
Data Motif-based Proxy Benchmarks for Big Data
and AI Workloads

Wanling Gao1,2, Jianfeng Zhan 1,2*, Lei Wang1, Chunjie Luo1, Zhen Jia3, Daoyi Zheng1, Chen Zheng1,
Xiwen He1, Hainan Ye4, Haibin Wang5, and Rui Ren1

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences, China

3Princeton University
4Beijing Academy of Frontier Sciences and Technology

5Huawei
{gaowanling, zhanjianfeng, wanglei 2011, luochunjie}@ict.ac.cn, zhenj@princeton.edu, {zhengdaoyi, zhengchen,

hexiwen}@ict.ac.cn, yehainan@mail.bafst.com, benjamin.wanghaibin@huawei.com, renrui@ict.ac.cn

Abstract—For the architecture community, reasonable simu-
lation time is a strong requirement in addition to performance
data accuracy. However, emerging big data and AI workloads are
too huge at binary size level and prohibitively expensive to run
on cycle-accurate simulators. The concept of data motif, which
is identified as a class of units of computation performed on
initial or intermediate data, is the first step towards building
proxy benchmark to mimic the real-world big data and AI
workloads. However, there is no practical way to construct a
proxy benchmark based on the data motifs to help simulation-
based research.

In this paper, we embark on a study to bridge the gap
between data motif and a practical proxy benchmark. We propose
a data motif-based proxy benchmark generating methodology
by means of machine learning method, which combine data
motifs with different weights to mimic the big data and AI
workloads. Furthermore, we implement various data motifs using
light-weight stacks and apply the methodology to five real-world
workloads to construct a suite of proxy benchmarks, considering
the data types, patterns, and distributions. The evaluation results
show that our proxy benchmarks shorten the execution time
by 100s times on real systems while maintaining the average
system and micro-architecture performance data accuracy above
90%, even changing the input data sets or cluster configurations.
Moreover, the generated proxy benchmarks reflect consistent
performance trends across different architectures. To facilitate
the community, we will release the proxy benchmarks on the
project homepage http://prof.ict.ac.cn/BigDataBench.

Index Terms—Data Motif, Big Data, AI, Proxy Benchmark

I. INTRODUCTION

Two concernful but interactional factors – simulation accu-
racy and time, which always have trade-offs, decide the quality
and time cycle of simulation-based research. Big data and AI
workloads usually own thousands of billions of instructions
because of the heavy software stack [1] and long running time
even on real machines. It is prohibitively expensive to run big
data and AI workloads on cycle-accurate simulators, which
will slow down on the order of hundred times[2].

* The corresponding author is Jianfeng Zhan.

Hence, researchers from both academia and industry are
committed to reducing the simulation time while keeping high
accuracy. Simulation methods like sampled simulation [3],
[4], [5], [6] and statistical simulation [7], [8], [9], [10] are
proposed to generate synthetic trace or synthetic benchmarks
and mimic micro-architecture performance of long-running
real-world workloads, e.g., SPEC CPU [11]. However, for
emerging big data and AI workloads, which reveal significantly
differential behaviors with traditional ones like SPEC CPU [11]
and PARSEC [12], previous methods are challenged by the
following limitations. First, existing big data or AI benchmarks
are difficult to be directly transplanted to simulators like
GEM5 [13] because of the heavy software stacks and long
running time. The distributed environment further aggravates
this issue. Second, the multithreaded workloads may exhibit
different system behaviors in each run because of the nonde-
terminism [14], [15], [16], [17]. Thus, the simulation points
identified in one run using traditional simulation methods may
not exist in another run [14], [17]. Moreover, synthetic traces
or benchmarks target one workload on a specific architecture
with certain configurations, and thus cannot accommodate
other architectures or configurations [18]. Third, traditional
methods fail to consider the impact of input data. While for
big data and AI workloads, the input data has a great impact
on workload behaviors [19], [20], because of the diversities
of data types, patterns and distributions. In summary, a new
benchmark methodology is urgently needed for emerging big
data and AI workloads, which can generate proxy benchmarks
satisfying the simulation time and accuracy requirements.

Data motifs [20], which are defined as the most time-
consuming units of computation performed on different initial
or intermediate data, are identified as one of the most promising
key methods to solve the dilemma between simulation accuracy
and runtime for big data and AI workloads. Each data motif
captures the common requirements while being reasonably
divorced from individual implementations [21], so each big

ar
X

iv
:1

81
0.

09
37

6v
1

 [
cs

.D
C

]
 1

8
O

ct
 2

01
8

data or AI workload can be considered as a bunch of data
motifs performed on different data. Even though motifs have
been proposed to represent computation patterns of real-world
workloads over a decade, there is still no work actually pulls
it off and builds motif-based proxy benchmarks [22], [21].
This leaves us a gap between motifs and proxy benchmarks.
Moreover, previous concept “motifs” or kernels – a set of
operations extracted from original application [23], [24], cares
more about the computation or communication patterns while
paying little consideration on data types and patterns. However,
the data motifs not only cover the algorithm diversity but also
cover the data types, patterns and distributions, and thus reflect
both the system and architecture characteristics. Considering
the data diversity of big data and AI workloads, we construct
proxy benchmarks based on “data motifs”.

To bridge the gap, we propose a data motif-based proxy
benchmark generating methodology, in which we assemble
a bunch of data motifs to mimic the behaviors of real-world
big data or AI workloads. Our methodology applies machine
learning methods, which give us the opportunity to learn the
inner connection between data motifs and real-world workloads,
to reason about the components of proxy benchmark. In this
paper, we use the decision tree as our first try to guide the
generation of proxy benchmark. In the future, we will apply
other advanced algorithms, like neural network. To construct
a proxy benchmark, we adopt a DAG-like structure, using
a node to represent original or intermediate data set being
processed, and an edge to represent a data motif. Based on
the methodology, we implement the big data motifs and AI
data motifs individually using light-weight stacks to minimize
the code binary size, and then generate big data and AI proxy
benchmarks. Our current methodology and proxy benchmarks
focus on average behaviors and ignore transient behaviors of
the original benchmarks.

Our contributions are three-fold as follows:

• We propose a data motif-based proxy benchmark gen-
erating methodology to bridge the gap between motifs
and proxy benchmark. To the best of our knowledge, for
the first time, we apply machine learning algorithm, i.e.,
decision tree, to the benchmark generating methodology,
which enables the automatic synthesis of data motifs.

• We provide five proxy benchmarks to represent five real-
world big data and AI workloads. Our evaluations show
the proxy benchmarks share high behavior similarities
(above 90% on average) with the real-world workloads,
while shortening the execution time by 100s times.

• We use the five proxy benchmarks to perform three case
studies, which further prove that, our methodology not only
accommodates with different input data and configurations,
but also reflects consistent performance trends across
different architectures.

