
1

Optimizing GPU Cache Policies for MI Workloads

Johnathan Alsop*, Matthew D. Sinclair*†, Srikant Bharadwaj*, Alexandru Dutu*, Anthony Gutierrez*, Onur Kayiran*, Michael LeBeane*,
Sooraj Puthoor*†, Xianwei Zhang*, Tsung Tai Yeh‡, Bradford M. Beckmann*

*AMD Research, †University of Wisconsin – Madison, ‡Purdue University

Abstract—In recent years, machine intelligence (MI)
applications have emerged as a major driver for the
computing industry. Optimizing these workloads is
important but complicated. As memory demands grow
and data movement overheads increasingly limit
performance, determining the best GPU caching policy to
use for a diverse range of MI workloads represents one
important challenge. To study this, we evaluate 17 MI
applications and characterize their behaviors using a
range of GPU caching strategies. In our evaluations, we
find that the choice of caching policy in GPU caches
involves multiple performance trade-offs and
interactions, and there is no one-size-fits-all GPU caching
policy for MI workloads. Based on detailed simulation
results, we motivate and evaluate a set of cache
optimizations that consistently match the performance of
the best static GPU caching policies.

Keywords—execution-driven simulation, GPU caching,
machine intelligence, machine learning

I. INTRODUCTION
In recent years, MI has emerged as an important driver for

the computing industry. The initial catalyst for this rise in
popularity was the discovery that MI could produce low error
rates for image classification [1][2][3]. Subsequently, there
has been a large amount of work optimizing hardware for MI,
especially for Convolutional Neural Networks (CNNs) (e.g.,
[17]-[30]). Although these works have led to significant
improvements in performance and energy efficiency of
CNNs on modern multi-core CPUs, GPUs, and accelerators,
it is challenging to analyze how future architectures will
perform for these workloads. Here we focus on GPUs, as they
are widely used for running MI workloads in numerous
domains.

Although many MI systems use large discrete non-
coherent GPUs instead of smaller cache coherent GPUs
tightly coupled with the CPUs, the emerging trend is to unify
the CPU-GPU memory system regardless of the GPU size
[48]. Specifically, a single shared memory space between the
CPU and GPU avoids the need for explicit data copies before
and after every kernel launch. As a result, they are easier to
program and can significantly reduce unnecessary data
movement when GPU kernel launches are frequent, as can be
the case with many MI workloads.

However, implementing efficient coherent caches
between CPUs and GPUs remains a significant challenge.
GPU workloads have very different memory demands from
conventional CPU workloads. By concurrently executing
hundreds to thousands of threads, GPUs can hide a large
amount of memory latency, but they require a very high
request bandwidth. This motivates a coherence strategy
which prioritizes memory throughput and scalability,
sometimes at the cost of cache reuse. In an effort to better
understand the trade-offs of different caching strategies for
MI workloads, we evaluate the performance of these
applications with multiple levels of GPU caching enabled
using the publicly available AMD gem5 APU simulator [5].

We find that there is no one-size-fits-all caching policy
that offers the best performance to all MI workloads.
Although caching can significantly improve performance by
enabling local data reuse, in some cases the best caching
policy is not the one that enables the most caching. The added
blocking and contention introduced by caching can lead to
harmful cache stalls and DRAM row locality disruption. In
high throughput workloads that lack significant data reuse,
the increased memory latency and decreased memory
throughput caused by cache resource contention can make a
simpler cache bypassing strategy more attractive.

Motivated by these results, we model and evaluate three
microarchitectural optimizations which work together to
mitigate these caching inefficiencies encountered by MI
workloads. The first optimization avoids blocking for cache
allocation, which reduces cache stalls. The second
optimization applies a state-of-the-art CPU cache rinsing
technique [58] to the last-level GPU cache to improve row
buffer locality. Finally, we use a PC-based bypass prediction
technique [54] to address remaining caching overheads while
still caching accesses that can benefit from reuse.
Collectively, these optimizations achieve the benefits of GPU
cache reuse, while minimizing caching overheads for these
important MI workloads.

In the remainder of this paper, we first cover relevant MI
and GPU coherence background information in Sections II
and III. Next, we introduce the system and applications we
are using and discuss the changes that were necessary to run
MI applications in Sections IV and V. In Section VI we use
gem5 to evaluate MIOpen benchmarks running on a CPU-
GPU cache hierarchy with a range of coherence policies.
Based on this detailed data we motivate and evaluate a set of
coherence optimizations in Section VII. We then further

2

discuss related work (Section VIII), and finally conclude
(Section IX).

II. MI BACKGROUND
Although there are many different MI methods, in this

work we focus on deep neural networks (DNNs), which are
some of the most commonly used MI workloads and are well-
supported by MIOpen. CNNs and recurrent neural networks
(RNNs) are two variants of DNNs, which are composed of
multiple layers that apply linear and non-linear
transformations (and other techniques like pooling) to
iteratively reduce error and learn from the training data.
Broadly speaking, DNNs use a combination of layers that are
typically trained using backward propagation and stochastic
gradient descent (SGD), and which generally access memory
in a regular and dense manner. However, they can differ in
the type and number of layers, as well as layer connectivity,
which affects cache reuse potential, memory sensitivity, and
bandwidth demand. It is crucial for memory system designers
to understand the unique characteristics and potential
performance bottlenecks of different DNNs and the layers
within them, and to build hardware that can respond
appropriately to dynamically changing memory properties.

A. Neural Networks
Neural networks comprise multiple layers with various

functionality, such as convolutional, activation,
normalization, pooling, or fully connected layers. At the core
of DNNs are activation layers. Activations such as Rectified
Linear Unit (ReLU) are used to provide some non-linearity
that helps to successfully train many networks. Because
activation layers typically apply simple functions, they have
low compute requirements. In addition, because an activation
layer applies the activation function in an elementwise
fashion, there is very low data reuse in these layers.

Although many neural network layers are sparsely
connected convolutional layers, some are fully connected.
Logically, such a layer connects every output neuron from the
previous layer to every input neuron in consumer layer. Fully
connected layers typically exhibit high reuse of both model
weights and input elements, and they are compute-intensive.

B. Convolutional Neural Networks
CNNs are sparsely connected neural networks with a form

of connectivity [7]. Convolutional layers are at the heart of
CNNs, and because in CNNs not every output unit interacts
with every input unit, they do not need to learn as many
parameters. This reduces the memory requirements of the
model substantially. Since outputs will only share inputs with
spatially local outputs, this limits the reuse potential relative
to fully connected layers. Furthermore, computing the output
for each layer requires less computation. Even so, in modern
networks, convolutions typically dominate computational
time.

Another innovation in network structure involves a
process known as pooling. Pooling, also called down
sampling, is a specialized hidden layer. A pooling layer is

designed to replace the values from a small region with a
single representative value and does not use neurons. Max
pooling, a common method of pooling, retains the largest
value in the region. Pooling reduces model overfit, or the
tendency of a model to fit to the noise in the data instead of
the actual signal. Data access in these layers is dense and
regular, reuse is limited, and due to the unbalanced nature of
the operation, load and store counts are unequal.

Normalization layers may also be used to facilitate faster
convergence times for training by mitigating covariate shift.
Local response normalization (LRN) and batch
normalization (BN) are commonly used normalization
layers. These techniques differ in which dimension they
normalize (across batches or spatially within an input), but
both have potential for input reuse with adjacent elements.

