataBench
develops Big Data Generator Suite (BDGS), an open
source tool to generate synthetic big data based on
six raw data sets [16].

III. METHODOLOGY

We use the following methodology to analyze the software
stack’s impact on big data workloads from a microarchitectural
perspective. First we select representative workloads in big
data fields. Then we identify a set of microarchitectural metrics

that can directly or indirectly reflect program behavior. Finally,
we use standard statistical methods in our characterizations.

A. Workload Selection

We select BigDataBench workloads that include structured,
semi-structured, and unstructured data. To minimize the impact
of non-workload factors, we ensure the following properties in
our comparisons.

Identical Algorithms. All applications we select have two
implementations of the same algorithm — a Hadoop-based
implementation and a Spark-based implementation. Table I
lists the algorithms we use. Recall that the offline analytics
workloads contain algorithms implemented directly on Hadoop
or Spark, and the interactive analytics workloads involve SQL-
like operations on Hive [17] or Shark [18]. Hive operations
are interpreted in Hadoop jobs, and Shark operations are
interpreted in Spark jobs. Table I lists the workloads we use
in this paper.

Identical Data Sets. We use the same data set to drive both
the Hadoop-based and Spark-based workloads, i.e., both data
formats and data sizes are identical. Table I lists these data sets
and formats. The input data size for each workload is deter-
mined by the Spark-based implementation, since Spark is an
in-memory computing engine. Both the input and intermediate
data should fit in memory to attain reasonable experiment time.
For each Spark-based workload, we test several input data sets,
ranging from several gigabytes to more than 100 gigabytes.

Same Infrastructure. Both workload implementations run
on the same cluster under the same software environment (i.e.,
with the same numbers of threads, the same OS version, and
the same JVM version). Section IV gives configuration details.

B. Microarchitectural Metric Selection

Good workload characterization incorporates a variety of
metrics to better gain a comprehensive understanding of the
target programs [8]. To analyze microarchitectural behaviors,
we choose a broad set of metrics of different types that cover
all major characters. We particularly focus on factors that may
affect data movement or calculation. For example, a cache miss
may delay data movement, and a branch misprediction flushes
the pipeline. Table II summarizes them, and we categorize
them below.

Instruction Mix. The instruction mix can reflect a work-
load’s logic and affect performance. Here we consider both
the instruction type and the execution mode (i.e., user mode
running in ring three and kernel mode running in ring zero).

Cache Behavior. The processor in our experiments has
private L1 and L2 caches per core, and all cores share an L3.
The L1 cache is split for instructions and data. The L2 and L3
are unified. We track the cache misses per kilo instructions and
cache hits per kilo instructions except L1 data cache, noting
that for the L1D miss penalties may be hidden by out-of-order
cores [19].

Translation Look-aside Buffer (TLB) Behavior. Our
processor has a two-level TLB. The first level has separate
instruction and data TLBs. The second level is shared. We
collect statistics at both levels.

http://prof.ict.ac.cn/BigDataBench/simulatorversion/
http://prof.ict.ac.cn/BigDataBench/simulatorversion/

TABLE I. REPRESENTATIVE DATA ANALYSIS WORKLOADS

Category Workload Problem
Size

Data Type Software Stack

Sort 80 GB unstructured
sequence file

WordCount 98 GB unstructured
text

Offline
Analytics

Grep 98 GB unstructured
text

Hadoop & Spark

Naive Bayes 84 GB semi-
structured
text

K-means 44 GB unstructured
text

PageRank 224

vertices
unstructured
graph

Projection 420 million
records

Filter 420 million
records

Order By 420 million
records

Interactive
Analytics

Cross product 100 million
records

Hive & Shark

Union 420 million
records

structured
table

Difference 100 million
records

(e-commerce
transaction
data set)

Aggregation 420 million
records

JoinQuery 100 million
records

AggQuery 420 million
records

SelectQuery 420 million
records

Branch Execution. We consider the miss prediction ratio
and the ratio of branch instructions executed to those retired.
These reflect how many branch instructions are predicted
wrong and how many are flushed.

Pipeline Behavior. Stalls can happen in any part of the
pipeline, but superscalar out-of-order processors prevent us
from precisely breaking down the execution time [5], [20],
[21]. Retirement-centric analysis also has difficulty account-
ing for how the CPU cycles are used because the pipeline
continues executing instructions even when retirement is
blocked [22]. Here we focus on counting cycles stalled due
to resource conflicts, e.g., reorder buffer full stalls that prevent
new instructions from entering the pipeline.

Offcore Requests and Snoop Responses. Offcore requests
tell us about individual core requests to the LLC (Last Level
Cache). Requests can be classified into data requests, code
requests, data write-back requests, and request for ownership
(RFO) requests. Snoop responses give us information on the
workings of the cache coherence protocol.

Parallelism. We consider Instruction Level Parallelism
(ILP) and Memory Level Parallelism (MLP). ILP reflects how
many instructions can be executed in one cycle (i.e., the IPC),
and MLP reflects how many outstanding cache requests are
being processed concurrently.

Operation Intensity. The ratio of computation to mem-
ory accesses reflects a workload’s computation pattern. For
instance, most big data workloads have a low ratio of floating
point operations to memory accesses, whereas HPC workloads
generally have high floating point operations to memory ac-
cesses ratios [11].

TABLE II. MICROARCHITECTURE LEVEL METRICS.