The rest of the paper is organized as follows. Section 2
presents our data motif-based proxy benchmark generating
methodology. Section 3 performs evaluations on a five-node
X86 64 cluster. In Section 4, we report three case studies.

Section 5 illustrates related work. Finally, we draw a conclusion
in Section 6.

II. PROXY BENCHMARK GENERATING METHODOLOGY

The data motif-based proxy benchmark generating method-
ology is illustrated in Fig. 1. The whole methodology consists
of the following steps. For a given workload, we first get its
system and architecture level profiles to identify the hotspot
functions. Then we correlate hotspots to the code fragments of
the workload through bottom-up analysis. After that, we select
the corresponding data motif implementations to represent the
real-world workload. The final proxy benchmarks are generated
using a DAG-like combination of data motifs. To generate
qualified proxy benchmark that satisfies the requirements of
performance data accuracy, such as cache behaviors or I/O
behaviors, we provide an auto-tuning tool to tune the parameters
of both data motif and the proxy benchmark.

In the following part of this section, we detail the proxy
benchmark generating methodology.

A. Eight Data Motifs

Previous work has identified eight data motifs [20] as
the most time-consuming units of computation performed on
different initial or intermediate data, among a majority of big
data and AI workloads. These eight data motifs are Matrix,
Sampling, Transform, Graph, Logic, Set, Sort and Statistics.
They are promising fundamental tools for benchmarking,
designing, measuring, and optimizing big data and AI systems.

Among them, matrix computation involves vector-vector,
vector-matrix, and matrix-matrix computations. Sampling is
a method to select a subset of original data according to a
certain statistical population. Transform computation indicates
the conversion from the original domain to another domain,
such as fast fourier transform (FFT). Graph computation uses
nodes representing entities and edges representing dependencies.
Much previous work [25], [26], [27] focuses on graph workload
evaluation, indicating its importance. Logic computation per-
forms bit manipulation computations. Set computation means
the operations on one or more collections of distinct data, and
also includes the primitive operators in relational algebra [28].
Sort and statistics are fundamental units of computation in big
data and AI.

Based on the eight data motifs, we provide light-weight
implementations using POSIX threads model [29], as illustrated
in Fig. 2. Since the workload behaviors are sensitive to
input data, we guarantee the sensitiveness of data motifs
from the perspectives of data input and implementation.
We provide various data input with different types, patterns
and distributions, i.e., covering text, graph and matrix data,
through data generation tools. Our implementation considers
the execution model of software stacks and the programming
styles of workloads using specific software stacks, which have
great influences on workload behaviors [30], [1]. Fig. 2 lists all
data motif implementations for both big data and AI. We use
the POSIX threads model and consider the processes of original
big data and AI software stacks. For example, we design the

Understanding Big Data and AI Workloads

Proxy Benchmark Generating

Tracing and
Profiling

Initial
Weights

Proxy
Benchmark

Qualified proxy
benchmark

Machine Learning
Model

Given a big data
or AI workload

2
Combining

1

Data Motifs Data Motif Implementations
(Big data motif, AI data motif)

Micro-architectural Behaviors

Pipeline Efficiency
Instruction Mix

Branch Prediction
Cache Behaviors

System Behaviors

Memory Access
Disk I/O Bandwidth
Speedup Behavior

Mimic Big Data and
AI Workloads

Metrics

DAG-like combination with different weights (Tuning)

Implementing

Fig. 1: Methodology Overview.

Data Motif Implementation

Big Data Motif Implementation

D
at

a
G

en
er

at
io

n

(T
y
p
es

 &
 S

iz
e

&
 D

is
tr

ib
u
ti

o
n
)

Set Graph Sort Statistics

Matrix Sampling Logic Transform

Distance

calculation

Matrix

multiplication

Random

sampling

Interval

sampling

Union

Intersection

Difference

Graph

construct

Graph

traversal

Quick sort

Merge sort

Count/average

statistics

Probability

statistics

MD5 hash FFT / IFFT

Input DCTEncryption

Max/Min

AI Data Motif Implementation

Matrix
Fully

connected

Element-wise

multiplication

Sigmoid /

Tanh/Softmax

Sampling

Max Pooling

Average

Pooling

Transform
Convolution

Input

Statistics

Dropout

Batch

normlization

Cosine

normlization

Reduce sum

Logic
ReLu

Sort
Reduce max

Fig. 2: The Overview of the Data Motif Implementations.

big data motif implementations from the perspectives of input
data partition, chunk data allocation per thread, intermediate
data written to disk, and data combination. In addition, big data
systems like Hadoop adopt automatic memory management
scheme, and thus incur many JVM garbage collection (GC)
steps. So for big data motif implementations, we implement
a unified memory management module, whose mechanism is
similar with GC. For AI data motif implementation, we consider
the height size, width size and the number of channels of the
input data or the convolution filter, the data storage format like
the “NHWC” or “NCHW” in TensorFlow, the batch size, the
stride of the sliding window, and the padding algorithm.

Different with kernels, our data motif implementations take
real data set as input and have not only computation patterns
and memory access patterns, but also disk I/O patterns.

B. Proxy Benchmarks Construction

Fig. 3 presents the process of proxy benchmark construction,
including decomposing process, feature selecting process, and
tuning process. We first break down the big data and AI
benchmark into a group of data motifs and then tune them to
approximate the original benchmark. We measure the proxy
benchmark’s accuracy by comparing the performance data of
the proxy benchmark with those of the original workloads at

both system and micro-architecture level. To tune the accuracy—
making it more similar to the original workload, we further
provide an auto-tuning tool using a machine learning model,
decision tree.

1) Benchmark Decomposing: Given a big data or AI work-
load, we obtain its hotspot functions and execution time through
a multi-dimensional tracing and profiling method, including
runtime tracing (e.g. JVM tracing and logging), system profiling
(e.g. CPU time breakdown), and hardware profiling (e.g. CPU
cycle breakdown). Based on the hotspot analysis, we correlate
the hotspot functions to the code fragments of the workload
and choose the corresponding data motif implementations by
analyzing the computation logic of the code fragments. Our
proxy benchmark is a DAG-like combination of the selected
data motifs with initial weights setting by their execution ratios.

2) Feature Selecting: The main purpose of construct-
ing proxy benchmarks is to mimic the system and micro-
architectural behaviors of real-world workloads using data
motif combinations. The feature selecting stage is used to
choose the concerned metrics and initialize the parameters of
data motifs.

System and Micro-architectural Metrics According to the
different concerns about the workloads, we can choose different
metrics to tune a qualified proxy benchmark. For example, if our
proxy benchmarks focus on cache behaviors of the workload,
we can choose the metrics that reflect cache behaviors like
cache hit ratio to tune a qualified proxy benchmark. Here we
use
−→
M to denote the performance data of selected metrics.

where:
−→
M = (runtime, IPC, MIPS, L1D hitR, L2 hitR,)

For system-level metrics, we choose running time, memory
bandwidth, and disk I/O behavior. For micro-architectural
metrics, we choose instruction mix, cache behavior, branch
prediction, and processor performance (i.e. IPC, MIPS).

