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Abstract—Block traces are widely used for system studies, model
verifications, and design analyses in both industry and academia.
While such traces include detailed block access patterns, existing
trace-driven research unfortunately often fails to find true-
north due to a lack of runtime contexts such as user idle
periods and system delays, which are fundamentally linked to
the characteristics of target storage hardware. In this work, we
propose TraceTracker, a novel hardware/software co-evaluation
method that allows users to reuse a broad range of the existing
block traces by keeping most their execution contexts and user
scenarios while adjusting them with new system information.
Specifically, our TraceTracker’s software evaluation model can
infer CPU burst times and user idle periods from old storage
traces, whereas its hardware evaluation method remasters the
storage traces by interoperating the inferred time information,
and updates all inter-arrival times by making them aware of
the target storage system. We apply the proposed co-evaluation
model to 577 traces, which were collected by servers from
different institutions and locations a decade ago, and revive
the traces on a high-performance flash-based storage array.
The evaluation results reveal that the accuracy of the execution
contexts reconstructed by TraceTracker is on average 99% and
96% with regard to the frequency of idle operations and the total
idle periods, respectively.

I. INTRODUCTION

Tracing block accesses is a long-established method to extract
and tabulate various system parameters. A set of collected
I/O instructions, referred to as a block trace, can provide
valuable insights into design tradeoffs and can be used for the
implementations of various software subsystems and hardware
components in storage stacks. Therefore, many proposals
utilize a wide spectrum of block traces for system character-
izations, model verifications, and design analyses [10], [13l,
[18]. Nevertheless, it is non-trivial, and ever-challenging to
appropriately record block accesses on various large servers.
Thus, open-license block traces, collected on different institu-
tions and server locations, are extensively used in the computer
and system communities [27], [9], [16], [11].

While these traces include detailed block access information,
they can also lead to wrong results and conclusions for some
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simulation-based analyses and design studies. Specifically,
time information (i.e., inter-arrival time) on traces is intrin-
sically connected to the performance characteristics of the
target storage. Since modern storage systems are undergoing
significant technology shifts, different performance exhibited
by new hardware can result in different I/O timing and user
application behaviors. Furthermore, open-license block traces
are collected on old systems that employ many hard disk
drives (HDDs) designed a decade ago, which in turn can make
system analysis and evaluation based on such block traces
significantly different from the actual results that reflect the
real characteristics of modern systems.

Even though the limited timing information is a matter for
system research, it is extremely challenging to collect com-
prehensive information on a variety of servers and large-scale
computing systems by incorporating many important (but un-
predictable) user scenarios. For example, Microsoft’s exchange
server workloads [9]], which are one of most popular block
traces in system community, recorded detailed I/O patterns
across multiple production clusters, which were generated by
5,000 users. Even if one tries to retrace the workloads by
constructing such servers with modern storage like solid state
drives (SSDs), it is difficult to capture all system delays, idle
operations and non-deterministic timing behaviors generated
by thousands of users. To address these challenges, some re-
play methods statically accelerate the old traces to study peak
performance (23], [8], [30]. However, these overly-simplified
“Acceleration” methods are too imprecise to remaster the
time information of the workloads. There also exist dynamic
approaches that revise the block traces by issuing actual I/Os
to a real system [14]], [32]], [4]]. These “Revision” methods can
make the inter-arrival times of workloads more realistic, but
they can also lose other important runtime contexts such as
user idle periods and system delays.

To be precise, we evaluate the inter-arrival times generated by
an acceleration method (Acceleration [8]]) and a revision
method (Revision [4]), and the results are shown in Figure
[l in the form of a cumulative distribution function (CDF). In
this evaluation, we generated 70 million instructions whose I/O
patterns are same as a Microsoft’s network storage file server
[9], and are issued to an HDD-based system node (OLD) and
a SSD-based system node (NEW), respectively. Specifically,
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Fig. 1: Cumulative distribution function (CDF) for inter-arrival
times observed by different methods and systems.

14 million instructions are issued in an asynchronous fashion,
and we injected user idle operations that account for 20% of
the total instructions to make I/O access more realistic. The
same patterns are collected from both OLD and NEW for a fair
comparison. The traces on OLD are used for Acceleration
while Revision is implemented by reconstructing the work-
loads by replaying them on the SSD-based storage node. As
shown in the figure, the first half of the distribution curve of
Acceleration exhibits shorter inter-arrival times than that
of the actual target system (NEW) by 88% on average, while
losing 98% of user idle times, compared to the target system.
Even though the timing trend of Revision appears similar
to that of NEW, it still exhibits longer inter-arrival times at
the first half of CDF curve than the ones of NEW by 16%, on
average. More importantly, Revision fails to capture 18%
of user idle operations and 69% of total idle periods, observed
in the real system, NEW.

In this paper, we propose TraceTracker, a novel hard-
ware/software co-evaluation method that allows users to reuse
a broad range of the existing block traces by keeping most
of their execution contexts and user behaviors while adjusting
them to the new system information. Specifically, our proposed
TraceTracker’s software evaluation model can infer CPU burst
times and user idle periods from old-fashioned block traces,
whereas its hardware evaluation method remasters the block
traces by interoperating the inferred time information as well
as renews all inter-arrival times by being aware of the target
storage system. The proposed software and hardware co-
evaluation methods can be implemented by using publicly-
available benchmark tools such as FIO [2].