Category No. Metric Name Description
Instruction 1 LOAD load operations’ percentage
Mix 2 STORE store operations’ percentage

3 BRANCH branch operations’ percentage
4 INTEGER integer operations’ percentage
5 FP X87 floating point operations’ per-

centage
6 SSE FP SSE floating point operations’ per-

centage
7 KERNEL MODE the ratio of instruction running on

kernel mode
8 USER MODE the ratio of instruction running on

user mode
9 UOPS TO INS the ratio of micro operation to in-

struction
Cache
Behavior

10 L1I MISS L1 instruction cache misses per K
instructions

11 L1I HIT L1 instruction cache hits per K
instructions

12 L2 MISS L2 cache misses per K instructions
13 L2 HIT L2 cache hits per K instructions
14 L3 MISS L3 cache misses per K instructions
15 L3 HIT L3 cache hits per K instructions
16 LOAD HIT LFB loads miss the L1D and hit line fill

buffer per K instructions
17 LOAD HIT L2 loads hit L2 cache per K instruc-

tions
18 LOAD HIT SIBE loads hit sibling core’s L2 cache

per K instructions
19 LOAD HIT L3 loads hit unshared lines in L3 cache

per K instructions
20 LOAD LLC MISS loads miss the L3 cache per K

instructions
TLB Be-
havior

21 ITLB MISS misses in all levels of the instruc-
tion TLB per K instructions

22 ITLB CYCLE the ratio of instruction TLB miss
page walk cycles to total cycles

23 DTLB MISS misses in all levels of the data TLB
per K instructions

24 DTLB CYCLE data TLB miss page walk cycles to
total cycles

25 DATA HIT STLB DTLB first level misses that hit
in the second level TLB per K
instructions

Branch 26 BR MISS branch miss prediction ratio
Execution 27 BR EXE TO RE the ratio of executed branch in-

struction to retired branch execu-
tion

Pipeline
Behavior

28 FETCH STALL the ratio of instruction fetch stalled
cycle to total cycles

29 ILD STALL the ratio of Instruction Length De-
coder stalled cycle to total cycles

30 DECODER STALL the ratio of Decoder stalled cycles
to total cycles

31 RAT STALL the ratio of Register Allocation Ta-
ble stalled cycles to total cycles

32 RESOURCE STALL the ratio of resource related stalled
to total cycles, which including
load store buffer full stalls, Reser-
vation Station full stalls, ReOrder
buffer full stalls and etc

33 UOPS EXE CYCLE the ratio of micro operation exe-
cuted cycle to total cycles

34 UOPS STALL the ratio of no micro operation ex-
ecuted cycle to total cycles

Offcore 35 OFFCORE DATA percentage of offcore data request
Request 36 OFFCORE CODE percentage of offcore code request

37 OFFCORE RFO percentage of offcore Request For
Ownership

38 OFFCORE WB percentage of data write back to
uncore

Snoop
Response

39 SNOOP HIT HIT snoop responses per K instruc-
tions

40 SNOOP HITE HIT Exclusive snoop responses per
K instructions

41 SNOOP HITM HIT Modified snoop responses per
K instructions

Parallelism 42 ILP Instruction Level Parallelism
43 MLP Memory Level Parallelism

Operation
Intensity

44 INT TO MEM integer computation to memory ac-
cess ratio

45 FP TO MEM floating point computation to mem-
ory access ratio

C. Removing Correlated Data

Given the 32 workloads and 45 metrics for each workload,
it is difficult to analyze all the metrics to draw meaningful
conclusions. Note, however, that some metrics may be cor-
related. For instance, long latency cache misses may cause
pipeline stalls. Correlated data can skew similarity analysis
— many correlated metrics will overemphasize a particular
property’s importance. So we eliminate correlated data be-
fore analysis. Principle Component Analysis (PCA) [23] is
a common method for removing such correlated data [9],
[8], [6], [24]. We first normalize metric values to a Gaussian
distribution with mean equal to zero and standard deviation
equal to one (to isolate the effects of the varying ranges of
each dimension). Then we use Kaiser’s Criterion to choose
the number of principle components (PCs). That is, only the
top few PCs, which have eigenvalues greater than or equal
to one, are kept. With Kaiser’s Criterion, the resulting data is
ensured to be uncorrelated while capturing most of the original
information.

D. Measuring Similarity

We analyze the similarity among workloads implemented
with different software stacks. Hierarchical clustering is one
common way to perform such analysis, for it can quantita-
tively show the similarity among workloads via a dendrogram.
Hierarchical clustering connects objects to form groups based
on their distance. In the beginning, each element is in a cluster
of its own. At each successive step, the two clusters separated
by the shortest distance are combined. In the end all elements
end up in the same cluster.

E. Removing Redundancy

In order to generate a representative benchmark subset,
we should eliminate redundant workloads. We use K-means
clustering to group the workloads, and then we choose a rep-
resentative workload from each cluster. We use the Bayesian
Information Criterion (BIC) as a measure to evaluate the K-
Means efforts and choose the best K value.

IV. EXPERIMENTAL SETUP

We first describe the experimental environment for
our study, and then we explain how we obtain the
microarchitectural-level data.

A. Hardware Configurations

We run all workloads on a five-node cluster. A 1Gb ethernet
network connects one master and four slaves. Each node is
equipped with two Intel Xeon E5645 (Westmere) processors
and 32GB of memory. These processors include six physical
out-of-order cores with speculative pipelines. Table III lists the
hardware details. We disable hyperthreading and Turbo Boost
because when enabled these features makes it more complex
to measure and interpret performance data [25].

TABLE III. DETAILS OF THE HARDWARE CONFIGURATION.

CPU Type Intel R©Xeon E5645
Cores 6 cores@2.4G
Threads per Core 1 thread
#Sockets 2
ITLB 4-way set associative, 64 entries
DTLB 4-way set associative, 64 entries
L2 Shared TLB 4-way associative, 512 entries
L1 DCache 32KB, 8-way associative, 64 byte/line
L1 ICache 32KB, 4-way associative, 64 byte/line
L2 Cache 256 KB, 8-way associative, 64 byte/line
L3 Cache 12 MB, 16-way associative, 64 byte/line
Memory 32 GB , DDR3
Hyper-Threading Disabled
Turbo-Boost Disabled

B. Software Environments

We use the same system software configuration for both the
Hadoop-based and Spark-based workloads. Each cluster node
runs Linux CentOS 6.4 with Linux kernel version 3.11.10. The
JDK version is 1.7.0. The Hadoop and Spark versions are 1.0.2
and 0.8.1, respectively. The Hive and Shark versions are 0.9.0
and 0.8.0, respectively.