Parameters of Data Motifs We examine the configurable
parameters of all data motifs and list them in Table I. Besides
that, we further introduce weight to indicate the contribution
of each data motif. For the rationality, we set the initial value
of weight proportional to their corresponding execution ratios.
For example, in Hadoop TeraSort, the weight is 70% of sort
computation, 10% of sampling computation, and 20% of graph

Decomposing Auto-Tuning

Initial
Weights

Q
u

alified
 P

ro
x

y
 B

en
ch

m
ark

Motif
components

B
ig

 D
ata an

d
 A

I W
o

rk
lo

ad
s

Accuracy
Evaluation

T
u

n
ed

 P
aram

eters

Deviation
analysis

Impact analysis

 • Input data size

 • Weight

 • Number of tasks

 • Chunk size

Adjusting Stage Feedback Stage

P
aram

eter
In

itializatio
n

Feature Selecting

Metrics !"#

 • System metrics

 • Micro-architectural

 metrics

Parameters (P)

 • Input data size

 • Weight

 • Number of tasks

 • Chunk size

Yes
No

P
ro

x
y

 B
en

ch
m

ark

Fig. 3: Proxy Benchmarks Construction.

computation, respectively. During the modeling process, the
weight of each data motif can be adjusted within a reasonable
range (e.g. plus or minus 10%).

For better elaboration, we use
−→
P to indicate the parameter

vector, which consists of all the configurable parameters. When
we discuss a specific data motif, only related elements in

−→
P

will be concerned and others will be set to zero.

−→
P = (dataSize, chunkSize, numTasks, weight

batchSize, totalSize, heightSize, widthSize,

numChannels) (1)

Each time we run the data motifs with a specific
−→
P , there

would be a resulted
−→
M . To mimic the micro-architectural

behavior of a real-world workload, we need to find the optimal−→
P whose corresponding

−→
M is close enough to the metrics of

this original workload.
We initialize the

−→
P according to the configuration of the

original workload. We scale down the input data set and
chunk size of the original workloads to initialize dataSize
and chunkSize. The numTasks is initialized as the parallelism
degree of the original workload.

TABLE I: Tunable Parameters for Each Data Motif.

Parameter Description
dataSize The input data size for each big data motif
chunkSize The data block size processed by each thread for

each big data motif
numTasks The process and thread numbers for each big data

and AI data motif
batchSize The batch size of each iteration for each AI data

motif
totalSize The total input data size need to be processed for

each AI data motif
heightSize The height dimension for one input data or filter
widthSize The width dimension for one input data or filter
numChannels The channel number for one input data or filter
weight The contribution for each data motif

3) Adjusting Stage: We introduce a decision tree based
mechanism to assist the auto-tuning process. The tool learns
the impact that each parameter in

−→
P will have on

−→
M and builds

a decision tree through Impact analysis. The learning process

changes one parameter each time and execute multiple times to
characterize the parameter’s impact on each metric. Based on
the impact analysis, the tool builds a decision tree to determine
which parameter to tune if one metric has a large deviation.
After that, the Feedback Stage is activated to evaluate the proxy
benchmark with tuned parameters. If it does not satisfy the
requirements, the tool will adjust the parameters to improve
the accuracy using the decision tree in the adjusting stage.

4) Feedback Stage: In the feedback stage, the tool evaluates
the accuracy of the current proxy benchmark with specific
parameters. If the deviations of all metrics are within the
setting range (e.g. 15%), the auto-tuning process is finished.
Otherwise, the metrics with large deviations will be fed back to
the adjusting stage. The adjusting and feedback processes will
iterate until reaching the specified accuracy, and the finalized
proxy benchmark with the final parameter settings is our
qualified proxy benchmark. Sampling performance counters
may have slight variations when performing multiple runs, so
the parameter values of qualified proxy benchmark may also
have slight variations. However, the deviations of all metrics
are within the setting range according to the end conditions.

C. Discussion

Table. II compares four simulation methodologies from the
perspectives of data set, portable cost, multi-core scalability,
cross architecture, and accuracy.

Kernel benchmarks, which consist of a set of kernels
extracted from original application [23], [24], are widely used
in high performance computing. However, they are insufficient
to completely reflect workload behaviors of big data and AI
workloads [31], [23].

However, the real trace or statistical profile are obtained with
the aid of a functional simulator or a binary instrumentation
tool (e.g. Pin [34], [35]), which is time-consuming and costly.
Complex big data or AI software stacks and their distributed
deployments further aggravate this challenge. So generating
synthetic trace is infeasible and time-consuming, especially
for different architectures or workload configurations [36]. For
example, previous work uses Pin and SimPoint to generate
synthetic traces. However, Pin lacks support for diverse archi-
tectures (e.g. ARM architecture) and Java environment [33].
So it is difficult to use Pin in big data systems like Hadoop.

TABLE II: Comparison of Different Simulation Methodologies for Big Data and AI Workloads.

Methodology Typical
Benchmark or Tool Data Set Portable Cost Multi-core

Scalability
Cross

Architecture Accuracy

Kernel Benchmark NPB [31] Fixed Recompile Yes Yes Low
Synthetic Trace Method SimPoint [32] Fixed Regenerate No No High
Synthetic Benchmark PerfProx [33] Fixed Regenerate No No High
Data Motif-Based
Proxy Benchmark

Data Motif
Benchmark On-demand Recompile Yes Yes High

Another method is to use functional simulator (e.g. GEM5 [13])
and SimPoint to obtain traces. GEM5 has limited supports for
distributed deployment and also takes a long time.

Synthetic benchmark is to generate assembly code or C
code based on workload profiling [37], and can work on real
hardware as well as execution-driven simulators. However,
existing synthetic benchmarks can only be used to mimic
micro-architectural metrics, and do not support multi-thread
model, and their codes do not contain computation logic. So
they can not be used to characterize system-level behaviors
such as multi-core scalability or carry out cross architecture
comparisons. Moreover, synthetic benchmarks need to be re-
generated on different architectures or workload configurations.

In our data motif-based benchmarking method, we use multi-
thread programs and preserve computation logic to mimic the
behaviors of big data and AI workloads. Our proxy benchmarks
can suit for different data input and support cross-architecture
comparison with recompilation. As for simulation accuracy,
they can reflect not only micro-architectural behaviors but also
system-level behaviors of real-world big data and AI workloads.

III. EVALUATION

Simulation time and performance data accuracy are manda-
tory requirements for architecture community. In this section,
we evaluate the effectiveness of our proxy benchmark generat-
ing methodology through constructing five proxy benchmarks
for big data and AI workloads. Then we measure these proxy
benchmarks from the perspectives of runtime speedup and
accuracy.