The main contributions can be summarized as follows:

e Reviving the timing information for diverse workloads. There
are several workloads that provide no specific information
or descriptions of the underlying storage trace collection
environment. In this work, we analyze a diverse set of large-
scale workloads and provide an inference model that estimates
the relative time costs of an I/O request service. This inference
model evaluates the realistic idle time that can capture the
system and user behaviors from the traditional block traces
by dividing the arrival time into a channel delay, a device
time and an idle time. It decomposes I/O subsystem latency
by analyzing the probability density functions and cumulative
distribution functions of the inter-arrival times as well as being
aware of the given request sizes and operation types.
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Fig. 2: Storage-level 1/O information.

e [nference automation and hardware/software co-evaluation.
Analyzing extensive out-of-date block traces is non-trivial, and
reconstructing the traces is not a one-shot process as the target
system will keep shifting its underlying storage technology. In
this work, we reify the proposed inference model by automat-
ing our graph classification method and steepness analysis,
each of which is used to examine massive trace data and
speculate the underlying I/O system latency. With the timing
information deduced by the proposed inference automation,
TraceTracker simulates the old system behaviors and emu-
lates 1/0 services on a real target system. TraceTracker also
performs post-processing to revive asynchronous/synchronous
information on new emulated traces. To verify the proposed
trace reconstruction method, we introduce several verification
metrics such as user idle detection and length. Even in the
case of no runtime information being available on the trace
collections, our TraceTracker can detect 99% of system delays
and idle periods appropriately and secure the corresponding
idle periods by 96% of a real execution, on average.

e Massive trace reconstruction and analysis. In this work, we
reconstructed 577 traced that cover a diverse set of /O work-
loads of large-scale computing systems, such as web services,
data mining and network file system severs, and performed
a comprehensive analysis of the reconstructed block traces.
While previous work [§]] claimed that 50% of write requests
have time intervals that are 2x longer than the effective device
operation latency, even after accelerating the block traces (of
the same workloads that we tested) by 100x, we observed
that the number of time intervals that have idle periods is less
than 39% of the total number of I/O requests. Note that the
majority of idle periods in all the block traces are found in 1
millisecond, which is also 10% shorter than the one reported
by the prior study [8].

II. BACKGROUND

In this section, we first explain the storage-level I/O informa-
tion from the perspective of a storage stack and block request
timing sequence. We then introduce the existing trace revision
methods and discuss their limitations.

A. Storage-Level I/0O Information

Storage stack. Figure 24 illustrates a typical storage stack
from an application to the underlying storage. Once the
application makes an I/O request, it is required to switch from

All the traces collected for this paper are available for download from
http://trace.camelab.org.



the user mode to the kernel mode and jump into an entry-
point of a virtual file system (VFS). VES then copies the
corresponding target data from a user buffer to a kernel buffer
(referred to as page cache [6]])) and forwards the request to
the underlying file system. During this time, the mode switch
consumes CPU cycles for handling system calls and storing
task states in addition to copying the buffers. The file system
then looks up the physical locations (indicated by request)
and submits this information to the block layer. Finally, the
block layer partitions the translated information, including
logical block address and request size (in terms of the number
of sectors) into multiple packets (or transactions). Note that,
before submitting the actual information to the underlying
storage, the multiple layers in the storage stack consume CPU
cycles for mode switches, data copies and address translations.
Note also all open-license block traces are also typically
collected underneath the block layer. In cases where there
are no system delays or application idleness, the user/kernel
specific CPU bursts can overlap with storage bursts, which
make the computational cycles that upper software modules
consume hide behind the inter-arrival times of multiple 1/O
requests at the block traces.

Block request timing. Figure shows the timing diagram
of block requests, which can be captured from underneath the
block layer. There are three requests, denoted by (i — 1)!",
it" and (i + 1)'". In this example, the (i — 1)" request is
issued asynchronously, whereas all other requests are issued
synchronously. Since the asynchronous block request does not
need to wait for the response from the underlying device, there
is only a delay caused by the storage interface (i.e., channel)
data movement and corresponding data packet. This channel
delay is referred to as T,q4¢;. In this work, the I/O subsystem
latency, called Ty;q:, consists of T.4.; and the actual device
time taken by the storage to service the request, denoted by
T.dew. The it" request is ready to be submitted to the storage
at @, and therefore, it is issued at @. Even though T4
is finished at ®, the user/kernel consume some computation
cycles, and the (i + 1)** request is not available. This in turn
leads to Tjq. by ®. Once the (i + 1)" request is prepared by
the upper layers, it can be served with its T4¢; and Ts4e,. Note
that, in addition to this kind of system delay, 74 represents
the time when a user or application does nothing. In this
example of block request timings, the inter-arrival time, called
Tintt, 1s defined by the time period between @ and @.

B. Trace Revision

Even though existing block traces can cover different kinds
of system configurations and various user scenarios, most
publicly-available conventional block traces [1]], [27], [9], [16],
[11]] were collected on HDD-based storage systems around a
decade ago. Since then, however, storage systems have been
dramatically changed, as modern servers start to adopt flash-
based storage to boost performance and most server workloads
significantly changed. Since the block traces are intensively
studied and used for demonstrating the effectiveness and per-
formance impacts of many system research proposals [31], [8],
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Fig. 3: Differences of inter-arrival times observed by recon-

structed traces and real system traces.

[171, 23], these traces need to be mapped to new block traces
by considering the new storage system characteristics.