C. Performance Data Collection

Most modern processors provide hardware performance
monitoring counters (PMCs) that track microarchitectural met-
rics. In the Xeon processor, MSRs (Model Specific Registers)
can be set to specify which hardware events to count, and an
accompanying set of registers store those events’ results. We
use Perf — a profiling tool for Linux 2.6+ based systems [26]
— to specify the event numbers and corresponding unit masks
for the MSRs. We collect more than 50 events (some metrics
require multiple events) whose numbers and corresponding
unit masks can be found in the Intel Developer’s Manual [27].
Although Perf can multiplex the PMCs, we run each workload
multiple times to obtain more accurate values for the metrics
listed in Table II. We perform a ramp-up period for each
application, and then collect performance data throughout the
lifetime of each workload. We collect the data for all four slave
nodes and take the mean.

V. SOFTWARE STACK IMPACT

We employ PCA and hierarchical clustering to analyze
the impact of the software stack on the microarchitectural
performance characteristics exhibited by each workload. We
first give an overall similarity/dissimilarity analysis based on
hierarchical clustering. We then project our workloads onto a
principle component (PC) space to investigate workload differ-
ences along different PC dimensions. Finally, we demonstrate
that a few microarchitectural-level metrics suffice to effectively
distinguish Hadoop-based and Spark-based workloads, and we
use these metrics to compare the differences.

A. (Dis)similarity Analysis

Figure 1 shows the dendrogram for all big data workloads
characterized in this paper. We create the dendrogram by
applying PCA and hierarchical clustering to the metrics in
Table II. The dendrogram illustrates how each cluster is
composed by drawing a U-shaped link between a non-singleton
cluster and its children. The length of the top of the U-link is

0 2 4 6 8 10

Linkage Distance

S-Kmeans

S-PageRank
S-Grep

H-WordCount

H-Bayes
H-Projection
S-Projection

H-Kmeans
S-Sort

S-Bayes
H-Sort

S-Difference

H-OrderBy
H-Difference

S-OrderBy
S-WordCount

S-Aggregation
H-AggQuery

H-Filter
H-Union

H-Aggregation
H-SelectQuery

H-CrossProduct

H-JoinQuery
H-Grep

H-PageRank
S-SelectQuery

S-Filter
S-Union

S-AggQuery
S-CrossProduct

S-JoinQuery

4.93

4.82

2.18

3.19

2.37

3.91

0.51

1.63

2.29

2.37

0.856

1.61

2.6

2.72

1.79

3.13

3.67

4

4.4

4.66

4.72

4.74

1.69

5.17

5.36

5.77

5.82

5.82

6.25

8.16

11.2

Fig. 1. Similarity of Hadoop (H) and Spark (S) workloads.

the distance between its children. The shorter the distance, the
more similar the children. Like Phansalkar et al. [9], we use
Euclidean distance. Further, we use the single linkage distance
to create the dendrogram. That is to say the linkage distance
between two clusters is made by a single element pair, namely
those two elements (one in each cluster) that are closest to each
other. In the figure, the x-axis shows the linkage distances
among workloads. In our study, we choose eight PCs that
have eigenvalues greater than one. These PCs retain 91.12%
variance.

We make the following observations from the figure.

Observation 1: At the first clustering iteration, most (80%)
of clusters consist of workloads that are based on the same
software stack. The only exceptions are S-Bayes/H-Sort and
S-Projection/H-Projection with linkage distances of 2.18 and
4.82, respectively. These linkage distances exceed most of
the distances between the children in the clusters formed in
the first iteration. The shortest linkage distance between the
workloads using different software stacks to implement the
same algorithm is 3.19 for H-Sort and S-Sort.

Observation 2: Two workloads implementing the same
algorithm on different software stacks do not get clustered
together in the first clustering iteration — the only excep-
tion is Projection. However, the linkage distance between H-

Projection and S-Projection is 4.82, which is large enough
to indicate that their microarchitectural behaviors are quite
different.

Observation 3: After the first iteration, workloads based
on the same software stack are easier to cluster together, e.g.,
S-Union, S-Filter, and S-SelectQuery workloads get clustered
together after just two iterations. Likewise, H-SelectQuery, H-
Aggregation, H-Union, and H-Filter get clustered after two
iterations.

In the dendrogram, when workloads are clustered quickly
with small linkage distances, it indicates that the workloads
are similar. Workloads based on the same software stack
are easier to cluster than programs that implement the same
algorithm but use different software stacks because the latter
have dramatically different behaviors. We thus conclude that
the software stacks have significant impacts on workload be-
haviors — even greater than that of the benchmark algorithms.
This phenomenon occurs because the implementations of the
software stacks allow programmers to develop applications
without considering system issues. For instance, a Hadoop-
based WordCount application has only 50-some lines of user
application code in both the Map and Reduce functions. In
contrast, Hadoop’s source code can be dozens or even hundreds
of megabytes. For example in Hadoop version 1.0.2, the size of

the main source code (i.e. src folder size) is 67 MB. The upshot
is that the ratio of system software and middleware instructions
executed compared to user application instructions tends to be
large, which makes their impact on system behavior large, as
well.

Observation 4: H-Union/H-Filter, S-Union/S-Filter, H-
JoinQuery/H-CrossProduct, and S-JoinQuery/S-CrossProduct,
are grouped, respectively, in the first clustering iteration. On
an algorithmic level, join query and cross product are similar.
Both operate records from two tables at once. Union and
filter also perform similar operations in the BigDataBench
implementations. From this we conclude that workloads using
the same software stack to implement similar algorithms have
similar behaviors.

Observation 5: Most of the Hadoop-based workloads
exhibit small linkage distances, and thus they are easier to
cluster. There are nine Hadoop workloads (H-Pagernak to H-
AggQuery in Figure 1) clustered within linkage distances of
2.72. In contrast, only three Spark-based workloads (S-Union
to S-SelectQuery in Figure 1) are clustered within a similar
distance (3.13). H-Union and H-Filter are clustered with link-
age distance of 0.51, and H-JoinQuery and H-CrossProduct
are clustered with distance of 0.856. In contrast, S-Union and
S-Filter get grouped with linkage distance of 1.79, and S-
JoinQuery and S-CrossProduct are clustered with distance of
1.69.