A. Real-world Workloads and Proxy Benchmarks

In order to cover different application domains and workload
patterns, we choose five representative big data and AI
workloads from BigDataBench 4.0 [30] – Hadoop TeraSort,
Hadoop K-means, Hadoop PageRank, TensorFlow AlexNet and
TensorFlow Inception-V3. We choose them for the following
reasons.

Representative Application Domains They are all widely
used in many important application domains. For example,
TeraSort is a widely-used workload in many application
domains; PageRank is a famous workload for search engine;
K-means is a simple but useful workload in internet services
and machine learning community; AlexNet [38] and Inception-
V3 [39] are two typical convolutional neural networks (CNN)
in artificial intelligence with different neural network structures.

Various Workload Patterns They have different workload
patterns. Hadoop TeraSort is an I/O-intensive workload; Hadoop

K-means is a CPU-intensive and memory-intensive workload;
Hadoop PageRank is a both CPU-intensive and I/O-intensive
workload; TensorFlow AlexNet is both CPU-intensive and
memory-intensive, while Inception-V3 is a CPU-intensive
workload.

Diverse Data Inputs They take different data as inputs.
Hadoop TeraSort uses text data generated by gensort [40];
Hadoop K-means uses vector data while Hadoop PageRank
uses graph data; TensorFlow AlexNet uses image data from
CIFAR-10 [41] or matrix data; TensorFlow Inception-V3 uses
ILSVRC2012 [42] image data. These benchmarks are of
great significance for measuring big data and AI systems and
architectures [1].

Also, we generate the corresponding five proxy benchmarks
using our methodology. In the rest of this paper, we use
Proxy TeraSort, Proxy K-means, Proxy PageRank, Proxy
AlexNet, and Proxy Inception-V3 to represent the proxy
benchmark for Hadoop TeraSort, Hadoop K-means, Hadoop
PageRank, TensorFlow AlexNet, and TensorFlow Inception-V3,
respectively. Note that the input data to each proxy benchmark
has the same data type and distribution with respect to those
of the original big data and AI workloads, so as to preserve
the impact of data on workload behaviors.

Table. III lists the benchmark details from the perspectives
of workload pattern, data set, involved data motifs, and data
motif implementations of the proxy benchmarks.

B. Experiment Setups

We deploy a five-node cluster, with one master node and four
slave nodes. They are connected using 1Gb ethernet network.
Each node is equipped with two Intel Xeon E5645 (Westmere)
processors, and each processor has six physical out-of-order
cores. The memory of each node is 32GB, DDR3. Each node
runs Linux CentOS 6.4 with the Linux kernel version 3.11.10.
The JDK and Hadoop versions are 1.7.0 and 2.7.1, respectively.
The GCC version is 4.8.0. The proxy benchmarks are compiled
using “-O2” or “-O3” option for optimization. The hardware
and software details are listed on Table IV.

To evaluate the performance data accuracy, we run the proxy
benchmarks against the original big data and AI workloads.
The Hadoop benchmarks are run on the above five-node cluster
using the optimized Hadoop configurations, through tuning the
data block size of the Hadoop distributed file system, memory
allocation for each map/reduce job, reduce job numbers, and
memory size according to the cluster scales. For Hadoop
TeraSort, we choose 100 GB text data produced by gensort [40].
For Hadoop K-means and PageRank, we choose 100 GB sparse

TABLE III: Five Real Benchmarks and Their Corresponding Proxy Benchmarks.

Big Data & AI
Benchmark

Workload Pattern Data Set Involved Data Motifs Data Motif Implementations of Proxy Benchmark

Hadoop
TeraSort

I/O Intensive Text
Sort
Sampling
Graph

Quick sort; Merge sort
Random sampling; Interval sampling
Graph construction; Graph traversal

Hadoop
K-means

CPU Intensive
Memory Intensive

Vectors
Matrix
Sort
Statistics

Vector euclidean distance; Cosine distance
Quick sort; Merge sort
Cluster count; Average computation

Hadoop
PageRank

CPU Intensive
I/O Intensive

Graph
Matrix
Sort
Statistics

Matrix construction; Matrix multiplication
Quick sort; Min/max calculation
Out degree and in degree count of nodes

TensorFlow
AlexNet

CPU Intensive
Memory Intensive

Image/Matrix

Matrix
Sampling
Transform
Statistics

Fully connected
Max Pooling
Convolution
Batch normalization

TensorFlow
Inception-V3

CPU Intensive Image/Matrix

Matrix
Sampling
Logic
Transform
Statistics

Fully connected; Softmax
Max pooling; Average pooling; Dropout
ReLu
Convolution
Batch normalization

TABLE IV: Node Configuration Details of Xeon E5645

Hardware Configurations
CPU Type Intel CPU Core

Intel R©Xeon E5645 6 cores@2.40G
L1 DCache L1 ICache L2 Cache L3 Cache
6 × 32 KB 6 × 32 KB 6 × 256 KB 12MB

Hyper-Threading Disabled

vector data with 90% sparsity 1 and 226-vertex graph both
generated by BDGS [43], respectively.

For AI benchmarks, we run the TensorFlow workloads
on the above five-node cluster, with one node as parameter
server and the other four as workers. The TensorFlow AlexNet
workload uses the CIFAR-10 [41] dataset as the input and runs
10,000 steps in total with each worker running 2500 steps. The
TensorFlow Inception-V3 workload uses the ILSVRC2012 [42]
image dataset as input and runs 1000 steps in total with each
worker running 250 steps. The batch size is 128 and 32 for
AlexNet and Inception-V3, respectively, considering the image
size. For comparison, we run all five proxy benchmarks on
one of the slave nodes, respectively.

C. Metrics Selection and Collection

To evaluate the accuracy, we choose micro-architectural
and system metrics covering instruction mix, cache behavior,
branch prediction, processor performance, memory bandwidth
and disk I/O behavior. Table V presents the metrics we choose.

Processor Performance. We choose two metrics to measure
the processor overall performance. Instructions per cycle (IPC)
indicates the average number of instructions executed per clock
cycle. Million instructions per second (MIPS) indicates the
instruction execution speed.

1The sparsity of the vector indicates the proportion of zero-valued elements.

Instruction Mix. We consider the instruction mix break-
down including the percentage of integer instructions, floating-
point instructions, load instructions, store instructions and
branch instructions.

Branch Prediction. Branch predication is an important strat-
egy used in modern processors. We track the miss prediction
ratio of branch instructions (br miss for short).

Cache Behavior. We evaluate cache efficiency using cache
hit ratios, including L1 instruction cache, L1 data cache, L2
cache and L3 cache.