There are also specialized output layers. Many classifiers
have output layers that use softmax. A softmax output layer
normalizes the values in a neural network so that the entire
vector sums to 1. The output of a classifier represents the
probability that any element in the vector is the solution. The
computation and data requirements are relatively minimal.

C. Recurrent Neural Networks
RNNs have memory (represented by a hidden state

vector), that allows them to capture information about what
has happened previously. These networks contain loops that
allow information to persist across multiple iterations. These
loops can be unrolled such that each of the unrolled iterations
passes information to the next iteration, with each cell
performing one or more fully connected operations and
activation functions. The hidden state is calculated by looking
at the previous hidden state and the input at the current step,
essentially operating as a fully connected layer to process the
concatenated input. Unlike other neural networks, RNNs
share parameters across all steps using a technique known as
weight sharing, so the potential for reuse is even greater than
for a fully connected layer. Even so, this is combined with
activation kernels, which exhibit low reuse.

To help overcome the problem of exploding gradients,
which affects conventional RNNs, researchers have
introduced new types of RNNs such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU)
models. LSTM and GRU retain the same basic concept as a
vanilla RNN but introduce a memory unit. The memory unit
is a logical gate in the RNN that is designed to learn and retain
long-term dependencies.

III. CPU-GPU CACHE COHERENCE BACKGROUND
Tightly coupled CPU-GPU systems can greatly improve

programmability and performance for heterogeneous
workloads. Unlike discrete GPUs, which require explicit data
transfer between the CPU and GPU memory space before and
after every kernel launch, tightly coupled GPUs share a
unified memory space and maintain coherence between the
caches of each device via a shared system directory. Although
this may add some complexity to the system design, it avoids
unnecessary data transfer and latency for multi-kernel

3

applications such as the RNNs and Composed Model (CM),
which combines convolutional layers with pooling layers.

In order to understand trade-offs between different GPU
cache policies in a CPU-GPU system, it is important to
understand how coherence is implemented in such an
environment. Unlike CPU codes, GPU workloads tend to be
much more sensitive to memory throughput than memory
latency, and GPU caching policies are therefore designed to
be simpler and more scalable than conventional CPU
protocols. Rather than requesting and tracking read and write
permissions for accesses, GPU caches simply write-through
written data and self-invalidate read data at synchronization
points (i.e., kernel boundaries) [52][53]. This avoids the
overheads of reader/writer tracking and writer-initiated
invalidation, enabling caches to scale to the higher
throughput demands of GPU workloads. In the system we
study (Section V.B), a shared L2 is then used to filter and
coalesce requests before they interface with a more
conventional (and complex) CPU coherence fabric.

However, as we will show, even this simple strategy can
miss some performance opportunities for some GPU MI
workloads. Depending on the application, bypassing the
cache for some or all data accesses can lead to better
performance by avoiding these overheads.

In this work, we explore the costs and benefits of caching
in GPU MI workloads by simulating three caching policies
that differ in how loads and stores are handled in GPU caches:

 Uncached: Loads and stores bypass all GPU caches.

 CacheR: Loads are cached in L1 and L2, but stores
bypass all GPU caches.

 CacheRW: Loads are cached in L1 and L2, stores
bypass L1 and are combined in L2.

When load caching is disabled, read requests to the same
cache line may be coalesced while the original bypass request
is pending, but on a response the data is forwarded without
being inserted in the cache. When load caching is enabled
(CacheR, CacheRW), the GPU L1 and L2 caches always self-
invalidate valid data at synchronization points (e.g., kernel

boundaries) [53]. When store caching is enabled (CacheRW),
stores still bypass the L1 but they may be coalesced at the L2
until a flush of all L2 dirty data is triggered at a system-scope
synchronization point, at which time they are written back to
memory [61]. The performance effects of each policy, as well
as optimizations that target some of the inefficiencies
discovered, are discussed in Section 5.

IV. EMULATION PROCESS

 In this section we describe our process for running MI
workloads on a simulated APU in gem5. Figure 1 shows how
the gem5 simulator runs MIOpen applications, including the
HCC [14][15] and HIP [16] libraries, on an unmodified
version of the ROCm user-level stack. Since prior work
discusses the compilation flow in detail [5][6], we instead
focus on the changes to this flow that are needed to simulate
the MIOpen framework and the intermediary libraries like
rocBLAS and MIOpenGEMM from Figure 2. The gem5
simulator models a system with multiple CPUs and a GPU
with multiple compute units (CUs). The CPU and GPU are
coherently coupled together, which is an emerging trend in
CPU-GPU systems [48]. Thus, the CPU and GPU share a
single unified cache coherent address space and do not
require explicit copies.
 The gem5 simulator can simulate the entire system in full
system (FS) mode, including devices and an operating
system, or emulate the system calls in syscall emulation (SE)

Table 1: Key simulated system parameters.
GPU Parameters
GPU Clock 1600 MHz
of CUs 64
SIMD units per CU 4
Max # Wavefronts per SIMD unit 10
VRF/SRF per SIMD unit 512/1600
CPU Parameters
CPU Clock 4000 MHz
CPUs 2
Memory Hierarchy
GPU L1 D-cache per CU 16 KB, 64B line, 16-way write-

through
GPU L1 I-cache per 2 CUs 32 KB, 64B line, 16-way
GPU L2 cache per 64 CUs 4 MB, 64B line, 16-way write-

through (write-back for R data)
Main Memory HBM2, 16 GB, 16 channels, 16

banks/channel, 1000 MHz,
512GB/s

Approximate uncontested
L1/L2/Memory latency

50/125/225 cycles

Figure 2: MI application flow.

Figure 1: ROCm gem5 compilation flow.

4

mode. SE mode only simulates user-space execution and
provides system services (e.g., system calls) in the simulator
instead of executing OS kernel-space code. In this work, we
use SE mode because GPU kernels do not make system calls;
instead they rely on rich user-space libraries like the ROC
runtime (ROCr) to provide many system services and to do
device configuration and setup. Furthermore, we use SE
mode while executing the off-the-shelf ROCm stack, which
does the bulk of the system work. Therefore, our
methodology only emulates the lowest levels of the software
stack and preserves the fidelity of all user-level software
components. As a result, the only portion of the ROCm
software stack that must be emulated is the ROCm Linux
kernel driver.
 One of the main changes required for simulating MI
applications in gem5 was extending MIOpen to support
APUs. Currently MIOpen mainly targets discrete GPUs.
Thus, we modified the libraries in Figure 2 to generate code
for APUs. Specifically, we modified the applications, HIP,
and MIOpen to remove the device copies wherever possible.
We also rebuilt HIP to perform all memory management on
the host instead of the device. This was necessary because
part of the default rocBLAS library for discrete GPUs is
hardcoded to use device copies. As a result, both the CPU
and GPU almost always use the same copy of the data. Using
open source libraries was a key enabler in overcoming this
challenge, because we could recompile the libraries after
making the necessary changes.