The above observation shows that Hadoop-based workloads
have more similarities with each other than their Spark-based
counterparts. We thus conclude that Hadoop has a larger
impact on microarchitectural behaviors than Spark. Its software
stack dominates application behavior, minimizing the impact
of potentially diverse behaviors introduced by user application
code. Spark is simpler than Hadoop with respect to number
of lines of code, and thus it dominates system behavior less.
For instance, in contrast to Hadoop’s source code size, Spark’s
whole folder is only 11 MB for version 0.81.

The bottom line is that software stacks play an important
role in big data systems, and that impact may increase over
time. As more and more mechanisms and services are added,
software stacks become more and more complicated. Taking
the tar package as an example, its size in Hadoop version
1.0.2 was 32.6MB, whereas in version 2.4, its size grows to
133MB. The impact of software stacks to application behaviors
may become greater and greater. Thus to choose representative
workloads to benchmark big data systems, the software stack
should be considered separately from the algorithms in user
application code, and different software stacks should be
included for thorough workload characterization.

B. Principle Component Space Analysis

In this section, we project the workloads into principle
component spaces. We only present the first four PCs cov-
ering 71.45% of the total variance due to space limitations.
Figure 2 shows the scatter plot of the first and second principle
components, PC1 and PC2. Figure 3 shows this for PC3 and
PC4. These visualizations only include a subset of available
information based on the first four PCs. Workloads appearing
close in these figures may in fact be farther away when all PCs

8 6 4 2 0 2 4 6 8 10

PC1
8

6

4

2

0

2

4

6

P
C

2

H-Grep

H-Difference

H-OrderBy

S-Difference

S-PageRank

S-OrderBy

S-Union

S-WordCount S-Sort

S-AggQuery

S-Aggregation

S-Bayes

H-Projection

S-Projection

S-JoinQuery

S-SelectQuery

S-Grep

S-Filter

H-PageRank

H-Sort

H-WordCount

H-Bayes
H-Aggregation

H-CrossProduct

H-Filter

H-JoinQuery

H-Union

H-SelectQuery

H-AggQuery

S-CrossProduct

S-Kmeans

H-Kmeans Hadoop-based
Spark-based

Fig. 2. Scatter plot of workloads using the first and second principle
components

6 4 2 0 2 4 6

PC3
5

4

3

2

1

0

1

2

3

4

P
C

4

H-Aggregation

H-CrossProduct

H-Filter

H-Projection

H-JoinQuery

H-Union

H-SelectQuery

H-OrderBy

H-Difference

H-AggQuery

S-Aggregation

S-CrossProduct

S-Filter

S-Projection

S-JoinQuery

S-Union

S-SelectQuery

S-AggQuery S-OrderBy

S-Difference

S-Bayes

S-WordCount

S-Sort
S-PageRank

S-Grep

H-Grep

H-PageRank

H-WordCount
H-Sort

H-Bayes

H-Kmeans

S-Kmeans

Hadoop-based
Spark-based

Fig. 3. Scatter plot of workloads using the third and fourth principle
components

are considered. Even in this subset, however, workloads that
appear far apart indeed exhibit significantly different behaviors.

The factor loadings can show the map from the original
microarchitecture level metrics to the principle components.
Figure 4 shows the factor loadings of the first four PCs. This
means that the PC1 is computed as PC1 = −0.18 × ILP +
0.23×L2 MISS + 0.102×L2 HIT + PC1 is positively
dominated by L2 MISS, L3 HIT, LOAD HIT L3, RAT STALL,
KERNEL MODE, UOPS TO INS, OFFCORE CODE, and
INT TO MEM. And PC1 is also negatively dominated by
RESOURCE STALL, USER MODE, OFFCORE WB, and
OFFCORE RFO. That is to say, when compared with other
workloads, the workloads in Figure 2 with a high value along
PC1, have more L2 MISS, L3 HIT, LOAD HIT L3, RAT
STALL, KERNEL MODE instructions, OFFCORE CODE
requests, higher UOPS TO INS ratio and INT TO MEM
ratio. At the same time they have less RESOURCE STALL,
USER MODE instructions, OFFCORE WB, and OFFCORE

IL
P

L2
 M

IS
S

L2
 H

it
L3

 M
IS

S
L3

 H
IT

D
T
LB

 M
IS

S
D

T
LB

 C
Y
C

LE
D

A
T
A

 H
IT

 S
T
LB

IT
LB

 M
IS

S
IT

LB
 C

Y
C

LE
L1

I
M

IS
S

L1
I
H

IT
LO

A
D

 H
IT

 L
FB

LO
A

D
 H

IT
 L

2
LO

A
D

 H
IT

 L
3

LO
A

D
 H

IT
 S

IB
E

LO
A

D
 L

LC
 M

IS
S

M
LP

D
E
C

O
D

E
 S

T
A

LL
R

A
T
 S

T
A

LL
FE

T
C

H
 S

T
A

LL
IL

D
 S

T
A

LL
U

O
P
S
 E

X
E
 C

Y
C

LE
U

O
P
S
 S

T
A

LL
R

E
S
O

U
C

R
E
 S

T
A

LL
U

S
E
R

 M
O

D
E

K
E
R

N
E
L

M
O

D
E

U
O

P
S
 T

O
 I
N

S
S
S
E
 F

P FP
LO

A
D

S
T
O

R
E

B
R

A
N

C
H

IN
T
E
G

E
R

B
R

 M
IS

S
S

B
R

 E
X

E
 T

O
 R

E
O

FF
C

O
R

E
 C

O
D

E
O

FF
C

O
R

E
 W

B
S
N

O
O

P
 H

IT
S
N

O
O

P
 H

IT
E

S
N

O
O

P
 H

IT
M

O
FF

C
O

R
E
 D

A
T
A

O
FF

C
O

R
E
 R

FO
IN

T
 T

O
 M

E
M

FP
 T

O
 M

E
M

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

PC1
PC2
PC3
PC4

Fig. 4. Factor loadings for all workloads

RFO requests. Similarly, Figure 4 also shows the factors that
positively or negatively dominate the other three PCs. The
factor loadings can also help us to understand the behavior
differences among workloads. Such as H-Kmeans has highest
value along PC2 (Figure 2) for it has more STORE instruc-
tions, FETCH STALL, and DATA HIT STLB. S-Kmeans, S-
WordCount, and S-Grep discriminate themselves along PC4
(Figure 3) due to their low L2 HIT rates, STLB HIT rates,
L1 instruction hit rates, percentages of LOAD instructions,
and branch miss rates and their high ITLB miss rates and
more ITLB walk cycles. Factor loadings also explain the other
isolated points in a similar way, but we omit them for brevity.