Memory Bandwidth. We measure the data load rate from
memory and the data store rate into memory, with the unit of
bytes per second. We choose metrics of memory read bandwidth
(read bw for short), memory write bandwidth (write bw for
short) and total memory bandwidth including both read and
write (mem bw for short).

Disk I/O Behavior. We employ disk I/O bandwidth to reflect
the I/O behaviors of the workloads. The disk I/O bandwidth
is calculated by Equation 2, where SectorRead+Write means the
total number of sector reads and sector writes; SizeSector means
the sector size (512 bytes for our nodes).

BWDiskI/O =
(SectorRead+Write)∗SizeSector

RunTime
(2)

We collect micro-architectural metrics from hardware perfor-
mance monitoring counters (PMCs), and look up the hardware
events’ value on Intel Developer’s Manual [44]. Perf [45] is
used to collect these hardware events. To guarantee the accuracy
and validity, we run each workload three times, and collect
performance data of workloads on all slave nodes during the
whole runtime. We report and analyze their average value.

D. Runtime Speedup
Table VI presents the execution time of the real benchmarks

and the proxy benchmarks on Xeon E5645. For big data

TABLE V: System and Micro-architectural Metrics.

Category Metric Name Description
Micro-architectural Metrics
Processor
Performance

IPC Instructions per cycle
MIPS Million instructions per second

Instruction
Mix

Instruction
ratios

Ratios of load, store, branch,
floating-point, and integer
instructions

Branch Prediction Branch Miss Branch miss prediction ratio

Cache
Behavior

L1I Hit Ratio L1 instruction cache hit ratio
L1D Hit Ratio L1 data cache hit ratio
L2 Hit Ratio L2 cache hit ratio
L3 Hit Ratio L3 cache hit ratio

System Metrics

Memory
Bandwidth

Read Bandwidth Memory load bandwidth
Write Bandwidth Memory store bandwidth
Total Bandwidth memory load and store band-

width
Disk I/O
Behavior

Disk I/O
Bandwidth

Disk read and write bandwidth

benchmarks, Hadoop TeraSort with 100 GB text data runs
1500 seconds on the five-node cluster. Hadoop K-means
with 100 GB vectors runs 5971 seconds for each iteration.
Hadoop PageRank with 226-vertex graph runs 1444 seconds for
each iteration. For AI benchmarks, TensorFlow AlexNet with
CIFAR-10 dataset runs 1556 seconds. TensorFlow Inception-
V3 with ILSVRC2012 dataset runs 6782 seconds. The five
corresponding proxy benchmarks run about ten seconds on the
physical machine. For TeraSort, K-means, PageRank, AlexNet,
and Inception-V3, the speedup is 136X (1500/11.02), 743X
(5971/8.03), 160X (1444/9.03), 155X (1556/10.02), and 376X
(6782/18) respectively.

TABLE VI: Execution Time on Xeon E5645.

Workloads
Execution Time (Second)

Real version Proxy version
TeraSort 1500 11.02
K-means 5971 8.03
PageRank 1444 9.03
AlexNet 1556 10.02
Inception-V3 6782 18

E. Accuracy

We evaluate the accuracy of proxy benchmarks from system
and micro-architecture perspectives, using all metrics listed in
Table V.

System and Micro-architecture Data Accuracy. For each
metric in Table V, the accuracy of the proxy benchmark
comparing to the real benchmark is computed by Equation 3.
Among which, ValR represents the average value of the real
benchmark on all slave nodes; ValP represents the average
value of the proxy benchmark on a slave node. The absolute
value ranges from 0 to 1. The number closer to 1 indicates
higher accuracy.

Accuracy(ValR,ValP) = 1−
∣∣∣∣ValP−ValR

ValR

∣∣∣∣ (3)

Fig. 4 presents the system and micro-architectural data
accuracy of the proxy benchmarks on Xeon E5645. We can find
that the average accuracy of all metrics are greater than 90%.
For TeraSort, K-means, PageRank, AlexNet, and Inception-V3,
the average accuracy is 94%, 91%, 93%, 93.7% and 92.6%,
respectively.

Instruction Mix Breakdown. Fig. 5 shows the instruction
mix breakdown of the proxy benchmarks and real benchmarks.
From Fig. 5, we can find that the five proxy benchmarks
preserve the instruction mix characteristics of these five real
benchmarks with Hadoop or TensorFlow stacks. For example,
the integer instruction occupies 44% for Hadoop TeraSort and
46% for Proxy TeraSort, while the floating-point instruction
occupies less than 1% for both Hadoop and Proxy TeraSort.
For instructions involving data movement, Hadoop TeraSort
contains 39% of load and store instructions, and Proxy TeraSort
contains 37%. We find that TensorFlow workloads have much
higher floating-point instructions than big data workloads, and
our proxy benchmarks for TensorFlow workloads also reflect
similar instruction mix breakdown behaviors. For example,
TensorFlow AlexNet and Proxy AlexNet both contain a large
percentage of floating-point instructions, about 40%.

Fig. 4: System and Micro-architectural Data Accuracy on Xeon
E5645.

Fig. 5: Instruction Mix Breakdown on Xeon E5645.

Disk I/O Behaviors. Big data applications have significant
disk I/O pressures. We use Equation 2 as illustrated in
Subsection III-C to compute the disk I/O bandwidth. Fig. 6

presents the I/O bandwidth of proxy benchmarks and real
benchmarks on Xeon E5645. We find that they have similar
average disk I/O pressure. The disk I/O bandwidth of Proxy
TeraSort and Hadoop TeraSort is 32.04 MB and 33.99 MB
per second, respectively. However, for AI workloads, we find
that they have extremely low disk I/O bandwidth, about 0.2
MB/s for AlexNet and 0.5 MB/s for Inception-V3. This is
because that the deep learning workloads are CPU intensive
and process a batch of input data every time, so the disk I/O
pressure is not that much.

!"#

#

#!

#!!

$%&'()&* +,%'-. /'0%1'-2 34%56%* 7-8%9*:)-;<=

!
"#
$
%&
'
(
)
*
")
+,
%-
.
&
/#
0

1%'4 /&)5>

Fig. 6: Disk I/O Bandwidth on Xeon E5645.

IV. CASE STUDIES

In this section, we would like to examine whether the
generated proxy benchmark can retain the key properties of
real-world big data and AI workloads. To be specific, we will
examine the proxy benchmarks from the following perspectives:
1). can proxy benchmark reflect the impact of input data. 2). is
proxy benchmark adaptable to system level configuration. 3).
can proxy benchmark reflect the relative performance among
different architectures.

A. Data Input

The data type and access pattern have a great impact on
the performance and behaviors for big data workloads. Among
them, input data sparsity is one of the most important factors,
which widely affects the design and decision in many fields,
like recommendation systems and graph computing.