In addition to the changes required to simulate the
MIOpen applications in gem5, we also made additional
changes to reduce simulation execution time. First, MIOpen
uses clang-ocl to perform online compilation of kernels the
first time it executes an application. As part of this process,
MIOpen caches each kernel binary, to avoid recompiling on
a subsequent use of the kernel. Since online compilation is
computationally intensive and not part of the application’s
region of interest, we bypass online kernel compilation in
gem5 by running the applications on a real AMD APU
beforehand to obtain MIOpen’s cached kernel binaries. In
some cases, the need for additional kernels when we added
new applications was lessened because other MI applications
used the same MIOpen kernels.
 Second, for every application that uses GEMM kernels,
MIOpenGEMM will create a database of GEMM kernels and
then select the kernel that best matches the application’s
matrix size(s). To avoid the overhead of simulating this
process, we added logic to bypass the on-line kernel database
creation for the most popular GEMM kernels. Thus,
MIOpenGEMM only creates its database when it encounters
unpopular GEMM kernels (e.g., a GEMM size that no prior
application had used).
 Finally, DNNMark and MIOpen-benchmark also perform
a sweep of every possible kernel that could be used for each
layer of the neural network. Afterwards, the benchmarks

1 Without loss of generality, we use the AMD GPU terminology. The
NVIDIA CUDA equivalents for these terms are SM (CU), threads (work
items), warps (wavefronts), and thread blocks (work groups).

measure the total execution time of the fastest option for each
layer. This makes sense on real GPUs, where kernels execute
relatively quickly, and the primary goal is performance
benchmarking. However, this greatly increases simulation
time and our main goal is to evaluate relative performance
differences of potential hardware features. Thus, like other
solutions, we added bypass logic in DNNMark and MIOpen-
benchmark that preselects the fastest kernel for a given layer
based on the execution time on a real AMD APU.

V. METHODOLOGY

A. The gem5 Simulator
 To analyze how MI workloads perform on future
architectures and the benefits of co-designed hardware-
software solutions, we leverage the gem5 simulator [4][5].
The gem5 simulator is a natural choice for this work because
it models both the CPU and GPU with high fidelity, including
multi-threaded synchronization and cache coherence. Other
tools also attempt to project MI performance, but they either
have not been released [42][44][45][46], exclusively focus on
modeling the GPU kernel execution [47], or have been
released but only optimize the neural network before
execution (e.g., XLA [32] and ONNX [33]). Although some
of these approaches could eventually be incorporated into
gem5, in this work we instead focus on executing both the
CPU and GPU parts of open-sourced MI applications. More
recently, GPGPGU-Sim [60] and Multi2Sim [35][59] have
been updated to support MI workloads; these simulators
could also be used for this study and we expect they would
provide similar results.
 Prior work has shown how to use AMD’s ROCm
ecosystem to simulate HCC and HIP applications in gem5
with high fidelity compared to an AMD APU [5][6]. In this
work, we build from the existing ROCm support to simulate
MI applications that use the MIOpen library [36]. Although
there are several widely used MI libraries, MIOpen is one of
the few open-source libraries, which allowed us to easily
change it to work with cache coherent APUs. We discuss
other GPU simulators and modeling techniques in Section
VIII. We extend prior work on running AMD APUs in gem5
to execute MI applications from a wide variety of suites,
including DNNMark [8], DeepBench [9][10], and MIOpen-
benchmark [11]. These suites cover a wide range of MI uses,
including CNNs and RNNs.

B. System Configuration
Table 1 lists the key system parameters we simulate in

gem5.1 Figure 3 shows the conceptual system design, which
includes a 64-CU GPU with two levels of cache [37]. Our
simulated GPU CU pipeline is based on AMD’s GCN
architecture [49] and uses the GCN3 ISA [41]. We model
single-cycle instruction issue with 64-wide wavefronts and the
model uses 64-wide SIMDs. Our detailed model also models

5

the delay to process packets and its memory accesses.
Similarly, the host CPU model uses gem5’s detailed out-of-
order, superscalar, pipelined x86-64 processors with SMT
support.

C. Applications
Table 2 shows the seventeen MI benchmarks that we

studied. These MI benchmarks come from several popular
MI suites: DNNMark [8], DeepBench [9][10], and MIOpen-
benchmark [11]. We selected these benchmarks because they
cover many different types of CNN and RNN layers and full
NNs. Most of these benchmarks are single CNN layers,
which make up the larger CNNs used in many DNNs.
However, we also include several benchmarks such as the
RNNs, and Composed Model that are larger MI applications.
The input sizes for these workloads were selected based on
the largest input sizes for these workloads that we could
simulate in a reasonable amount of time (up to 5 days of
simulation time), and we use the same inputs as the
benchmark suites (randomly initialized values). All of these
benchmarks call MIOpen directly.

Many of the workloads in Table 2 execute a single GPU
kernel. These benchmarks, including most of the DNNMark
benchmarks, often run a single CNN layer or operation.
Studying these benchmarks is useful for examining the
correctness of the simulator and studying the
microarchitectural and memory behavior of specific layers
within larger MI workloads. Moreover, they represent the
building blocks that are used for the larger networks such as
Composed Model and the RNN workloads.

The DeepBench RNN training and inference workloads
in Table 2 are highly configurable, and can model many
different sequence lengths, hidden layer sizes, and batch
sizes. As hidden layer size, sequence length, and batch size
increase, the number of kernels and GPU footprint also
increase. Thus, these workloads are useful for examining the
behavior of a variety of different RNN training and inference
sizes. In this paper we present LSTM and GRU data since
they are the most widely used variants and show results for
an input that is representative of RNNs used in real English-
Vietnamese speech translation RNNs [31].

VI. CACHING CHARACTERIZATION
We begin by characterizing benchmark properties that are

relatively independent of cache policy. To the best of our
knowledge, this is the first characterization of MI CPU-GPU
workloads in a coherent shared memory environment. Figure
4 shows the giga vector operations per second (GVOPS) for
each workload, and Figure 5 shows the giga GPU memory
requests per second (GMR/s) issued to the memory system
for each workload (the CacheR policy is used for both). This
data provides some insight into which workloads are compute
bound and which are memory bound. In state-of-the-art MI
kernels, the tiling pattern, work item/work group parallelism,
and scratchpad memory usage can vary even for a given
kernel based on what the framework determines is optimal
for the target platform, making it difficult to generalize about
the memory sensitivity of any class of MI tasks. However, as
a general rule, workloads with low compute bandwidth and

Table 2: Studied MI workloads.
Application Input Unique Kernels/

Total Kernels
GPU Footprint

Backward Activation (BwAct) [8] Batch size 100 1/1 2.4 GB
Backward Batch Normalization (BwBN) [8] Batch size 512 1/1 5.88 MB
Backward Pool (BwPool) [8] Batch size 256 1/1 252 MB
Backward Softmax (BwSoft) [8] Batch size 512 1/1 0.02 MB
Composed Model (CM) [8] Batch size 64 4/130 12.1 MB
Forward Activation (FwAct) [8] Batch size 100 1/1 1.6 GB
Forward Batch Normalization (FwBN) [8] Batch size 256 1/1 42 MB
Forward Fully Connected (FwFc) [8] Batch size 512 1/1 148.2 MB
Forward LRN (FwLRN) [8] Batch size 100 1/1 2.4 GB
Forward Pool (FwPool) [8] Batch size 256 1/1 480 MB
Forward Softmax (FwSoft) [8] Batch size 512 1/1 0.01 MB
SGEMM [9][10] 4Kx128x4K 1/1 68 MB
DGEMM [9][10] 4Kx128x4K 1/1 132MB

RNN Forward (FwLSTM/GRU) [9][10] [11]
Batch size 1, sequence length 16,
hidden layer 128, LSTM/GRU

4/150 0.38 MB

RNN Forward Backward (FwBwLSTM/GRU) [9][10] [11]
Batch size 1, sequence length 16,
hidden layer 128, LSTM/GRU

6/363 0.48 MB

Figure 3: Overall simulated system.