Several approaches exist to reconstruct traditional block traces
(231, 181, 1301, [14], [32], [4]. First, the acceleration methods
(Acceleration) 23], 8], [30] can artificially shorten inter-
arrival times to compensate for the low throughput exhibited
by HDD-based storage. However, since this method can only
resize the inter-arrival times without considering the block re-
quest timings, it can remove critical information, such as T.g.;
and T}q from the traces. For example, if the average T,
of a workload is 50 ms and the acceleration factor is 100, the
reconstructed trace exhibits 500 us for its average 7}, . This
removes the most T,.4.; and T}, and can even make Tsgeq
unrealistic as there is no contexts for target device, system,
and user behaviors. Instead of simply accelerating inter-arrival
times, there is a (Revision) to revise target workloads by
replaying the corresponding block traces on a real system
[14]], [32], [4]. While this would have more realistic T,qe;
and Tqey, it cannot appropriately accommodate 7,4, which
varies across all I/O instructions in the trace.

To be precise, we also compare Tj,; observed in the
SSD-based system node (NEW) with the ones generated by
Revision and Acceleration, respectively. The evalu-
ation environment and scenario are the same as the test
conditions described in Section [ and Acceleration
leverages the acceleration degree that [§]] uses. We examine
different 7;,: values by executing five open-license block
traces (MSNFS, webusers, Exchange, homes, wdev), which are
widely used in the storage community [24], and the results
are shown in Figure Bl One can observe from Figure Bal that,
98.6% of T}, reconstructed by Acceleration are shorter
than actual 7T},,;; observed in NEW. In contrast, as shown in
Figure BBl T}, of Revision is on average 17.8% accurate
(i.e., ‘equal’ in the figure). However, most of them (77.8% of
total 75,4, on average) are shorter than the actual 7,4, which
means it loses important system delays and user idle periods,
Tinte- Note that it also exhibits a 75,4, that is on average 4.3%
longer than the actual 7T5,,;;. This is because replaying traces
drops the mode contexts (i.e., asynchronous/synchronous),
which fails to capture the block request timing described by
the (i — 1)*" request (as shown in Figure ZB). Since it is
difficult to capture all system delays, idle operations and non-
deterministic user behaviors (there is no block trace that offers
all such information to the best of our knowledge), block
trace reconstruction with limited information is non-trivial and
challenging work.
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III. TIMING INFERENCE FOR I/O SUBSYSTEMS

Overview of TraceTacker. For individual I/O instructions, it
is non-trivial to extract the idle time (i.e., 1}4;.) from old block
traces since Tjq is affected by multiple unknown system
parameters and indeterministic user behaviors at the time of
trace collection. Even though the old block traces have no
runtime information, including the user behaviors, 754, can
be inferred if we can estimate I/O subsystem latency (i.e.,
T1at), Which is composed of the channel delay (i.e., Tqer)
and storage device time (i.e., Tsqey). Generally speaking,
T;qie can be simply obtained by subtracting 1o from T5,,.4.
Estimating T;,; would be relatively easy if most inter-arrival
times (i.e., T;,;¢) are similar to each other, which can make
the graph, that represents the CDF of T},,¢+ (i.e., CDF (Tipnst)),
steeper. As shown in Figure [5al the graph rapidly rises in the
middle, which exhibits a single maximum on its derivative.
Because almost the entire range of CDF(T;p:) is in the
middle of domain and not affected by its tail, 7;,;; at the
global maximum of slope of CDF (CDF(T;,)") can be
considered as Tj;,¢. However, there are many block traces
whose C'DF(T;,,:) exhibits a much smoother slope on (e.g.,
chunky middle) and/or multiple maxima on its derivative. This
is because T;,¢; of each instruction is affected by a different
runtime contexts on the target system, which often makes
them vary significantly. Considering Figure [5d as an example,
this workload exhibits at least two maxima on CDF (T},
which can render such simple differential analysis difficult to
predict Ts;4¢ of the corresponding trace, appropriately.

Figure [ summarizes the operation of our proposed Trace-
Tracker. In this work, as shown in the left software simulation
of Figure Ml we classify all the I/O instructions traced by a
workload into multiple groups based on the request size and
operation type. For the multiple groups, we create multiple
CDFs for Tj,,:+, and estimate the relative time costs of Tsgeq
and T,.4e; in block request timings by taking into account
the different request sizes and types. This relative time cost
estimation, in turn, enables us to individually calculate 77,
for all 4 numbers of I/O instructions, thereby extracting 77,
from the target traditional block. Once we secure 74 that
varies based on user and system timing behaviors, T%;4; can be
re-evaluated by taking into account the target storage system.
Specifically, we emulate the new system by regenerating the
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Fig. 6: Finding the coefficients of Ts4c, (8 or 7).

each request and issuing it on new storage with estimated
Tiaie. After the target trace emulation, we perform a simple
post processing on the trace, which overrides the I/O timing
behaviors for asynchronous mode operations by considering
the old block trace and regenerated new trace. Further, while
the inference logic of TraceTracker extracts the timing behav-
iors affected by non-deterministic user behaviors and unknown
system parameters from the old block trace, the hardware
emulation, and post processing parts mimic the system delay
and user idle periods on a real system (target) to generate the
new block trace.

Inference model. If there is no user idle period or system
delay caused by the host-side software modules, 7;,;; can
be similar to, or even the same as 7§;,;. In other words, if
there is Tjy¢ greater than Ty, 141 can be simply inferred
by subtracting Tyq; from Tj,4. Even though the specific
information captured by T, is also often not recorded and
offered by the old block traces, in contrast to 7jq;, it can be
speculated by analyzing the distribution of 75,,;;. As described
earlier, there is only one CDF of Tj,, if all I/O instructions
in the target workload exhibit a uniformed request size. This
in turn allows us to simply speculate Ty;,; by referring to
Tint+ at the global maxima of CDF(Tj,4) . In cases where
the target workload exhibits a wide spectrum of request sizes
and types, we speculate Ty, by inferring Tyge, and Teger,
separately. Since Ts4e, mainly depends on the underlying
storage performance, we assume that 7s4e, follows a linear
model for the sequential accesses; Tsge, is inferred by S 7g;.e
if the type of the request is a read; otherwise, it is speculated
by 1 * rg.e. B and n are coefficient values, which will be
explained shortly, and rs;,. denotes the size of a request.
On the other hand, Ts4., on random accesses can be slightly
longer than that of sequential accesses as it has a moving delay
time, referred to as Tnova- Tmovd typically captures the seek
time and rotational latency of the underlying disk [21]].