Among the five real workloads, K-means’ behavior is highly
affected by the sparsity of input data. We use two input data
sets with different sparsity to drive Hadoop K-means: sparse
vector (the original configuration, 90% elements are zero) and
dense vectors (all elements are non-zero, and 0% elements are
zero). Fig. 7 presents the memory bandwidth we measured by
running Hadoop K-means with two different input datasets. We
find that the memory bandwidth measured with sparse vectors
is nearly half of that with dense vectors, which indicates that
the sparsity of input data heavily affect the workload’s behavior.

Then here, we want to check whether the behavior accuracy
of the generated proxy benchmark is affected by the sparsity
of input data. If the answer is no, which is ideal, we only need
to generate one proxy benchmark for Hadoop K-means, and
use it with different sparsity input data set. If yes, which is the
case of synthetic trace method, we need to generate different
proxy benchmarks for diverse sparsity input data sets.

Here we only generate one proxy benchmark for Hadoop
K-means but drive it by two different sparsity data sets and

compare the results with real Hadoop K-means. Fig. 8 shows
the accuracy of proxy benchmark using different input data.
We find that the average system and micro-architectural data
accuracy of Proxy K-means is above 91% with respect to
the fully-distributed Hadoop K-means using dense input data
with no zero-valued element. When we change the input data
sparsity from 90% to 0%, the data accuracy of Proxy K-means
is also above 91% with respect to the original workload. So we
see that the Proxy K-means can mimic the Hadoop K-means
under different input data. The proxy benchmark accuracy will
not be affected by the input data.

!

"

#

$

%

&'()*+, ,&-.'*+, /'/*+,

!
"
#$

0'12' 34(&2'

Fig. 7: Data Impact on Memory Bandwidth Using Sparse and
Dense Data for Hadoop K-means on Xeon E5645.

Fig. 8: System and Micro-architectural Data Accuracy Using
Different Input Data on Xeon E5645.

B. Configuration Adaptability

To fulfill dynamic resource requirements in data center, the
cluster might be frequently re-configured, like enlarging the
memory capacity, modifying the hardware configurations, and
adding more machines. Hence, building a proxy benchmark
which can suit for different configurations is of great signif-
icance. To evaluate the configuration adaptability of proxy
benchmarks, we adopt a different cluster configuration with the
cluster in Section III, but with the same processor. The cluster
scale is adjusted to three nodes, and the memory configuration
changes to 64 GB.

We run the original big data and AI workloads on the three-
node cluster, as a comparison, we also evaluate the same proxy
benchmarks on a slave node. The input data of all the workloads
are the same as Section III. For AI workloads, we run 3000
steps for TensorFlow AlexNet and 200 steps for TensorFlow
Inception V3.

Accuracy. We report the system and micro-architectural data
accuracy of the original workloads and the proxy benchmarks

Fig. 9: Accuracy on a New Cluster Configuration.

on the new cluster configuration. Likewise, we evaluate the
accuracy by Equation 3. Fig. 9 presents the accuracy of the
proxy benchmarks compared with the original benchmarks on
the new cluster. We find that the average data accuracy of all
the five proxy benchmarks are all above 90%. For TeraSort,
K-means, PageRank, AlexNet and Inception V3, the average
accuracy is 91%, 91%, 93%, 94% and 93% respectively.

Runtime Speedup. Table VII presents the execution time
of the real benchmarks and the proxy benchmarks on the
new cluster configuration. For big data benchmarks, Hadoop
TeraSort with 100 GB text data runs 2721 seconds on the
three-node cluster. Hadoop K-means with 100 GB vectors
runs 7143 seconds for each iteration. Hadoop PageRank with
226-vertex graph runs 1693 seconds for each iteration. For AI
benchmarks, TensorFlow AlexNet with CIFAR-10 dataset runs
1333 seconds for 3000 steps. TensorFlow Inception-V3 with
ILSVRC2012 dataset runs 5839 seconds for 200 steps. The five
corresponding proxy benchmarks run about twenty seconds
on the physical machine. For TeraSort, K-means, PageRank,
AlexNet, and Inception-V3, the speedup is 170X (2721/16.04),
509X (7143/14.03), 120X (1693/14.07), 121X (1333/11.03),
and 307X (5839/19.04) respectively.

TABLE VII: Execution Time on a New Cluster Configuration.

Workloads
Execution Time (Second)

Real version Proxy version
TeraSort 2721 16.04
K-means 7143 14.03
PageRank 1693 14.07
AlexNet 1333 11.03
Inception-V3 5839 19.04

C. Relative Performance among Different Architectures

Consistent performance trend is very important for the
architecture design, especially at the early stage of the system
design. It would save a lot of time if the proxy benchmarks
can be directly used on different platforms to reflect the
performance of real-world workloads. So here, we want
to check whether the proxy benchmarks have the similar
relative performance as the real-world workloads on different
architectures. That is to say, if the proxy benchmarks can gain
the same amount of performance promotion as the real-world

!

!"#

$

$"#

%

&'()*+(, -.')/0 1)2'3)/4 56'78', 9/:';,<+/=>?

!
"
#
#
$
%
"

3')6 1(+7@

Fig. 10: Runtime Speedup across Westmere and Haswell
Processors.

workloads through an improved hardware design, then the proxy
benchmarks can be used to evaluate the design decision. This
subsection chooses Intel processors from different generations
to reflect the different architectures and check whether the
proxy benchmark can reflect the performance improvements
that brought by the design of newer generation processor.

Similar with Subsection IV-B, we also deploy a three-node
cluster, and each node is equipped with two Xeon E5-2620
v3 (Haswell) processors for performance trend comparison.
The memory of each node is 64GB. We use the proxy
benchmarks to evaluate the performance trends (i.e. runtime
speedup behavior) across two different architectures of Xeon
E5645 (Westmere) and Xeon E5-2620 V3 (Haswell). All
the five original workloads use the same input data on two
processors, with the optimized Hadoop configurations and the
same TensorFlow configurations. Meanwhile, the five proxy
benchmarks are the same version and they are recompiled on
the two processors. The runtime speedup is computed using
Equation 4.

Speedup(TimeWestmere,TimeHaswell) =
TimeWestmere

TimeHaswell
(4)

Fig. 10 shows the runtime speedups of five original work-
loads and the proxy benchmarks across Westmere and Haswell
processors. We find that for all the five proxy benchmarks, they
reflect consistent speedup trends with the original big data and
AI workloads. For example, the runtime speedup of Hadoop
TeraSort is 1.6, running 2722 seconds on Westmere processor
and 1723 seconds on Haswell processor, while the runtime
speedup of Proxy TeraSort is 1.61, running 16.1 seconds on
Westmere processor and 10 seconds on Haswell processor.
Their runtime speedups range from 1.1 to 1.8 times on Haswell
comparing to Westmere. AlexNet has the lowest speedup while
the K-means has the highest.