6

high memory request bandwidth are more likely to be
sensitive to caching policy than workloads with low memory
request bandwidth and high compute bandwidth.

A. Caching Policy Comparison
Figure 6 shows the execution time of each caching policy

described in Section III for all applications, normalized to
Uncached. Figure 7 shows the number of memory accesses
that reach the DRAM controller, also normalized to
Uncached. Overall, our results show that the best performing
caching policy varies widely depending on the available
cache reuse and memory sensitivity of the workload.
Workloads can be grouped into three categories based on how
they are affected by caching:

1. Memory Insensitive: Cache policy does not
significantly affect overall execution time (<5%
change) for CM, SGEMM, and DGEMM because
the workload is compute bound or the potential for
reuse is low.

2. Reuse Sensitive: Enabling caching consistently
improves cache reuse and performance for FwBN,
FwPool, FwSoft, BwSoft, BwPool, FwGRU,
FwLSTM, FwBwGRU, FwBwLSTM, BwBN, and
FwFc.

3. Throughput Sensitive: Enabling caching
consistently hurts performance for FwAct, FwLRN,
and BwAct due to a lack of cache reuse and high
throughput demand for data.

B. Caching Benefits: Reuse
The main benefit of caching is that it enables cache reuse

and therefore lower latency and higher bandwidth access to
data. Figure 7 shows the total number of GPU memory

accesses issued to DRAM, normalized to Uncached. The
reduction in this value represents the proportion of memory
accesses that hit in the cache and gives a measure of read and
write reuse potential. For most applications (excluding
throughput sensitive applications), enabling read or write
caching increases the proportion of accesses that hit in the
caches.

The amount of added reuse enabled by caching is
dependent on the amount of reuse in the algorithm and the
amount of reuse possible with caching disabled. When
caching is disabled, local reuse can still be exploited in two
ways: 1) if accesses to reused data are from work items in the
same work group, a kernel may use local data store (LDS)
memory to load data once from memory then reused multiple
times by threads in the work group, and 2) if accesses to the
same data arrive close together in the cache, they can be
coalesced until the original bypass request completes. With
caching enabled, reuse between any threads over any period
of time can be exploited in the caches.

As expected, the throughput sensitive workloads, which
are the activation and normalization layers with no potential
for reuse, experience no performance benefits or memory
demand reduction from enabling caching.

In contrast, enabling caching improves reuse for the cache
insensitive workloads, but this does not result in performance
gains. For DGEMM and SGEMM, caching reads reduces
memory demand by 74% and 84%, respectively, but these
workloads are ultimately limited by compute throughput.
Read and write caching improve reuse by 69% for CM, but
performance is unaffected due to CM’s exceptionally low
memory demand.

The remaining reuse sensitive workloads benefit from
read and/or write caching to various degrees. Layers with
limited connectivity, such as the pooling, convolution, and

Figure 4: Giga vector ops per second with CacheR policy.

 Figure 5: Giga memory requests per second with CacheR policy.

0
1000
2000
3000
4000
5000

Co
m

pu
te

 B
W

 (G
VO

PS
)

0
5

10
15
20
25

D
at

a
BW

 (G
M

R/
s)

7

some normalization layers show limited benefit in large part
because reuse is primarily between nearby work items and
can be exploited even when caching is disabled. However, for
workloads with higher connectivity, where reuse is possible
between distant work items (e.g., FwFC, FwBN, FwBwGRU,
and FwBwLSTM), we find that read caching can reduce
memory demand by up to 93%. When the accesses that
experience reuse are critical to performance, this can also
result in performance gains, reducing execution time by up to
29%. In addition, write caching can further reduce memory
demand by up to 71% and execution time by up to 32% for
reuse sensitive workloads which exhibit high potential for
write coalescing at L2 such as BwPool and BwBN.

C. Caching Overheads
Improved cache hit rates do not tell the whole story. For

throughput-sensitive workloads, the overheads of caching
may outweigh the benefits. We find that coherence overheads
manifest themselves primarily as 1) cache stalls due to added
contention for cache resources, and 2) reduced DRAM row
locality for requests that have been delayed in the caches.

1) Cache Stalls

We define a cache stall as any cycle in which a ready
cache request is blocked from querying a cache at any level.
When caching is enabled, cache operations can increase
cache stalls in multiple ways. Cached requests require
allocation on a miss, and this may cause stalls if all lines in
the set are in a busy state (e.g., waiting for a pending load).
In addition, coherence operations can add contention for
shared resources such as tag arrays (e.g., due to failed cache
allocation).

Figure 8 plots of cache stall counts on a logarithmic scale
normalized to the number of GPU L1 requests. High cache
stall counts lead to worse execution time for FwAct and
BwAct, when read caching is enabled. FwPool also
experiences high cache stalls, although any negative effect
here is offset by the added reuse achieved through caching.

2) DRAM Row Locality
Enabling read or write caching adds variability to memory

access times through cache stalls described in Section
1)VI.C.1) or by delaying stores at the L2 so they can be
coalesced (CacheRW). For programs with highly regular
access patterns and limited reuse potential, this added
variability can negatively impact DRAM row locality, which
in turn limits achievable DRAM bandwidth and increases

Figure 6: Execution time for all applications using each cache policy. Normalized to Uncached.

Figure 7: Number of GPU memory requests which reach DRAM, normalized to Uncached.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

D
G

EM
M

SG
EM

M CM

Fw
BN

Fw
Po

ol

Fw
So

ft

Bw
So

ft

Bw
Po

ol

Fw
G

RU

Fw
LS

TM

Fw
Bw

G
RU

Fw
Bw

LS
TM

Bw
BN

Fw
Fc

Fw
Ac

t

Fw
LR

N

Bw
Ac

t

Insensitive Reuse Sensitive Throughput Sensitive

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Uncached CacheR CacheRW

0%
20%
40%
60%
80%

100%
120%

D
G

EM
M

SG
EM

M CM

Fw
BN

Fw
Po

ol

Fw
So

ft

Bw
So

ft

Bw
Po

ol

Fw
G

RU

Fw
LS

TM

Fw
Bw

G
RU

Fw
Bw

LS
TM

Bw
BN

Fw
Fc

Fw
Ac

t

Fw
LR

N

Bw
Ac

t

Insensitive Reuse Sensitive Throughput
Sensitive

M
em

or
y

D
em

an
d

Re
du

ct
io

n
(a

cc
es

se
s)

Uncached CacheR CacheRW

8

memory latency. Figure 9 shows how different cache policies
affect the row hit ratio for DRAM loads and stores. MI
applications tend to have regular access patterns, and as a
result enabling caching can interfere with this regularity and
hurt DRAM row hit rates2. In particular, FwPool, FwAct,
FwLRN, and BwAct suffer from this effect. Although this
effect in FwPool is outweighed by the benefits of cache reuse,
in the throughput sensitive workloads it contributes to a
performance degradation for caching configurations.