The Spark-based workloads are spread widely along the
x-axis (PC1) in Figure 2. In contrast, the Hadoop-based
workloads are grouped in the middle of the chart. The Spark-
based workloads thus exhibit more diversity than their Hadoop-
based counterparts with respect to PC1. Figure 3 displays
similar phenomena. The Spark-based workloads nearly cover
all of the space for PC3 and PC4, whereas the Hadoop-based
workloads are again grouped in the center. There are some
isolated points in the figures, most of which represent Spark-
based workloads exhibiting behaviors that differ from the other
workloads. These phenomena verify our finding in Section V-A
that the Spark-based workloads show more diversity than the

Hadoop-based workloads with respect to microarchitectural
behaviors because the Hadoop software stack minimizes the
impact of the user application code.

C. Differentiating Hadoop and Spark

On the y-axis (PC2) in Figure 2 we find that most of the
Hadoop-based workloads are located towards the top, whereas
most of Spark-based workloads are located in the middle or
bottom parts of the chart. Spark-based workloads and Hadoop-
based workloads are mixed along other PC dimensions. So we
conclude that PC2 is the main component that differentiates
the Hadoop-based workloads from the Spark-based workloads.
We therefore investigate which microarchitectural-level metrics
dominate PC2 values. Figure 4 shows the weights of each
microarchitecture metric for PC1-PC4. The metrics that neg-
atively dominate PC2’s values are L3 MISS, DTLB MISS,
DECODE STALL, ILD STALL, UOPS STALL, RESOURCE
STALL, BRANCH, SNOOP HIT, and SNOOP HITE. The
metrics that positively dominate its values are ILP, DAT HIT
STLB, FETCH STALL, UOPS EXE CYCLE, STORE, and
OFFCORE DATA. We therefore compare the workloads using
those metrics.

Figure 5 shows the main metrics that dominate PC2’s
values. We calculate the mean for each metric for each kind

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ra
tio

Hadoop

Spark

Negative Positive

Fig. 5. Metrics causing Hadoop and Spark to behave differently

of big workload and present normalized Hadoop-based values
using the Spark-based workloads as the baseline. In the figure,
the metrics that have negative impact have lower values for the
Hadoop-based workloads, whereas those with positive impact
have higher values. Most of the Hadoop-based workloads have
higher PC2 values than their Spark-based counterparts.

We make the following observations from Figure 5.

Observation 6: The Spark-based workloads have a large
amount of L3 cache misses per kilo instructions, about twice
those of the Hadoop-based workloads.

Observation 7: The Hadoop-based workloads have more
data shared TLB hits and fewer DTLB misses than the Spark-
based workloads.

Observation 8: The Hadoop-based workloads have more
instruction fetch stalls, whereas the Spark-based workloads
have more resource related stalls.

We can divide the processor architecture into two parts:
the in-order frontend, which fetches, decodes, and issues
instructions, and the out-of-order backend, which executes
instructions and writes data back to the register file. The
instruction fetch stalls belong to the frontend and the resource
related stalls belong to the backend. The former are mainly
caused by L1 instruction cache misses. Figure 5 shows that
the L1 I-cache misses per kilo instructions (MPKI) are about
30% higher for the Hadoop-based workloads on average.

Most resource stalls (e.g., load/store buffer full and reser-
vation station full) are likely caused by long latency L3 data
cache or data TLB misses. Note that in our processor, an
STLB (second level Shared TLB) hit implies an L1 TLB
miss. In Figure 5, the DTLB miss metric includes both levels.
The Hadoop-based workloads have more data STLB hits,
which means that the data STLB is more efficient for those
workloads. We confirm that by calculating the data STLB
hit rates. The data STLB hit rate is 61.48%, on average, for
Hadoop-based workloads, whereas the rate for their Spark-
based counterparts is 50.80%, on average.

In general, the large number of L3 cache and data TLB
misses cause more backend stalls for the Spark-based work-
loads, and the high instruction cache misses cause more fron-
tend stalls for the Hadoop-based workloads. We conclude that
the Hadoop-based workloads have larger instruction footprints

than their Spark-based counterparts. These phenomena could
be because larger application binaries (including the software
stacks) create more I-cache misses [28], [5], especially in the
case of Hadoop. However the Spark-based workloads have
larger data footprints than Hadoop-based workloads. This may
be caused by the different operation modes on intermediate
data between Hadoop and Spark software stacks.

Observation 9: The Spark-based workloads have more
SNOOP HIT and SNOOP HITE responses than Hadoop-based
workloads.

Both responses represent coherence traffic among different
cores, so they reflect data sharing patterns. The Spark-based
workloads also have more SNOOP HITM responses. These
metrics show that Spark-based workloads have more data
sharing among different cores.

As the number of cores increases, the traffic caused by
the cache coherence protocol will increase. Programmers and
architects should thus pay much attention to data sharing (par-
ticularly false sharing) in Spark-based workloads. This implies
that different software stacks will require different optimization
strategies or lead to different system design decisions: there is
no single solution.

VI. SUBSETTING

Computer architects often use benchmark suite subsets
that capture the most important system behaviors [7]. This
approach reduces simulation and evaluation time, and thus
shortens the research period. A well selected subset can
reduce workload redundancy while keeping representativity.
Here we use the data obtained from Section V to eliminate
redundant workloads and generate a representative subset of
BigDataBench. Note that both the previous section’s similarity
analyses and this section’s subsetting are all from a computer
architecture point of view. Results may differ if subsetting is
performed from a different point of view [29].

Statistical approaches are frequently used to facilitate
workload subsetting. In this section we use PCA and clus-
tering analysis to remove the redundant workloads similarly
to previous efforts [6], [9], [30].