V. RELATED WORK

Many research efforts about big data or AI benchmarks
have been proposed in recent years. BigBench [46], [47]
models a product retailer business model based on TPC-DS
and provides a set of queries covering different categories of
big data analytics. BigDataBench [30] is a benchmark suite
providing dozens of big data workloads, and its latest version
4.0 [48] provides a suite of micro and component big data
and AI workloads. CloudSuite [49] is a benchmark suite of
emerging scale-out workloads and consists of eight applications.

Also, much work about machine learning benchmarks has
been presented. Fathom [50] provides an AI benchmark suite
consisting of eight deep learning workloads implemented with
TensorFlow. BenchNN [51] develops and evaluates the neural
network implementations of 5 (out of 12) high performance
applications from the PARSEC Benchmark Suite. However, it
is frustrating to run these benchmarks on simulators because
of their complex software stacks and long running time. In
addition, the simulators have limited supports for distributed
deployments.

Using reduced data input is one way to reduce execution
time. Previous work [52], [53] adopts reduced data set for the
SPEC benchmark and maintains similar architecture behaviors
with that of using the full reference data sets. However, it does
not suit for big data and AI workloads, since they are data
centric computing.

Kernel benchmarks are widely used in high performance
computing. Livermore kernels [54] use Fortran applications to
measure floating-point performance range. The NAS parallel
benchmarks [31] consist of several separate tests, including
five kernels and three pseudo-applications derived from com-
putational fluid dynamics (CFD) applications. Linpack [55]
provides a collection of Fortran subroutines. However, a single
kernel is insufficient to completely reflect workload behaviors
considering the complexity and diversity of emerging big data
and AI workloads[31], [23].

In terms of micro-architectural simulation, many previous
studies generate synthetic benchmarks as proxies [56], [57].
Statistical simulation [7], [8], [36], [9], [10], [58] generates
synthetic trace or synthetic benchmarks to mimic micro-
architectural performance of long-running real-world workloads,
which targets one workload on a specific architecture with
the certain configurations, and thus each benchmark needs
to be generated on the other architectures with different
configurations [18]. Sampled simulation selects a series of
sample units for simulation instead of entire instruction stream,
which are sampled randomly [3], periodically [4], [59] or based
on phase behavior [5]. Seongbeom et al. [60] accelerate the
full-system simulation through characterizing and predicting
the performance behavior of OS services. For emerging big data
workloads, PerfProx [61] proposes a proxy benchmark genera-
tion framework for real-world database applications through
characterizing low-level dynamic execution characteristics. The
proxy benchmark of PerfProx also needs to be regenerated
under different configurations.

VI. CONCLUSIONS

In this paper, based on the data motifs that are defined as
the most time-consuming units of computation performed on
different initial or intermediate data, we propose a novel proxy
benchmark generating methodology to generate a suite of proxy
benchmarks, consisting of the DAG-like combinations of data
motifs with different weights to mimic the big data and AI
workloads. Our proxy benchmarks shorten the execution time
by 100s times with respect to the original benchmarks, while
maintaining the average micro-architectural and system data

accuracy above 90%. Our three case studies show that our
proxy benchmarks suit for different input data, different cluster
configuration and reflect consistent performance trends with
original big data and AI workloads across different processors.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Plan of China (Grant No. 2016YFB1000600
and 2016YFB1000601). The authors are very grateful to
anonymous reviewers for their insightful feedback and Prof.
Simone Campanoni for his instructive suggestions. We also
thank Dr. Biwei Xie for his valuable opinions.

REFERENCES

[1] Z. Jia, J. Zhan, L. Wang, R. Han, S. A. McKee, Q. Yang, C. Luo,
and J. Li, “Characterizing and subsetting big data workloads,” in IEEE
International Symposium on Workload Characterization (IISWC), 2014.

[2] M. Burtscher and I. Ganusov, “Automatic synthesis of high-speed
processor simulators,” in Microarchitecture, 2004. MICRO-37 2004. 37th
International Symposium on, pp. 55–66, Dec 2004.

[3] T. M. Conte, M. A. Hirsch, and K. N. Menezes, “Reducing state loss for
effective trace sampling of superscalar processors,” in IEEE International
Conference on Computer Design (ICCD), 1996.

[4] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts: Ac-
celerating microarchitecture simulation via rigorous statistical sampling,”
in IEEE International Symposium on Computer Architecture (ISCA),
2003.

[5] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ACM SIGARCH Com-
puter Architecture News, vol. 30, pp. 45–57, 2002.

[6] F. Lu, R. Joseph, G. Trajcevski, and S. Liu, “Efficient parameter variation
sampling for architecture simulations,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2011, pp. 1–6, IEEE, 2011.

[7] K. Skadron, M. Martonosi, D. August, M. Hill, D. Lilja, and V. S. Pai,
“Challenges in computer architecture evaluation,” IEEE Computer, vol. 36,
no. 8, pp. 30–36, 2003.

[8] L. Eeckhout, R. H. Bell Jr, B. Stougie, K. De Bosschere, and L. K. John,
“Control flow modeling in statistical simulation for accurate and efficient
processor design studies,” ACM SIGARCH Computer Architecture News,
vol. 32, no. 2, p. 350, 2004.

[9] S. Nussbaum and J. E. Smith, “Modeling superscalar processors via sta-
tistical simulation,” in International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2001.

[10] M. Oskin, F. T. Chong, and M. Farrens, HLS: Combining statistical and
symbolic simulation to guide microprocessor designs, vol. 28. ACM,
2000.

[11] “Spec cpu 2006.” https://www.spec.org/cpu2006/.
[12] C. Bienia, Benchmarking Modern Multiprocessors. PhD thesis, Princeton

University, January 2011.
[13] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7,
2011.

[14] Y. Luo and L. K. John, “Simulating java commercial throughput workload:
A case study,” in 2005 IEEE International Conference of Computer
Design (ICCD), 2005.

[15] K. M. Lepak, H. W. Cain, and M. H. Lipasti, “Redeeming ipc as a
performance metric for multithreaded programs,” in Parallel Architectures
and Compilation Techniques, 2003. PACT 2003. Proceedings. 12th
International Conference on, pp. 232–243, IEEE, 2003.

[16] A. R. Alameldeen and D. A. Wood, “Variability in architectural
simulations of multi-threaded workloads,” in High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth International
Symposium on, pp. 7–18, IEEE, 2003.

[17] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large intel R© itanium R© programs
with dynamic instrumentation,” in Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture, pp. 81–92,
IEEE Computer Society, 2004.

[18] A. M. Joshi, Constructing adaptable and scalable synthetic benchmarks
for microprocessor performance evaluation. ProQuest, 2007.

[19] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang,
“Cvr: Efficient vectorization of spmv on x86 processors,” IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),
2018.