VII. CACHING OPTIMIZATIONS FOR MI

APPLICATIONS
Motivated by the caching overheads we observe in GPU

MI workloads, we next describe three potential architectural
optimizations and evaluate their effect on performance. All
are applied to the most aggressive caching policy, CacheRW,
and are compared against the best and worst performing static
configurations as measured in Figure 6. Figure 10 reports the
normalized execution time for these optimizations, Figure 11
plots the relative number of DRAM accesses for each
configuration, Figure 12 shows cache stall counts per GPU

2 The exceptions are BwBN and FwFC, which see higher row hit
rates with caching enabled because caching filters interleaved

memory request plotted on a logarithmic scale, and Figure 13
reports DRAM row hit rates.

1) Allocation Bypass
We begin by attempting to address the overhead of cache

stalls due to blocked cache allocation operations. When
caching is enabled and memory accesses require cache
allocation, it may be necessary to stall the incoming request
if all lines in the target set are occupied by a pending load or
store until the blocking request completes. However, as we
have seen this can limit bandwidth and disrupt DRAM row
locality. To address this, we adapt our caching policies by
converting cached requests to bypass requests whenever
allocation would require blocking. This allocation bypass
optimization is plotted as CacheRW-AB in Figure 10-Figure
13.

Although the non-blocking caching optimization reduces
cache stalls per request significantly, it has a minimal effect
on overall performance for most applications. This can be
explained by the fact that allocation bypassing does little to
reduce the added congestion overhead, and in some cases
adds to it by eliminating a throttling effect from the L1 cache
level (note the 7% higher execution time for FwPool). The

repeated accesses such that primarily the highly regular compulsory
misses make it to DRAM.

Figure 8: Cache stall count (log scale) for all applications normalized to the total GPU memory request count.

Figure 9: DRAM row buffer hit ratios for all applications.

0.01

0.1

1

10

100

D
G

EM
M

SG
EM

M CM

Fw
BN

Fw
Po

ol

Fw
So

ft

Bw
So

ft

Bw
Po

ol

Fw
G

RU

Fw
LS

TM

Fw
Bw

G
RU

Fw
Bw

LS
TM

Bw
BN

Fw
Fc

Fw
Ac

t

Fw
LR

N

Bw
Ac

t

Insensitive Reuse Sensitive Throughput
Sensitive

Ca
ch

e
St

al
ls

 p
er

 M
em

or
y

Ac
ce

ss
 (c

ou
nt

)
Uncached CacheR CacheRW

0%
20%
40%
60%
80%

100%

D
G

EM
M

SG
EM

M CM

Fw
BN

Fw
Po

ol

Fw
So

ft

Bw
So

ft

Bw
Po

ol

Fw
G

RU

Fw
LS

TM

Fw
Bw

G
RU

Fw
Bw

LS
TM

Bw
BN

Fw
Fc

Fw
Ac

t

Fw
LR

N

Bw
Ac

t

Insensitive Reuse Sensitive Throughput
Sensitive

D
RA

M
 R

ow
 H

it
Ra

te

Uncached CacheR CacheRW

9

main exception is FwLRN, which sees significant benefits
due to improved DRAM row hit ratios. FwLRN is most
affected by DRAM row locality disruption due to blocking
allocation. Avoiding allocation blocking eliminates the
predominant source of caching overhead, although a slight
performance degradation remains from disruption due to
coalesced delayed L2 store requests.

B. Row Locality-Aware Cache Rinsing
Although allocation bypass avoids row locality disruption

caused by blocking allocation operations, it does not avoid
disruption due to L2 write coalescing. To address this, we
next add a row locality-aware cache rinsing scheme based on
a method originally proposed for CPUs by Seshadri et al.
[58]. This technique adds a dirty block index to the GPU L2
that tracks dirty blocks in each DRAM row. Whenever a dirty
block is evicted, a writeback of all other dirty blocks in that
row is triggered.

We add this cache rinsing optimization on top of the
allocation bypassing optimization, denoted CacheRW-CR in
Figure 10-Figure 13. Cache rinsing counteracts the DRAM
row locality overhead of caching for affected (mainly
throughput sensitive) workloads, offering DRAM row hit

rates that are even higher than those of the best static
configuration. As Figure 10 shows, caching overheads in
BwAct and FwAct are reduced as a result of this technique.

C. PC-Based L2 Bypassing
We next attempt to address any remaining performance

overheads due to caching by predicting whether caching will
be beneficial (i.e., whether cache reuse is likely) then
dynamically choosing to use cached requests and incur the
resulting overheads only when that is the case. Past work has
explored this concept for adaptive load bypassing at the L1,
proposing a PC-based reuse predictor to avoid cache
pollution and more effectively use limited cache space [54];
we apply the same PC-based technique instead to the L2 for
both loads and stores for the purpose of avoiding congestion
overheads when reuse is unlikely.

PC-based L2 bypassing is applied on top of the allocation
bypassing and cache rinsing optimizations and denoted as
CacheRW-PCby in Figure 10-Figure 13. Overall, it is
effective at predicting reuse for MI workloads. For nearly all
workloads, the combination of allocation bypassing, cache
rinsing, and PC-based bypassing matches or exceeds the
performance of the best static cache configuration by

Figure 10: Execution time of best and worst static cache policy (from Figure 6) compared with allocation bypassing (CacheRW-AB), cache rinsing (CacheRW-CR),

and PC-based bypassing (CacheRW-PCby) optimizations added. Normalized to best static configuration.

Figure 11: Number of GPU memory requests which reach DRAM for static best and static worst cache policy (from) compared with allocation bypassing
(CacheRW-AB), cache rinsing (CacheRW-CR), and PC-based bypassing (CacheRW-PCby) optimizations added . Normalized to Uncached.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

D
G

EM
M

SG
EM

M CM

Fw
BN

Fw
Po

ol

Fw
So

ft

Bw
So

ft

Bw
Po

ol

Fw
G

RU

Fw
LS

TM

Fw
Bw

G
RU

Fw
Bw

LS
TM

Bw
BN

Fw
Fc

Fw
Ac

t

Fw
LR

N

Bw
Ac

t

Insensitive Reuse Sensitive Throughput Sensitive

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e StaticBest StaticWorst CacheRW-AB CacheRW-CR CacheRW-PCby

0%
20%
40%
60%
80%

100%
120%

D
G

EM
M

SG
EM

M CM

Fw
BN

Fw
Po

ol

Fw
So

ft

Bw
So

ft

Bw
Po

ol

Fw
G

RU

Fw
LS

TM

Fw
Bw

G
RU

Fw
Bw

LS
TM

Bw
BN

Fw
Fc

Fw
Ac

t

Fw
LR

N

Bw
Ac

t

Insensitive Reuse Sensitive Throughput Sensitive

M
em

or
y

D
em

an
d

Re
du

ct
io

n
(a

cc
es

se
s)

StaticBest StaticWorst CacheRW-AB CacheRW-CR CacheRW-PCby

10

selectively incurring cache overheads when they are expected
to be beneficial. For example, PC-based bypassing is able to
overcome the overhead introduced to FwPool from allocation
bypassing.

VIII. RELATED WORK
There have been multiple prior efforts to enable efficient

caching and coherence in GPUs [53][61][62][63]
[64][65][66]. In general, these aim to maximize cache reuse,
often by avoiding or mitigating the cost of bulk flush and
invalidation actions that are required for synchronization in
GPU caches. In contrast, the techniques described in this
work target MI workloads where reuse may be fundamentally
limited by low locality, and where even the overheads of a
simple caching mechanism can degrade performance. These
prior efforts therefore miss out on potential performance
improvements by focusing on increasing reuse rather than
reducing overhead.