A. Clustering

We use clustering on the eight principle components
obtained from the PCA algorithm to group workloads into
similarly behaving application clusters (the eight PCs are those
in Section V). In particular, we use K-Means clustering for a
number of K values. Inspired by previous research [30], [31],
we use the Bayesian Information Criterion (BIC) to choose the
proper K value. The BIC is a measure of the “goodness of fit”
of a clustering for a data set. The larger the BIC scores, the
higher the probability that the clustering is a good fit to the
data. Here we determine the K value that yields the highest
BIC score. We use the formulation from Pelleg et al. [32]
shown in Equation 1 to calculate the BIC.

BIC(D,K) = l(D|K)− pj
2
log(R) (1)

Where D is the original data set to be clustered. In this pa-
per, D is 32×8 matrix which indicates 32 workloads and each

TABLE IV. THE RESULT OF K-MEANS CLUSTERING ALGORITHM

Cluster Workloads Number
1 H-PageRank, H-Grep, H-JoinQuery, H-Sort, H-

CrossProduct, S-Bayes, S-Grep, S-Sort
8

2 H-AggQuery, S-Filter, S-Union, S-SelectQuery, S-OrderBy,
H-Kmeans

6

3 S-Aggregation, S-WordCount, S-Kmeans, H-Wordcount, H-
Bayes

5

4 H-OrderBy, H-Difference, S-Difference, S-PageRank 4
5 H-Aggregation, H-Filter, H-Union, H-SelectQuery 4
6 S-CrossProduct, S-JoinQuery, S-AggQuery 3
7 H-Projection, S-Projection 2

workload is represented by 8 PCs (Principle Components).
l(D|K) is the likelihood. R is the number of workloads to
be clustered. pj is the sum of K−1 class probabilities, which
is K + dK. d is the dimension of each workloads, which is 8
in this paper for we choose 8 PCs. To compute l(D|K), we
use Equation 2.

l(D|K) =
∑

K
i=1(−

Ri

2
log(2π)− Ri · d

2
log(σ2)

−Ri −K
2

+RilogRi −RilogR)

(2)

Where Ri is the number of points in the ith cluster, and
σ2 is the average variance of the Euclidean distance from each
point to its cluster center, which is calculate by Equation 3.

σ2 =
1

R−K
∑
i

(xi − µ(i))2 (3)

Here xi is the data point assigned to cluster i, and µ(i)
represents the center coordinates of cluster i.

We ultimately cluster the 32 workloads into seven groups
which are listed in Table IV. Please note that though the
result of K-Means is similar to that of hierarchical clustering
in Figure 1, the K-Means clustering can not measure the
similarity among different workloads quantitatively like the
hierarchical clustering. For example, the hierarchical clustering
measures that H-Projection and S-Projection are clustered
together with a linkage distance of 4.82, while the K-Means
can only indicate that they are clustered together qualitatively.

B. Selecting Representative Workloads

The representative for each cluster can be chosen by
two approaches, as mentioned by Eeckhout et al. [6]. The
first is to choose the workload that is as close as possible
to the center of the cluster it belongs to. The other is to
select an extreme workload situated at the “boundary” of each
cluster. We experiment with both approaches. Table V lists the
representative workloads selected from each cluster by both
approaches.

The third column of Table V gives the maximal linkage dis-
tance among representative workloads for each approach. We
find that workloads chosen by the first approach do not cover
workloads with long linkage distances, e.g., S-PageRank. The
maximal distance among representative workloads selected
by the first approach is smaller than the maximal distance
among those selected by the second approach. This means that

TABLE V. REPRESENTATIVE WORKLOADS CHOSEN BY DIFFERENT
APPROACHES

Approach Representatives Workloads 1 Maximal Linkage Distance
Nearest to H-PageRank (8)

Cluster Center S-Select (6)
S-Aggregation (5)
S-Difference (4) 5.82
H-Aggregation (4)
S-CrossProduct (3)
S-Projection (2)

Farthest from S-Grep (8)
Cluster Center H-Kmeans (6)

S-Kmeans (5)
S-PageRank (4) 11.20
H-SelectQuery (4)
S-AggQuery (3)
H-Projection (2)

1The number of workloads that the selected workloads can represent are given in
parentheses.

-4
-2
0
2
4

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

S-AggQuery

-6
-4
-2
0
2
4

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

S-Grep

-2

0

2

4
PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

H-SelectQuery

-10

-5

0

5
PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

S-Kmeans

-10

-5

0

5
PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

S-PageRank

-4
-2
0
2
4
6

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

H-Kmeans

-5

0

5

10
PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

H-Projection

Fig. 6. Kiviat diagrams of the representative workloads

workloads chosen by the first method are not as diverse as the
second approach does.

In Section V we perform hierarchical clustering to analyze
workload similarity. To use hierarchical clustering to select
seven representative workloads, we just draw a vertical line at a
point close to 5.6 for the vertical line is intersecting with seven
horizontal lines in Figure 1. There are four single workload
consisted clusters have intersections with the vertical line. This
reveals that we should choose those four workloads, namely,
S-PageRank, S-Kmeans, S-Grep, and H-Kmeans. These four
workloads are also chosen by the second approach, whereas
none of them is chosen by the first approach. We therefore
deem the second approach superior in selecting representative
workloads. And the rationale behind this method can be
that the behaviors of other workloads in the cluster can be
extracted from the behavior of the boundary one, e.g. through
interpolation [6].

Figure 6 shows Kiviat diagrams for the representative
workloads chosen by the second approach. The diagrams
illustrate that the representative workloads are diverse and
that different workloads are dominated by different principle
components.

C. BigDataBench Simulator Version

We deploy the representative applications on a full-system
simulator and release the simulator images as the Big-
DataBench simulator version. More information can be found
on the project web page http://prof.ict.ac.cn/BigDataBench/
simulatorversion/. For the big data workloads change fre-
quently [33], the state-of-art workloads and software stacks
will be integrated into and out-of-date ones will be removed
from BigDataBench. We will continue the subsetting work,
so the BigDataBench simulator version on the web site may
be different from the one mentioned in this paper when you
access the web site. It is our hope that this simulator version
will benefit architecture researchers by reducing the costs of
evaluating alternative technological approaches in big data
systems.