[20] W. Gao, J. Zhan, L. Wang, C. Luo, D. Zheng, F. Tang, B. Xie, C. Zheng,
X. Wen, X. He, H. Ye, and R. Ren, “Data motifs: A lens towards fully
understanding big data and ai workloads,” Parallel Architectures and
Compilation Techniques (PACT), 27th International Conference on, 2018.

[21] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and Y. Katherine, “The landscape of parallel computing research: A
view from berkeley,” tech. rep., Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, 2006.

[22] P. Colella, “Defining software requirements for scientific computing,”
2004.

[23] D. J. Lilja, Measuring computer performance: a practitioner’s guide.
Cambridge university press, 2005.

[24] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier, 2011.

[25] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[26] S. Beamer, K. Asanovic, and D. Patterson, “Locality exists in graph
processing: Workload characterization on an ivy bridge server,” in
Workload Characterization (IISWC), 2015 IEEE International Symposium
on, pp. 56–65, IEEE, 2015.

[27] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and
H. Yang, “Graphh: A processing-in-memory architecture for large-scale
graph processing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2018.

[28] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

[29] D. R. Butenhof, Programming with POSIX threads. Addison-Wesley
Professional, 1997.

[30] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu, “Bigdatabench:
A big data benchmark suite from internet services,” in IEEE International
Symposium On High Performance Computer Architecture (HPCA), 2014.

[31] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga, “The
nas parallel benchmarks,” The International Journal of Supercomputing
Applications, vol. 5, no. 3, pp. 63–73, 1991.

[32] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction Level
Parallelism, vol. 7, no. 4, pp. 1–28, 2005.

[33] R. Panda and L. K. John, “Proxy benchmarks for emerging big-data
workloads,” in Parallel Architectures and Compilation Techniques (PACT),
2017 26th International Conference on, pp. 105–116, IEEE, 2017.

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in Acm sigplan notices,
vol. 40, pp. 190–200, ACM, 2005.

[35] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn, “Pin: a binary
instrumentation tool for computer architecture research and education,” in
Proceedings of the 2004 workshop on Computer architecture education:
held in conjunction with the 31st International Symposium on Computer
Architecture, p. 22, ACM, 2004.

[36] L. Eeckhout, K. De Bosschere, and H. Neefs, “Performance analysis
through synthetic trace generation,” in Performance Analysis of Systems
and Software, 2000. ISPASS. 2000 IEEE International Symposium on,
pp. 1–6, IEEE, 2000.

[37] L. Van Ertvelde and L. Eeckhout, “Benchmark synthesis for architecture
and compiler exploration,” in Workload Characterization (IISWC), 2010
IEEE International Symposium on, pp. 1–11, IEEE, 2010.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, pp. 1097–1105, 2012.

[39] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–
2826, 2016.

[40] “Gensort.” http://www.ordinal.com/gensort.html.

[41] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[42] O. Russakovsky, J. Deng, J. Krause, A. Berg, and L. Fei-Fei, “The
imagenet large scale visual recognition challenge 2012 (ilsvrc2012),”
2012.

[43] Z. Ming, C. Luo, W. Gao, R. Han, Q. Yang, L. Wang, and J. Zhan,
“Bdgs: A scalable big data generator suite in big data benchmarking,”
arXiv preprint arXiv:1401.5465, 2014.

[44] R. Intel, “Intel r 64 and ia-32 architectures. software developerś manual.
volume 3a,” System Programming Guide, Part, vol. 1, 2010.

[45] “Perf tool.” https://perf.wiki.kernel.org/index.php/Main Page.
[46] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A.

Jacobsen, “Bigbench: towards an industry standard benchmark for big
data analytics,” in Proceedings of the 2013 ACM SIGMOD international
conference on Management of data, pp. 1197–1208, ACM, 2013.

[47] D. Richins, T. Ahmed, R. Clapp, and V. J. Reddi, “Amdahl’s law in
big data analytics: Alive and kicking in tpcx-bb (bigbench),” in High
Performance Computer Architecture (HPCA), 2018 IEEE International
Symposium on, pp. 630–642, IEEE, 2018.

[48] W. Gao, J. Zhan, L. Wang, C. Luo, D. Zheng, X. Wen, R. Ren, C. Zheng,
H. Ye, J. Dai, Z. Cao, et al., “Bigdatabench: A scalable and unified big
data and ai benchmark suite,” Under review of IEEE Transaction on
Parallel and Distributed Systems, 2018.

[49] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: A study of emerging workloads on modern hardware,” in ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

[50] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks, “Fathom:
Reference workloads for modern deep learning methods,” in Workload
Characterization (IISWC), 2016 IEEE International Symposium on, pp. 1–
10, IEEE, 2016.

[51] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A. Nere,
S. Qiu, M. Sebag, and O. Temam, “Benchnn: On the broad potential
application scope of hardware neural network accelerators,” in Workload
Characterization (IISWC), 2012 IEEE International Symposium on,
pp. 36–45, IEEE, 2012.

[52] A. J. KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja, Adapting the
SPEC 2000 Benchmark Suite for Simulation-Based Computer Architecture
Research, pp. 83–100. Boston, MA: Springer US, 2001.

[53] A. KleinOsowski and D. J. Lilja, “Minnespec: A new spec benchmark
workload for simulation-based computer architecture research,” IEEE
Computer Architecture Letters, vol. 1, no. 1, pp. 7–7, 2002.

[54] F. H. McMahon, “The livermore fortran kernels: A computer test of the
numerical performance range,” tech. rep., Lawrence Livermore National
Lab., CA (USA), 1986.

[55] J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack benchmark:
past, present and future,” Concurrency and Computation: practice and
experience, vol. 15, no. 9, pp. 803–820, 2003.

[56] R. H. Bell Jr and L. K. John, “Improved automatic testcase synthesis
for performance model validation,” in ACM International Conference on
Supercomputing (ICS), 2005.

[57] K. Ganesan, J. Jo, and L. K. John, “Synthesizing memory-level
parallelism aware miniature clones for spec cpu2006 and implantbench
workloads,” in IEEE International Symposium on Performance Analysis
of Systems Software (ISPASS), 2010.

[58] L. Eeckhout and K. De Bosschere, “Early design phase
power/performance modeling through statistical simulation.,” in
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2001.

[59] Z. Yu, H. Jin, J. Chen, and L. K. John, “Tss: Applying two-stage sampling
in micro-architecture simulations,” in IEEE International Symposium
on Modeling, Analysis, Simulation of Computer and Telecommunication
Systems (MASCOTS), 2009.

[60] S. Kim, F. Liu, Y. Solihin, R. Iyer, L. Zhao, and W. Cohen, “Accelerating
full-system simulation through characterizing and predicting operating
system performance,” in IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2007.

[61] R. Panda and L. K. John, “Proxy benchmarks for emerging big-data
workloads,” in IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), 2017.