To model T},00q, We replay ten FIU workloads [27],
on an enterprise disk [29] and measure T},,,q by calculating

the difference between the 77¢% and T''¢e", each of which

is Tsq4e, Observed on the real disk by executing random I/O
accesses and generated by our linear models with sequential
I/O accesses, respectively. We consider the difference between
Tsrdegj and Tlfjéf)” as Tyovd, and the CDF(T,004) results

(for each workload) are plotted in Figure [Zal As shown in



the figure, each CDF exhibits a similar magnitude of gradient
change with transition of 7;,,,4. Motivated by this, we use
Tnova at the maximum of CDF (T,,004)" as the representative
of the difference between T75% and T'e" | which is referred
to as 7,7 .. Consequently, in this work, Ts4e, for random
reads and writes can be expressed by 3 % rg.e + T, r , and
n % Tsize + TP 1, respectively. Using this inference model,
we speculate Tqe,, Which in turn allow us to infer 7,4 and
Tiaie- The specific estimation methods for each relative costs

in block request timings are described below.

Decomposition of I/O subsystem latency. For each workload,
the coefficients of T4, in our inference model, 8 and 7, can
be estimated by using the following disintegration analysis.
First, we group all I/O instructions of the workload to recon-
struct into three different categories based on i) sequentiality
(e.g., sequential vs. random), ii) operation type (e.g., read vs.
write) and iii) request size (in terms of sectors). We then create
multiple graphs of C'DF(T,,;) for each request size observed
in each read or write with the sequential access pattern. The
proposed inference model then examines the global maxima
of CDF (T;y)" for each CDFE. Thus, there can be n maxima
of CDF(T;ntt)’, where n is the number of different /O
request sizes observed in a target workload. It then chooses
the two steepest graphs of CDF, which have the two highest
magnitudes of Tj,; changes among the maximas. Let us
denote each of the steepest functions as C'DFgieept (Tintt)
and CDPFgieep2 (Tintt), where CDFypeept (Tingt)' is greater
than CDFsieepa(Tingt)'. As shown in Figure [6] we can drive
CDF(dif f) which is CDF difference of C'DFgicept (Tintt)
and CDFeep2(Tingt) for reads and writes separately, and
calculate the maximum at CDF(dif f)’ for each.

We can then obtain the representative inter-arrival time at
the maximum of CDF(dif f)" for reads and writes, which
are referred to as AT and AT/2}i*, respectively. Let
us denote the two request sizes, which are used for creat-
ing CDFgeept (Tingt) and CDFlypeepa(Tinut), as size,; and
sizero, respectively. We can estimate the /5 and 7 by calculat-
ing AT /|size, — sizeqo| and ATEVE /|size,1 — sizepal,
respectively. Let us denote the inter-arrival times at the maxi-
mum of C'DFyjeep1 (Tingt)' for reads and writes as 77524 and
T/write respectively. T/7¢a4 and T/“"i¢ are the best values
that explain Ty, of the target workload since they exclude
the most of the timing effects caused by system delays and
user idle periods. Next, we can obtain Tc’”deg"ld and T by

calculating 7/7¢%? — B % size,; and T[“,"¢ — 0 * size,ey,

where 77594 and T“"i¢ are the channel delays for the reads

and writes, respectively.

Figure [7Bl shows the actual T.4.; of the FIU workloads that we
observed on the disk for each access pattern. One can observe
from this figure that, while the difference of T.4.; between
reads and writes exist to some extent (e.g., ikki and maxmax),
that of 7T,.4¢; between random and sequential access patterns
is not significant (less than 8% and 6%, respectively). Noting
that the difference of T.q4; is less than Ts4.,, by many orders
of magnitude; we believe that estimating the channel delay
based the operation type of I/O requests is reasonable.
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Lastly, to estimate the relative time cost of 15,04, We also
need to find CDF[%%(T}ny) that has the highest magnitude
of gradient change with transition of Tj,; among multiple
CDFs in the group of random accesses, and estimate the inter-
arrival time, 77,477, at the maximum of CDFAm(Tinu)'.

Then, T,004 can be simply calculated by subtracting 7% +

. Ci
B * sdz'zeref (or TYrte + 1 % sizep.r) from the estimated
TR

IV. IMPLEMENTATION FOR INFERENCE AUTOMATION

Analyzing multiple CDF graphs is important to reconstruct
old traces. While categorizing requests based on their types
and sizes can be easily automated, the autonomous analysis of
CDFs is non-trivial due to their discreteness. In this section, we
will detail the implementation of our proposed inference model
and explain how to emulate traces with inferred system delays
and idle periods (i.e., Tj,4) to reconstruct the traces.

Graph classification. Since each block trace can exhibit
multiple CDFs that are examined by the proposed infer-
ence model, it is time consuming to detect the two steep-
est graphs of CDF (T;n1t), namely, C DFsteepl(T;,:) and
CDFsteep2(T;nit), among them. When examining the graph,
it would be possible to have a higher degree of the polynomial
equation to represent CDF in mathematical expression, which
also renders the process of finding CDF steepl(T;n) and
CDFsteep2(Tiny) for the read and write instruction set of
each trace difficult.