Past work has also proposed techniques for adapting GPU
caching and coherence strategies to the access patterns of
executing workloads. Whether through adaptive cache
bypassing [54][69][70], locality-aware rinsing
[55][56][57][58] (which to our knowledge has previously
only been applied to CPU systems), flexible coherence
request types [67], or cross-layer coordination of scheduling
and memory management [78], these techniques can greatly

improve cache efficiency by matching caching policies to
GPU workload demands. In contrast, the primary
contribution of this work is to characterize the sources of
cache inefficiency in GPU MI workloads and to show how
multiple techniques described above can be combined in a
targeted and cooperative manner to address the specific
caching overheads in this important domain.

To the best of our knowledge, this is the first work that
characterizes MI workloads on a cycle-level, publicly
available simulator like gem5. Prior work has simulated MI
workloads on in-house simulators [42][44][45][46], but few
details are available. In addition to using in-house simulators,
SCNN and CDMA use analytical models, like TimeLoop, to
analyze NNs [42][43]. CDMA explicitly mentions the lack
of publicly available MI simulators as one reason for using
analytical models, which enhances the importance and
necessity of this work. More recently, GPGPGU-Sim [60]
and Multi2Sim [35][59] have been updated to support MI
workloads. Although these tools could be used to perform
similar studies, GPGPU-Sim focuses on discrete GPUs, not
tightly coupled ones like gem5 models (GPGPU-Sim’s recent
updates could be integrated into gem5-gpu [34] to allow such
a study). Moreover, recent work has shown that simulating
at a higher level, like GPGPU-Sim, loses important
architectural details and may lead to incorrect conclusions
[5]. Thus, when combined with the importance of being able

Figure 12: Cache stalls per memory request for best and worst static cache policy (from Figure 6) compared with allocation bypassing (CacheRW-AB), cache
rinsing (CacheRW-CR), and PC-based bypassing (CacheRW-PCby) optimizations added. Plotted on logarithmic scale.

 Figure 13: DRAM row hit ratio request for best and worst static cache policy (from Figure 6) compared with allocation bypassing (CacheRW-AB), cache rinsing
(CacheRW-CR), and PC-based bypassing (CacheRW-PCby) optimizations added.

0.01

0.1

1

10

100

D
G

EM
M

SG
EM

M CM

Fw
BN

Fw
Po

ol

Fw
So

ft

Bw
So

ft

Bw
Po

ol

Fw
G

RU

Fw
LS

TM

Fw
Bw

G
RU

Fw
Bw

LS
TM

Bw
BN

Fw
Fc

Fw
Ac

t

Fw
LR

N

Bw
Ac

t

Insensitive Reuse Sensitive Throughput Sensitive

Ca
ch

e
St

al
ls

 p
er

 M
em

or
y

Re
qu

es
t (

co
un

t)
StaticBest StaticWorst CacheRW-AB CacheRW-CR CacheRW-PCby

0%
20%
40%
60%
80%

100%

D
G

EM
M

SG
EM

M CM

Fw
BN

Fw
Po

ol

Fw
So

ft

Bw
So

ft

Bw
Po

ol

Fw
G

RU

Fw
LS

TM

Fw
Bw

G
RU

Fw
Bw

LS
TM

Bw
BN

Fw
Fc

Fw
Ac

t

Fw
LR

N

Bw
Ac

t

Insensitive Reuse Sensitive Throughput Sensitive

D
RA

M
 R

ow
 H

it
Ra

tio

StaticBest StaticWorst CacheRW-AB CacheRW-CR CacheRW-PCby

11

to recompile the libraries to run APU-compliant code, we
believe gem5 and MIOpen represent the best combination
between simulator and MI library.

There has also been prior work on analyzing MI
workloads at a higher level [38][39][40] than the lower level
support we added to gem5. However, these efforts are unable
to obtain the same level of detailed analysis (e.g., coherence
traffic and stall cycles) that we can obtain with gem5.
Projects like XLA [32], ONNX [33], and DeepCPU [50]
optimize the entire neural network before execution.
Although these projects also optimize MI workloads, we
view these works as complementary to ours, and potentially
something that could be added on top of our framework.

IX. CONCLUSIONS AND FUTURE WORK
In this work, we demonstrate that the gem5 APU

simulator can execute CPU+GPU MI applications using
MIOpen. Using this tool, we characterize the performance
effects of a variety of GPU caching policies on these
workloads. Overall, we found that caching reads and writes
has mixed behavior for MI workloads. For some workloads,
it improves performance by up to 29% through increased
cache reuse, but for others it degrades performance by up to
24% by incurring cache stalls and disrupting DRAM row
locality. Based on these trade-offs, we motivate and evaluate
a set of adaptive cache optimizations with gem5. For most
applications, these optimizations allow us to leverage the
benefits of caching when it is helpful while avoiding
performance overheads when caching hurts.

These results demonstrate that, although the MI
applications studied all exhibit regular and dense memory
access patterns, there is no statically ideal caching policy for
GPU MI workloads. Thus, being able to selectively avoid
coherence overheads where possible is important to
performance. In the future, GPU coherence overheads will
likely only grow in importance. Future heterogeneous
systems will likely require even deeper cache hierarchies and
non-uniform memory access interfaces, while MI workloads
may exhibit even higher throughput demands and more
frequent synchronization. As bulk coherence operations
become more complex, expensive, and frequent, it is critical
to be able to understand these trade-offs and address them
with smart and adaptive cache policies.

More broadly this paper demonstrates the robustness of
the AMD gem5 APU simulator and the benefit of open-
source software stacks. In the important MI domain,
researchers need the tools to evaluate and enhance the entire
system solution space. Using gem5 to explore the space of
caching strategies, we show how researchers can now rapidly
prototype new hardware features running production-quality
software and examine how they behave in tightly coupled
CPU-GPU systems.

X. ACKNOWLEDGEMENTS

The authors would like to thank Gabe Loh for his valuable
feedback on this work. AMD, the AMD Arrow logo, Radeon,
and combinations thereof are trademarks of Advanced Micro

Devices, Inc. Other product names used in this publication
are for identification purposes only and may be trademarks of
their respective companies.

REFERENCES
[1] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. In Int. J. Comput. Vision
115, 3 (December 2015), pp. 211-252.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
classification with deep convolutional neural networks.” NIPS, 2012.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving
deep into rectifiers: Surpassing human-level performance on ImageNet
classification.” In Proceedings of the IEEE International Conference
on Computer Vision. 2015.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K.
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The gem5 Simulator. May 2011, In ACM SIGARCH Computer
Architecture News.

[5] Anthony Gutierrez, Bradford M. Beckmann, Alexandru Dutu, Joseph
Gross, John Kalamatianos, Onur Kayiran, Michael LeBeane, Matthew
Poremba, Brandon Potter, Sooraj Puthoor, Matthew D. Sinclair, Mark
Wyse, Jieming Yin, Xianwei Zhang, Akshay Jain, Timothy G. Rogers.
Lost in Abstraction: Pitfalls of Analyzing GPUs at the Intermediate
Language Level. In Proceedings of the 24th IEEE International
Symposium on High-Performance Computer Architecture (HPCA),
February 2018.

[6] Anthony Gutierrez, Bradford M. Beckmann, Sooraj Puthoor, Matthew
D. Sinclair, Tuan Ta, and Xianwei Zhang. AMD gem5 APU simulator:
Modeling GPUs Using the Machine ISA. Tutorial at International
Symposium on Computer Architecture, June 2018.