VII. RELATED WORK

Wang et al. [11] propose a comprehensive big data work-
loads suite, including different structured, un-structured, and
semi-structured data. However, a large number of benchmarks
pose great challenges, since our usual simulation-based re-
search methods become prohibitively expensive. Xi et al. [34]
characterize micro architecture level behaviors of the search
engine. Ferdman et al. [5] select seven scale-out workloads
according to popularity. They use hardware performance coun-
ters to analyze microarchitectural behaviors of those scale-
out workloads. They compare the scale-out workloads and
traditional benchmarks to identify the key contributors to the
microarchitecture inefficiency on modern processors. They
conclude that mismatches exist between the needs of scale-out
workloads and the capabilities of modern processors. Jia et
al. [28], [35] characterize microarchitectural characteristics of
data analysis workloads, also finding that they exhibit different
characteristics from traditional workloads. Luo et al. [36]
compare two clusters’ performance and power consumption
using hybrid big data workloads. Continuing the work in
[36], our group also releases the multi-tenancy version of
BigDataBench, which support the scenarios of multiple tenants
running heterogeneous applications in the same datacenter. The
multi-tenancy version of BigDataBench is publicly available
from [37], which is helpful for the research of datacenter
resource management and other interesting issues [38], [39].

Much work focuses on comparing the performance of
different data management systems. For OLTP or database
systems evaluation, TPC-C [40] is often used to evaluate
transaction-processing system performance in terms of trans-
actions per minute. Cooper et al. [41] define a core set of
benchmarks and report throughput and latency results for five
widely used data management systems. Pavlo et al. [42] com-
pare the MapReduce paradigm to traditional parallel DBMS
platforms. The Berkeley AMPLab Big Data Benchmark [4]
can also be used to compare MapReduce and parallel DBMS
platforms in terms of response time for a handful of relational
queries across different data sizes.

Many prior studies characterize benchmarks via statistical
data analysis techniques such as PCA and clustering. For
instance, Eeckhout et al. [6], [8], Phansalkar et al. [9], [43],
and Yi et al. [7] all employ statistical analyses to characterize
workloads, analyze redundancy, and perform subsetting for

general-purpose and embedded benchmark suites. Our work
here is inspired by their methods, although we focus on a
very different application domain.

VIII. CONCLUSION

Achieving benchmark comprehensiveness while enabling
efficient experimentation raises great challenges for the archi-
tecture community, in general, and the problem is particularly
acute in big data systems research. The diversity of big
data software stacks aggravates the challenge, especially for
simulation-based research. Here we use 45 microarchitectural
metrics to characterize 32 big data workloads on two differ-
ent software stacks. Our statistical analyses on the gathered
metrics reveal that software stacks have significant impacts
on workload behavior, and we find that in the context of our
experiments, this impact is greater than that of the algorithms
employed in user application code.

In order to facilitate simulation-based research, we create
a streamlined, representative subset of the benchmarks in the
BigDataBench suite. To do so, we remove the redundant work-
loads via K-Means clustering. In order to choose the best K
value for the K-Means algorithm, we use BIC as the statistical
test method to evaluate the K-Means efforts. After subsetting,
we are left with some representative workloads. Our hope is
that our subsetting approach and resulting benchmark suite
will enable more architecture researchers to study alternative
organizations and technologies for big data systems.

ACKNOWLEDGMENT

We are very grateful to anonymous reviewers. This work
is supported in part by the State Key Development Program
for Basic Research of China (Grant No.2011CB302502 and
2014CB340402) and the NSFC project (Grant No.61202075).

REFERENCES

[1] E. Schmidt, “Techonomy conference,” http://techcrunch.com/2010/08/
04/schmidt-data/, cited Apr. 2014.

[2] G. John and R. David, “THE DIGITAL UNIVERSE IN 2020: Big
Data, Bigger Digital Shadows, and Biggest Growth in the Far East,”
IDC Report, 2012.

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in USENIX
Conference on Networked Systems Design and Implementation, 2012.

[4] “Big Data Benchmark.” https://amplab.cs.berkeley.edu/benchmark/,
cited Apr. 2014.

[5] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: A study of emerging workloads on modern hardware,” Archi-
tectural Support for Programming Languages and Operating Systems,
Mar. 2012.

[6] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Quantifying
the impact of input data sets on program behavior and its applications,”
Journal of Instruction-Level Parallelism, vol. 5, no. 1, pp. 1–33, 2003.

[7] J. J. Yi, R. Sendag, L. Eeckhout, A. Joshi, D. J. Lilja, and L. K. John,
“Evaluating benchmark subsetting approaches,” in IEEE International
Symposium on Workload Characterization, Oct. 2006, pp. 93–104.

[8] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Workload
design: Selecting representative program-input pairs,” in International
Conference on Parallel Architectures and Compilation Techniques, Sep.
2002, pp. 83–94.

http://prof.ict.ac.cn/BigDataBench/simulatorversion/
http://prof.ict.ac.cn/BigDataBench/simulatorversion/
http://techcrunch.com/2010/08/04/schmidt-data/
http://techcrunch.com/2010/08/04/schmidt-data/
https://amplab.cs.berkeley.edu/benchmark/

[9] A. Phansalkar, A. Joshi, and L. John, “Analysis of redundancy and
application balance in the SPEC CPU2006 benchmark suite,” in Inter-
national Symposium on Computer Architecture, Jun. 2007.

[10] T. White, Hadoop: The Definitive Guide. O’Reilly Media, 2009.
[11] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,

Y. Shi, S. Zhang et al., “BigDataBench: A big data benchmark suite
from internet services,” in IEEE International Symposium on High
Performance Computer Architecture, 2014.

[12] J. Gray, Benchmark Handbook: for Database and Transaction Process-
ing Systems. Morgan Kaufmann Publishers Inc., 1992.

[13] C. Bienia, S. Kumar, J. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in International
Conference on Parallel Architectures and Compilation Techniques, Oct.
2008, pp. 72–81.

[14] Y. Chen, F. Raab, and R. Katz, “From tpc-c to big data benchmarks:
A functional workload model,” in Specifying Big Data Benchmarks.
Springer, 2014, pp. 28–43.

[15] P. Wang, D. Meng, J. Han, J. Zhan, B. Tu, X. Shi, and L. Wan,
“Transformer: A new paradigm for building data-parallel programming
models,” IEEE Micro, vol. 30, no. 4, pp. 55–64, 2010.