One simple but effective method to check the steepness of
each graph is to analyze probability density distribution (PDF),
instead of examining the derived function of CDFE (Tjnet)
for a target trace. As shown in Figure [8] the CDF’s highest
magnitude of gradient change with a transition of 7}, can be



Algorithm 1 CDF steepness examination.

/** Step 1: Calculate PDF of inter-arrival times (T5p++)
: for each T; in T’;,,++ do
PDF(T;) = num(T};) / num(request)
3: end for

/¥* Step 2: Least Square Regression

4: slope := std(PDF (Tintt)) | std(Tintt)
5: intercept := mean(P D F (T;y 1)) - slope * mean(Ty,¢¢)
6: f(x) := slope * x + intercept
7
8

N —

/¥* Step 3: Find outliers
: margin := vat(PDF (T;pn4:)) /2
: for each T; in T’;,,+: do
9: distance := PDF(T;) - {(T})
10: if distance >margin then

11: outliers.append(P D F'(T7))
12: end if
13: end for

/** Step 4: Calculate CDF steepness
14: TpEt := max(outliers)

15: steepness := distance(f(T“!/7°5") PDF(T“Emosty)

obtained by identifying the utmost outlier on the corresponding
PDF. Algorithm [I] outlines how to examine the steepness of
the curve of the target CDF through the corresponding PDF.
It first calculates the PDF of Tj;,: (cf. lines 1 ~ 3). After
that, the algorithm finds the best-fitting straight line through
a set of T}, by using linear least squares regression analysis
(cf. lines 4 ~ 6). In this algorithm, if there is 7}, ;, which is
far from the best fitting straight line by more than a margin,
we refer to T,y as an outlier. Note that, as the margin
increases, the number of outliers decreases. As the final goal
of this PDF analysis is to find the utmost outlier, we setup
the margin at half the variance. This PDF analysis algorithm
visits all T;,4; and collects the outliers for all categorized I/0O
instruction sets described in Section [l (e.g., read/write and
request sizes). Among the outliers, it first looks for the 75,
with the maximum value (denoted by T“i°5) and returns
the distance, which is the difference between the f(x) value
of the straight line at the utmost outlier and PDF (Tmost)
(cf. line 14). Then, it compares the distances observed by each
PDF(T;y1) and generates two graphs that have the top two
highest T%#!mst values (cf. line 15).

wntt

Steepness analysis. It is a challenge to find the highest
gradient change with a transition of 7j,;; by analyzing a
group of I/0 requests with their CDF. Since CDF of T, is
a kind of non-differentiable function due to its discontinuity,
the two I/O instruction groups selected by aforementioned
graph classification algorithm must convert the discrete results
into continuous results. While one can perform a curve fitting
on CDF(Tntt) for the two groups to achieve a differen-
tiable function, there is no perfect function that represents
all variances observed in C DF(T;y;). To address challenge,
we interpolate C'DF'(T;,) with piecewise nonlinear curve
fitting; two interpolation methods are widely used: i) a special
type of piecewise polynomial (called spline) interpolation
and ii) a piecewise cubic hermite interpolating polynomial
(called pchip) interpolation. As shown in Figure spline
evaluates the coefficient for each interval of data and has two
continuous derivatives, whereas pchip has just one derivative,
which preserves shape more smoothly than spline. Among
CDF(T;p) for all old block traces we tested, pchip exhibits
the desired appearance of smoothness without oscillation and

rd)

Spline interpolation (3 Pchip interpolation

Fig. 9: Different types of interpolations that we tested.

under/overfitting issues that spline has. Once we interpolate
CDF(T;p4) with pchip, we can differentiate the results of
interpolation and find the maximum of the differential, which
is the highest magnitude of gradient change with a transition
of Tynet. Note that, the analysis of CDF(Ty,00q) described
earlier can be processed by the same curve fitting and differ-
ential calculation methods applied to CDF(Tj,+t ).

Hardware emulation and post-processing. Once the relative
time costs are estimated, we can derive the Ts4.,” equation,
which infers the different device times under the execution
of sequential reads/writes and random reads/writes. In cases
where there exist » numbers of I/O instruction traced in the
target workload, we can denote the idle time, inter-arrival time
and device latency of the i*" instruction (where 0 < i < n)
as T'y., Th ., and T, | respectively. We then visit each I/O
instruction of an old trace and perform the following trace
reconstruction procedure. First, we check the operation type
and request size of the old trace’s instruction and estimate

Sidw using the T4, model (cf. Section[[II). We also calculate
T} .. by checking the difference between time stamps of the
i*" and i 4 1*" instructions, which are given by the old block
trace. Thus, T7;,. exists if T}, is greater than T7,, (e.g.,

e = T — Tege,)- We then delay T3, using sleep ()
and issue the i'" 1/0 instruction (composed of the same
information of the old block trace) to the underlying brand-
new device. We iterate this process for all n I/O instructions.
During this phase, we collect the new block trace using
blktrace, which is a standard block trace tool in Linux [3].
While this hardware emulation mimics the user behaviors,
including system delays and idle periods, and incorporates
actual channel delays and device times on the real target
system, it is not feasible to inject synchronous/asynchronous
mode information to each I/O request. Thus, we check the old
trace and record all the indices of the instruction whose T} ,,
is shorter than 77, ,. We then examine all the instructions of
the new trace (but yet intermittent). In this post-processing, we
subtract the new device time (measured by blktrace) from the
corresponding inter-arrival time and update the next instruction
based on the results, if the index of the instruction we are
examining is in the range of instruction indices extracted
by the old block trace. Note that if workloads provide the
Tsdqey information, we can skip the Ts4e, inference phase,
and immediately perform the hardware emulation and post
processing after finding the short T7,,4;.