[7] Yann LeCun. "Generalization and network design strategies."
Connectionism in perspective (1989): pp. 143-155.

[8] Shi Dong and David Kaeli. DNNMark: A Deep Neural Network
Benchmark Suite for GPUs. In Proceedings of the General Purpose
GPUs (GPGPU-10). 2017.

[9] Sharan Narang. DeepBench. https://svail.github.io/DeepBench/.
September 2016.

[10] Sharan Narang and Greg Diamos. An update to DeepBench with a
focus on deep learning inference. https://svail.github.io/DeepBench-
update/. June 2017.

[11] Pat Flick. MIOpen-benchmarks. https://github.com/patflick/miopen-
benchmark. October 2017.

[12] Andrej Karpathy. The Unreasonable Effectiveness of Recurrent
Neural Networks. http://karpathy.github.io/2015/05/21/rnn-
effectiveness/. May 2015.

[13] Christopher Olah. Understanding LSTM Networks.
http://colah.github.io/posts/2015-08-Understanding-LSTMs/. August
2015.

[14] AMD. HCC: An open source C++ compiler for heterogeneous devices.
https://github.com/RadeonOpenCompute/hcc.

[15] Ben Sander, Greg Stoner, Siu-chi Chan, Wen-Heng Chung, Robin
Maffeo. HCC: A C++ Compiler for Heterogenous Computing. HSA
Foundation, Tech Report (2015).

[16] HIP: Heterogeneous-computing Interface for Portability.
https://github.com/ROCm-Developer-Tools/HIP/.

[17] Amir Yazdanbakhsh, Kambiz Samadi, Nam Sung Kim, and Hadi
Esmaeilzadeh. GANAX: A Unified MIMD-SIMD Acceleration for
Generative Adversarial Networks. Proceedings of the 45th Annual
Symposium on Computer Architecture (ISCA), June 2018.

[18] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, Gennady
Pekhimenko. Gist: Efficient Data Encoding for Deep Neural Network
Training. Proceedings of the 45th Annual Symposium on Computer
Architecture (ISCA), June 2018.

12

[19] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd
Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,
Logan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam
Sapek, Gabriel Weisz, Lisa Woods, Sitaram Lanka, Steven K.
Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger. A
Configurable Cloud-Scale DNN Processor for Real-Time AI.
Proceedings of the 45th Annual Symposium on Computer Architecture
(ISCA), June 2018.

[20] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C.
Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D.
Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A.
Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J.
Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G.
MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R.
Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N.
Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C.
Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M.
Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R.
Walter, W. Wang, E. Wilcox and D. H. Yoon, "In-Datacenter
Performance Analysis of a Tensor Processing Unit," in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
2017.

[21] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar
Das, Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth
Nagaraj, Bharat Kaul, Pradeep Dubey, and Anand Raghunathan. 2017.
ScaleDeep: A Scalable Compute Architecture for Learning and
Evaluating Deep Networks. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA '17). ACM,
New York, NY, USA, pp. 13-26.

[22] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio
Puglielli, Rangharajan Venkatesan, Brueck Khailany, Joel Emer,
Stephen W. Keckler, and William J. Dally. SCNN: An accelerator for
compressed-sparse convolutional neural networks, 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture
(ISCA), Toronto, ON, 2017, pp. 27-40.

[23] Yongming Shen, Michael Ferdman, and Peter Milder. 2017.
Maximizing CNN Accelerator Efficiency Through Resource
Partitioning. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA). pp. 535-547

[24] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika,
Reetuparna Das, and Scott Mahlke. 2017. Scalpel: Customizing DNN
Pruning to the Underlying Hardware Parallelism. SIGARCH Comput.
Archit. News 45, 2 (June 2017), pp. 548-560.

[25] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle
Olukotun. 2017. Understanding and Optimizing Asynchronous Low-
Precision Stochastic Gradient Descent. In Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA
'17). ACM, New York, NY, USA, pp. 561-574.

[26] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt,
Natalie Enright Jerger, and Andreas Moshovos. 2016. Cnvlutin:
ineffectual-neuron-free deep neural network computing. In
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA '16). IEEE Press, Piscataway, NJ, USA, pp. 1-13.

[27] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev
Balasubramonian, John P. Strachan, miao Hu, R. Stanley Williams, and
Vivek Srikumar. ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars, 2016
ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), Seoul, 2016, pp. 14-26.

[28] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-
Yeon Wei, and David Brooks. 2016. Minerva: enabling low-power,
highly-accurate deep neural network accelerators. In Proceedings of
the 43rd International Symposium on Computer Architecture (ISCA
'16). IEEE Press, Piscataway, NJ, USA, pp. 267-278.

[29] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis,
Misha Smelyankiy, Liang Xiong, and Xiaodong Wang. Applied

Machine Learning at Facebook: A Datacenter Infrastructure
Perspective. 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), Vienna, 2018, pp. 620-
629.

[30] Yu-Hsin Chen, Joel Emer and Vivienne Sze, Eyeriss: A Spatial
Architecture for Energy-Efficient Dataflow for Convolutional Neural
Networks. 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), Seoul, 2016, pp. 367-379.

[31] Denny Britz, Anna Goldie, Minh-Thang Luong, & Quoc Le. Massive
Exploration of Neural Machine Translation Architectures. In
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 1442-1451.

[32] TensorFlow. Accelerated Linear Algebra (XLA) Overview.
https://www.tensorflow.org/performance/xla/, August 2018.

[33] ONNX: Open Neural Network Exchange Format. https://onnx.ai/,
September 2018.

[34] Jason Power, Joel Hestness, Marc S. Orr, Mark D. Hill and David A.
Wood, gem5-gpu: A Heterogeneous CPU-GPU Simulator, in IEEE
Computer Architecture Letters, vol. 14, no. 1, pp. 34-36, 1 Jan.-June
2015.

[35] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David
Kaeli. Multi2Sim: a simulation framework for CPU-GPU computing.
In Proceedings of the 21st international conference on Parallel
architectures and compilation techniques (PACT), pp. 335-34, 2012.

[36] AMD. MIOpen: AMD’s Maching Intelligence Library.
https://github.com/ROCmSoftwarePlatform/MIOpen, September
2018.

[37] AMD Radeon Technology Group. Radeon’s next-generation Vega
architecture. https://radeon.com/_downloads/vega-whitepaper-
11.6.17.pdf, November 2017.

[38] Yifan Sun, Saoni Mukherjee, Trinayan Baruah, Shi Dong, Julian
Gutierrez, Prannoy Mohan, and David Kaeli, "Evaluating Performance
Tradeoffs on the Radeon Open Compute Platform," 2018 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2018, pp. 209-218.

[39] Saiful A. Mojumder, Marcia S Louis, Yifan Sun, Amir Kavyan Ziabari,
Jose L. Abellan, John Kim, David Kaeli, and Ajay Joshi. Profiling
DNN Workloads on a Volta-based DGX-1 System. In 2018 IEEE
International Symposium on Workload Characterization (IISWC),
2018.

[40] Hongyu Zhu, Amar Phanishayee, Gennady Pekhimenko, Bianca
Schroeder, Bojian Zheng, Mohamed Akrout, Andrew Pelegris, and
Anand Jayarajan. Benchmarking and Analyzing Deep Neural Network
Training. In 2018 IEEE International Symposium on Workload
Characterization (IISWC), 2018.