[16] Z. Ming, C. Luo, W. Gao, R. Han, Q. Yang, L. Wang, and J. Zhan,
“BDGS: A scalable big data generator suite in big data benchmarking,”
Lecture Note in Computer Sciences, Extended Version for the Fourth
Workshop on Big Data Benchmarking, 2014.

[17] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: A warehousing solution over a map-
reduce framework,” the VLDB Endowment, vol. 2, no. 2, pp. 1626–1629,
2009.

[18] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica, “Shark: Fast data analysis using coarse-grained distributed
memory,” in ACM SIGMOD International Conference on Management
of Data, May 2012, pp. 689–692.

[19] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in International Symposium on Computer Architecture, Jun.
2004, pp. 338–349.

[20] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker,
“Performance characterization of a Quad Pentium Pro SMP using OLTP
workloads,” in International Symposium on Computer Architecture, Jun.
1998.

[21] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A perfor-
mance counter architecture for computing accurate CPI components,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2006, pp. 175–184.

[22] D. Levinthal, “Cycle accounting analysis on Intel Core 2 processors,”
https://software.intel.com/sites/products/collateral/hpc/vtune/
cycle accounting analysis.pdf, cited Apr. 2014.

[23] I. Jolliffe, Principal Component Analysis. Wiley Online Library, 2005.
[24] C. Bienia and K. Li, “Fidelity and scaling of the PARSEC benchmark

inputs,” in IEEE International Symposium on Workload Characteriza-
tion, Dec. 2010, pp. 1–10.

[25] D. Levinthal, “Performance Analysis Guide for Intel Core i7 Processor
and Intel Xeon 5500 Processors,” Intel Performance Analysis Guide,
2009.

[26] “Performance counters for linux,” https://perf.wiki.kernel.org/index.php,
cited Apr. 2014.

[27] Programming Guide, “Intel R© 64 and IA-32 architectures software
developers manual,” 2011.

[28] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo., “Characterizing data
analysis workloads in data centers,” in IEEE International Symposium
on Workload Characterization, Sep. 2013.

[29] R. M. Yoo, H.-H. Lee, H. Lee, and K. Chow, “Hierarchical means:
Single number benchmarking with workload cluster analysis,” in IEEE
International Symposium on Workload Characterization, Sep. 2007, pp.
204–213.

[30] K. Hoste and L. Eeckhout, “Comparing benchmarks using key
microarchitecture-independent characteristics,” in IEEE International
Symposium on Workload Characterization, Oct. 2006, pp. 83–92.

[31] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automat-
ically characterizing large scale program behavior,” in International

Conference on Architectural Support for Programming Languages and
Operating Systems, Oct. 2002.

[32] D. Pelleg and A. W. Moore, “X-means: Extending K-means with effi-
cient estimation of the number of clusters.” in International Conference
on Machine Learning, Jun. 2000, pp. 727–734.

[33] L. Barroso and U. Hölzle, “The datacenter as a computer: An introduc-
tion to the design of warehouse-scale machines,” Synthesis Lectures on
Computer Architecture, vol. 4, no. 1, pp. 1–108, 2009.

[34] H. Xi, J. Zhan, Z. Jia, X. Hong, L. Wang, L. Zhang, N. Sun, and G. Lu,
“Characterization of real workloads of web search engines,” in IEEE
International Symposium on Workload Characterization, Nov. 2011, pp.
15–25.

[35] Z. Jia, R. Zhou, C. Zhu, L. Wang, W. Gao, Y. Shi, J. Zhan, and L. Zhang,
“The implications of diverse applications and scalable data sets in
benchmarking big data systems,” in Specifying Big Data Benchmarks.
Springer, 2014, pp. 44–59.

[36] C. Luo, J. Zhan, Z. Jia, L. Wang, G. Lu, L. Zhang, C. Xu, and N. Sun,
“Cloudrank-d: benchmarking and ranking cloud computing systems for
data processing applications,” Frontiers of Computer Science, vol. 6,
no. 4, pp. 347–362, 2012.

[37] “BigDataBench multi-tenancy version,” http://prof.ict.ac.cn/
BigDataBench/multi-tenancyversion/, cited Apr. 2014.

[38] L. Wang, J. Zhan, W. Shi, and Y. Liang, “In cloud, can scientific
communities benefit from the economies of scale?” IEEE Transactions
on Parallel and Distributed Systems, vol. 23, no. 2, pp. 296–303, 2012.

[39] J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang, and X. Zang,
“Cost-aware cooperative resource provisioning for heterogeneous work-
loads in data centers,” IEEE Transactions on Computers, vol. 62, no. 11,
pp. 2155–2168, 2013.

[40] “TPC-C,” http://www.tpc.org/tpcc, cited Apr. 2014.
[41] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with YCSB,” in ACM Symposium
on Cloud Computing, Jun. 2010, pp. 143–154.

[42] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in ACM SIGMOD International Conference on Management
of Data, Jun. 2009, pp. 165–178.

[43] A. Phansalkar, A. Joshi, and L. K. John, “Subsetting the SPEC
CPU2006 benchmark suite,” ACM SIGARCH Computer Architecture
News, vol. 35, no. 1, pp. 69–76, 2007.

http://prof.ict.ac.cn/BigDataBench/multi-tenancyversion/
http://prof.ict.ac.cn/BigDataBench/multi-tenancyversion/
http://www.tpc.org/tpcc

	I Introduction
	II Background
	III Methodology
	III-A Workload Selection
	III-B Microarchitectural Metric Selection
	III-C Removing Correlated Data
	III-D Measuring Similarity
	III-E Removing Redundancy

	IV Experimental Setup
	IV-A Hardware Configurations
	IV-B Software Environments
	IV-C Performance Data Collection

	V Software Stack Impact
	V-A (Dis)similarity Analysis
	V-B Principle Component Space Analysis
	V-C Differentiating Hadoop and Spark

	VI Subsetting
	VI-A Clustering
	VI-B Selecting Representative Workloads
	VI-C BigDataBench Simulator Version

	VII Related Work
	VIII Conclusion
	References