V. EXPERIMENTAL RESULTS

In this evaluation, we focus on answering the following
questions: i) How accurate is our inference model? ii) How



‘Workload sets Microsoft Production Server (MSPS) FIU SRCMap
Published year 2007 2008
Workloads 24HR | 24HRS BS CFS | DADS | DAP | DDR | MSNFS ikki madmax | online | topgun | webmail | casa | webresearch | webusers
# of block traces 13 18 96 36 43 43 24 36 20 20 20 20 20 20 28 28
Avg data size (KB) | 827 | 28.79 | 20.73 | 9.71 | 28.66 | 7442 | 2478 | 10.71 | 4.64 411 400 | 3.87 4.00 4.04 4.00 420
Total size (GB) | 21.2 | 1786 | 3312 | 436 | 446 84 44 | 3179 | 254 38 228 | 94 312 80.4 13.7 336
Workload sets FIU 10Dedup MSR Cambridge (MSRC)
Published year 2009 2008
‘Workloads mail+online homes | mds pm proj prxy rsrch srcl src2 stg web wdev usr hm ts
# of block traces 21 21 2 2 5 2 3 3 3 2 4 4 3 1 1
Avg data size (KB) 4.0 523 | 330 | 154 | 296 | 86 84 357 40.9 26.2 7 34 38.65 15.16 9.0
Total size (GB) 57.1 84.6 | 2084 | 568.8 | 4780.1 | 4353 | 27.63 | 65165 | 230.6 | 2264 | 6254 | 237 | 5506.1 9.24 16.2
TABLE I: Important characteristics of the publicly-available conventional block traces that we reconstructed.
realistic can our hardware/software make 75,y compared g1 00 § . " | 5100 . ™ ™
to conventional approaches? and iii) What are the system g 80 905 974 997 o 80 @ 97.3 997 100
implications based on the revisions of Tjge? £ 60 : | §60{739
8 40 § 40
Evaluation node. For the target system where we reconstruct @ 20 5 5 20
ol

block traces, we build up a storage node that employs an all-
flash array by grouping four NVM Express SSDs [7]. The
storage capacity of each SSD is 400GB, and a single device
consists of 18 channels, 36 dies, and 72 planes. Our storage
node can exhibit different levels of parallelism, ranging from
an array to channel, channel to die, which in turn can offer
read and write bandwidths as much as 9GB/s and 4GB/s,
respectively. Our all-flash array is connected to the node’s
north-bridge via four PCIe 3.0 slots, each containing four lanes
to the storage node.

Target block traces. We reconstruct three workload cate-
gories: i) Florida International University (FIU) [27], [I1], ii)
Microsoft Production Server (MSPS) [9], and iii) Microsoft
Research Cambridge (MSRC) [[16]]. Together, FIU, MSPS, and
MSRC contain a total of 577 block traces, which are used
for a wide spectrum of simulation-based studies [31]], [8l,
[17], [23]. FIU workloads offer university-scale production
server characteristics, which consist of two different types
of sub-workloads: SRCMap and IODedup. While SRCMap
workloads are collected for an application that optimizes
system energy by virtualizing storage, department-level virtual
machines for web services and mail, file and version control
servers are collected by IODedup. On the other hand, MSPS
provides eight different kinds of production server scenarios,
and MSRC provides thirteen kinds of data center server
scenarios. In MSRC, all workloads contain specific device-
level information such as the type of RAID, while the same
information for most workloads in MSPS is unknown. In
addition, MSPS and MSRC workloads are collected by using
an event-based kernel-level tracing facility which can
capture detailed information such as issue and completion
time stamps; These timestamps are captured when requests
are issued from a device driver to the target disk and when
the disk completes the I/O operations, respectively. Note that
even though all the traces related to the three categories of
workloads discussed above include various system configu-
rations and have a wide range of user scenarios, they are
all collected around 2007~2009 on disk-based systems. The
important characteristics of traces, including the size, and the
number of traces per workload, are listed in Table [

Reconstruction techniques. We evaluate five different block
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Fig. 10: Verification results, Len(TP).
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Fig. 11: Verification results, Len(FP).

reconstruction methods:

e Acceleration: Reconstruction by shortening Ty, [8l].

e Revision: Replaying block traces on all-flash array [4].

e Fixed—-th: An advanced revision method by inferring 75 ;.
with a fixed threshold.

e Dynamic: Reconstructions using our inference model, but
with no post-processing.

e TraceTracker: Hardware/software co-evaluation for
trace reconstruction.

We leverage the value (i.e., 100) that a simulation-based SSD
work uses [8]] for its T}, acceleration. On the other hand,
Fixed-th considers the worst-case device latency of old
storage with a fixed threshold value and uses it for inferring
Tiaie- To select a reasonable threshold, we performed a dif-
ferent set of evaluations on a HDD-based node with various
thresholds, ranging from 10 ms to 100 ms, and selected 10
ms as Fixed—-th’s optimal threshold. In contrast, Dynamic
injects different T;4. per I/O instruction by speculating it
over our inference model, but without the post-processing
component of TraceTracker.

A. Verification

Metrics. The results of this verification evaluation can be
either positive or negative, each of which may be true or false.
If the inference model speculates that there is 7;4;., it can be
classified as positive, and otherwise, the result is negative.
Being negative or positive can be tested per I/O instruction.




On the other hand, if the existence of T;4;. is same in both
target and reconstructed block traces, one can call this as true.
Otherwise, it is false. Therefore, the results of the inference
model test can be represented by four different statistics: true
positive (TP), false positive (FP), false negative (FN), and true
negative (TN). For verification, we will use four functions
as follows: i) Detection(TP) = number of TP | number
of T;Zfded, il) Detection(FP) = number of FP /| total
number of /O instructions, iii) Len(TP) = Tgtimated /
T and iv) Len(FP) = Tgtmeted where T) /"
and Tgstimated are the idle times that were injected into the
target block traces and speculated by our inference model,
respectively. The first two functions capture the ratios of
the number of TP/FP and the number of corresponding 1/O
instructions, whereas Len(T'P) and Len(FP) indicate how
much our inference model speculates accurate 7;4;. based on
the result of a prediction hit or miss, respectively. Note that
Len(TP) is the ratio of the speculated idle periods and actual
idle periods, whereas Len(F'P) is the actual period that the
inference model mispredicts.

Results. Since the block traces have no information on 7.,
we inject Tjq;. in random places with various idle periods,
ranging from 100 us to 100 ms. In this evaluation, injected
Tiqie accounts for 10% of the total I/O instructions of the
target block traces. We compare the injected T34 with the
Ta1e predicted by our inference model. We select two different
groups of traces. One includes the traces that contain no timing
information (e.g., FIU), and the other has I/O submission
and completion time information (e.g., MSPS), which can be
considered as Ts4e,. In this evaluation, we denote the former
and the latter as 7., known traces and 7., unknown traces,
respectively.

Figure[[Qlshows the results of Len (T P) observed by two trace
groups that TraceTracker reconstructed. If the injected
Tiqie 1s longer than 1 ms, TraceTracker shows 90.5%
and 97.3% accuracy of TP for T4, known traces and T ge,
unknown traces, respectively. If the injected Tjg. is close
to 100 us, the accuracy of TP declines compared to other
cases by 46.5% and 73.9% for T4, known traces and Tsqey
unknown traces, respectively. This is because the injected 7541
is in a range of the latency that new storage (in our case,
Intel NVMe 750) exhibits. While this blurring boundary issue
could make it difficult for our inference model to distinguish
between device latency and idle time, most of the actual
microsecond-scale system delays and idle periods are revived
by our inference model. In addition, we observed that the
results of Detection(TP) is in the range of 82.2% ~ 99.7%
across all the block traces that TraceTracker built. On
the other hand, Detection(F P) is, on average, 6% and 26%
while Len(F P) is on average 7 us and 6.4 ms for T4, known
traces and Ts4., unknown traces, respectively. However, the
distribution of Len(F P) observed by the reconstructed traces
tells a different story. As shown in Figure [[T} more than 98%
of LenF P for 1,4, known traces and 74, unknown traces
are shorter than 1 ms and 6 ms, respectively. Considering the
high accuracy of TP and low impact of FP, we can conclude
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Fig. 13: T}, differences among the different kinds of trace
reconstruction techniques and TraceTracker method.

that TraceTracker is within the confidence interval to
reconstruct Tj,,.

Comparisons. In this section, we analyze the accuracy of
TraceTracker compared to other reconstruction methods
by inspecting the details of the 7},,;. To this end, we compare
TraceTracker’s CDF of T}, with two different groups of
methods, each being unaware of and aware of 7} 4;.; the results
are shown in Figures [12a and respectively. In these fig-
ures, Target shows, the CDF of T5,,;; brought by the original
block traces collected on HDD-based nodes. One can observe
from Figure [12a that, Acceleration just shifts the CDF of
Target from the right to the left as much as the acceleration
factor indicates (e.g., 100x), which eliminates all the useful
information to simulate target systems. On the other hand,
Revision reflects the characteristics of the underlying new
storage. However, compared to TraceTracker, it removes
Teqer and Tjg by around 70% and 30%, respectively. As
shown in Figure while Fixed-th and Dynamic be-
have more realistically than Acceleration, unfortunately,
Fixed-th loses 65% of the T;4. and Dynamic exhibits
30% longer Tj,;; than TraceTracker as it also loses
asynchronous/synchronous mode information and is unable to
capture T.4¢; appropriately.

Figure [13] plots the average difference between
TraceTracker and other trace reconstruction methods
in terms of Tj,; for all the workloads we tested. One
can observe from the figure that Acceleration and
Revision methods that possess no information for Tjg.
to reconstruct traces differ by 7.08 and 7.15 seconds from
TraceTracker, respectively. Considering the worst-case
latency of the underlying SSD accesses (around 2 ms), losing
such idle times that include system delays and user behaviors
can have a great impact on diverse simulation-based studies.
While Fixed-th and Dynamic have less T}, differences
compared to Acceleration or Revision, the difference
between TraceTracker and their T}, is as high as 1.3
ms and 0.035 ms, respectively. This means that, even though
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Fig. 14: T}, differences between the target block traces and
TraceTracker traces.
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Fig. 15: Distribution differences between the target block
traces and TraceTracker traces.

(b) ikki (FIU).

Fixed-th and Dynamic can capture the underlying storage
characteristics, the actual time behaviors, including 7.4 and
Tidqie, are omitted. As a result, they can exhibit different
system behaviors with inaccurate Tj,;; values.

B. System implications

Overall analysis of inter-arrival times. The top and bottom
of Figure [I4] plot the average and maximum 7T}, differ-
ences between the target block traces and traces reconstructed
by TraceTracker. As shown in the figure, T;,; of the
TraceTracker traces is 0.677 ms shorter, on average, than
that of the target block traces. The Tj,;; implies that system
analysis and evaluation studies that use the 75, of target
block traces should consider the TraceTracker traces in-
stead since the time budget to perform foreground/background
tasks can be tightened when the storage system is changed.
For example, the zs workload (MSRC) has an average of 3
ms shorter T},,4; in TraceTracker traces than in the target
block traces. In addition, the median values of Tj,;; are 2
ms and 0.02 ms for target block traces and TraceTracker,
respectively. Note that, the average T, differs among the
31 workloads because of the impact of the specific workload
characteristics such as request size and type.

To analyze T}, differences between the two traces in detail,
we plot the CDF distribution of Tj,, as shown in Figure
only for the CFS (MSPS) and ikki (FIU), which have
the maximum 75, differences among the same workload
categories (MSPS, FIU). As shown in the figures, the T,y
distribution of the TraceTracker traces leans towards the
short time period and the average differences are 1 ms and
0.823 ms, respectively. For instance, 50 % of T}, in the
target block traces are less than 17 ms while that of the
TraceTracker is 0.601 ms in Figure [[3al In addition, as
shown in Figure 1 % of Ty in the target block traces
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are less than 0.228 ms, while 90 % of the Tj, are less than
the same value in the TraceTracker traces.

Details of idle times. 74 can be a representative workload
characteristic, and the estimated T4, was injected when the
traces are reconstructed on the target storage system. Since
the T4 periods should be same in reconstructed traces, the
T;aqie that we estimated can be immediately used for other
conventional block traces. Figure shows the T4 period
estimated by TraceTracker. As shown in the figure, the
average T;jq. of MSPS is 0.27 s, and that of FIU is 2.80 s
remove madmax workload has 20.5 s of longest T;4;. among
the FIU workloads. MSRC has an average T;q;. value of 2.25
s, except for rsrch and wdev which have 69.2 s and 403.1 s
of T4, respectively.

To check the detailed T;4; patterns of the 31 workloads, we
analyze the breakdown of total T}, duration by grouping
these into Tjas, Ligie (0 ~ 10 ms), Tjge (10 ~ 100 ms),
and Tj4;. (longer than 100 ms). The top and bottom parts
of Figure [[7] focus on the frequency and period, respectively.
The frequency refers to the total number of requests per group
while the period means the total time duration of each group.
As shown in the figure, the MSPS workloads have larger
Tiqie breakdown in terms of frequency, compared to other
workloads; the average T;q. breakdown is 70%, 31%, and
26% for MSPS, FIU, and MSRC, respectively. In contrast to
the frequency, the average breakdown of period per workload
categories is 87%, 99.8%, and 99.2% for MSPS, FIU, and
MSRC, respectively. In other words, although the FIU and
the MSRC workloads have low T}4. frequency, most of the
Tinet 18 Tigie at around 90%. In addition, as shown in the
figure, most of the T4, is longer than 100 ms in the FIU and
MSRC workloads. Similar to the average 7;q;. period shown
in Figure the breakdown pattern of MSPS workloads
varies compared to other workloads. In the MSPS, the average
frequency is 30%, 47.7%, 15%, and 6.7% for each group,
while the average period breakdown is 12.6%, 18.3%, 26%,
and 42.7%, respectively. Since the MSPS workloads have



short T 4;e, it is harder for them to utilize inter-arrival times,
compared to other workloads.

VI. RELATED WORKS

There exist many prior studies that proposed to modify the
conventional block traces to adjust to new storage systems
(8], [25], [301, [4], [5], [14], [32]. For example, [8], [25],
tried to simply accelerate the inter-arrival times with a
fixed scaling factor. On the other hand, [4], [5]], [14],
replayed I/O requests on the real storage system by injecting
an extra delay or zero (no-idle) between two consecutive
requests. In contrast, was aware of the behaviors of
parallel applications, which are widely used in scientific or
business environments, and reflected these onto target block
traces by injecting different idle times per I/O instruction. As
there are multiple nodes that execute parallel applications, this
work calculates the duration of an extra delay by taking into
account the computing time and synchronization time which
is required for each node to ensure data synchronization; the
input data of one node is another node’s output. While all
the above methods did not consider user behaviors and I/O
execution mode, TraceTracker can reconstruct the old
block traces irrespective of application types and can classify
the inter-arrival times into I/O subsystem latency and extra
delay (idle times) by including both system and user behaviors.
In TraceTracker, the idle times are decided by modeling
the performance of the target trace’s storage system.

Early studies on storage performance modeling [12]], [13l,
221, [26], try to capture the performance of new storage
systems by identifying the target workload’s characteristics.
For example, [28] used Classification and Regression Trees
(CART), which is learning-based black box modeling tech-
nique. However, CART does not understand the input features
and generates a multidimensional function of the model.
Thus, for the storage performance, utilized the request
information (e.g., inter-arrival times, logical block number,
request type, and data size) as features of the CART algorithm.
Unfortunately, the main problem of machine-learning based
modeling is that it is hard to explain how the model can
be achieved. While [28]] creates performance model without
understanding the inter-arrival times, our TraceTracker
analytically models storage performance by decomposing the
inter-arrival times and detecting the short inter-arrival times
for asynchronous I/O execution.
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VIII. CONCLUSION

TraceTracker is a new approach to reconstruct existing
block traces to new traces which is being aware of the
target storage system only with inter-arrival time information
of target workloads. To maintain the important workload’s
characteristics such as system and user behaviors in the new
traces, TraceTracker estimates the idle times by automat-
ically inferencing the performance of storage system from
target block traces. We can detect 99% of system delays and
idle periods appropriately and secure the corresponding idle
periods by 96% of a real execution, on average.
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