[41] AMD. Graphics Core Next Arcitecture, Generation 3.
https://gpuopen.com/compute-product/amd-gcn3-isa-architecture-
manual/. August, 2016.

[42] Minsoo Rhu, Mike O'Connor, Niladrish Chatterjee, Jeffrey Pool,
Youngeun Kwon and Stephen W. Keckler. Compressing DMA
Engine: Leveraging Activation Sparsity for Training Deep Neural
Networks. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), Vienna, 2018, pp. 78-
91.

[43] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio
Puglielli, Rangharajan Venkatesan, Bruckey Khailany, Joel Emer, and
Stephen Keckler. SCNN: An accelerator for compressed-sparse
convolutional neural networks. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), Toronto,
ON, 2017, pp. 27-40.

[44] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz and William J. Dally. EIE: efficient inference engine on
compressed deep neural network. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), Seoul,
2016, pp. 243-254

[45] Jorge Albericio, Patrick Judd, Alberto Delmas, Sayeh Sharify and
Andreas Moshovos. Bit-pragmatic deep neural network computing. In
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, Boston, 2017, pp. 382-394.

13

[46] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M. Aamodt,
Natalie Enright Jerger, and Andreas Moshovos. Proteus: Exploiting
Numerical Precision Variability in Deep Neural Networks. In
Proceedings of the 2016 International Conference on Supercomputing
(ICS '16).

[47] Tor Aamodt. COHESA: Computing Hardware for Emerging
Intelligent Sensory Applications.
https://www.ece.ubc.ca/~aamodt/projects/cohesa/.

[48] Luke Durant, Olivier Giroux, Mark Harris, and Nick Stam. Inside
Volta: The World’s Most Advance Data Center GPU.
https://devblogs.nvidia.com/inside-volta/?ncid=so-lin-vt-13919, May
2017.

[49] AMD. AMD Graphics Core Next (GCN) Architecture.
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
, June 2012.

[50] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang, and Yuxiong He.
DeepCPU: Serving RNN-based Deep Learning Models 10x Faster. In
Proceedings of the 2018 USENIX Annual Technical Conference
(USENIX ATC), July 2018, pp. 951-965.

[51] John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A
Parallel Programming Standard for Heterogeneous Computing
Systems. IEEE Design & Test 12, 3 (May 2010), pp. 66-73.

[52] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2017.
Chasing Away RAts: Semantics and Evaluation for Relaxed Atomics
on Heterogeneous Systems. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA '17). pp.
161-174.

[53] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2015.
Efficient GPU synchronization without scopes: saying no to complex
consistency models. In Proceedings of the 48th International
Symposium on Microarchitecture (MICRO-48). pp. 647-659.

[54] Yingying Tian, Sooraj Puthoor, Joseph L. Greathouse, Bradford M.
Beckmann, and Daniel A. Jiménez. “Adaptive GPU cache bypassing.”
In Proceedings of the 8th Workshop on General Purpose Processing
using GPUs (GPGPU). pp. 25-35.

[55] H.-H Lee, G. Tyson and M. Farrens. Eager writeback – a technique for
improving bandwidth utilization. In the proceedings of the 33rd
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2000.

[56] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter and L. K. John. The
virtual write queue: Coordinating DRAM and last-level cache policies.
In the proceedings of the 37th International Symposium on Computer
Architecture (ISCA), 2010.

[57] C. Jeon, A. Li, L. Cox and S. Rixner. Reducing DRAM row activations
with eager read/write clustering. ACM Transactions on Architecture
and Code Optimization (TACO), 10(4), p. 43, 2013.

[58] V. Seshadri, A. Bhowmick, O. Mutlu, P. B. Gibbons, M. A. Kozuch
and T. C. Mowry. The dirty-block index. In the proceedings of the 41st
International Symposium on Computer Architecture (ISCA), 2014.

[59] Yifan Sun, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang
Gong, Shane Treadway, Yuhui Bao, Spencer Hance, Carter
McCardwell, Vincent Zhao, Harrison Barclay, Amir Kavyan Ziabari,
Zhongliang Chen, Rafael Ubal, José L. Abellán, John Kim, Ajay Joshi,
and David Kaeli. "MGPUSim: Enabling Multi-GPU Performance
Modeling and Optimization." In Proceedings of 46th International
Symposium on Computer Architecture (ISCA), June 2019.

[60] Jonathan Lew, Deval Shah, Suchita Pati, Shaylin Cattell, Mengchi
Zhang, Amruth Sandhupatla, Christopher Ng, Negar Goli, Matthew D.
Sinclair, Timothy G. Rogers, and Tor M. Aamodt. Analyzing Machine
Learning Workloads Using a Detailed GPU Simulator. In IEEE
International Symposium on Performance Analysis of Systems and
Software, ISPASS, 2019.

[61] Blake A. Hechtman, Shuai Che, Derek R. Hower, Yingying Tian,
Bradford M. Beckmann, Mark D. Hill, Steven K. Reinhardt, and David
A. Wood, "QuickRelease: A throughput-oriented approach to release
consistency on GPUs," 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA), Orlando, FL,
2014, pp. 189-200.

[62] Singh, Inderpreet, Arrvindh Shriraman, Wilson WL Fung, Mike
O'Connor, and Tor M. Aamodt. "Cache coherence for GPU
architectures." In 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA), pp. 578-590. IEEE,
2013.

[63] Power, Jason, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M.
Beckmann, Mark D. Hill, Steven K. Reinhardt, and David A. Wood.
"Heterogeneous system coherence for integrated CPU-GPU systems."
In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 457-467. ACM, 2013.

[64] Pei, Songwen, Myoung-Seo Kim, Jean-Luc Gaudiot, and Naixue
Xiong. "Fusion coherence: scalable cache coherence for heterogeneous
kilo-core system." In Advanced Computer Architecture, pp. 1-15.
Springer, Berlin, Heidelberg, 2014.

[65] Orr, Marc S., Shuai Che, Ayse Yilmazer, Bradford M. Beckmann,
Mark D. Hill, and David A. Wood. "Synchronization using remote-
scope promotion." In ACM SIGPLAN Notices, vol. 50, no. 4, pp. 73-
86. ACM, 2015.

[66] Alsop, Johnathan, Marc S. Orr, Bradford M. Beckmann, and David A.
Wood. "Lazy release consistency for GPUs." In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, p. 26.
IEEE Press, 2016.

[67] Alsop, Johnathan, Matthew D. Sinclair, and Sarita V. Adve. "Spandex:
a flexible interface for efficient heterogeneous coherence." In
Proceedings of the 45th Annual International Symposium on Computer
Architecture, pp. 261-274. IEEE Press, 2018.

[68] Vijaykumar, Nandita, Abhilasha Jain, Diptesh Majumdar, Kevin
Hsieh, Gennady Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar,
Phillip B. Gibbons, and Onur Mutlu. "A case for richer cross-layer
abstractions: Bridging the semantic gap with expressive memory." In
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pp. 207-220. IEEE, 2018.

[69] Li, Chao, Shuaiwen Leon Song, Hongwen Dai, Albert Sidelnik, Siva
Kumar Sastry Hari, and Huiyang Zhou. "Locality-driven dynamic GPU
cache bypassing." In Proceedings of the 29th ACM on International
Conference on Supercomputing, pp. 67-77. ACM, 2015.

[70] Li, Ang, Gert-Jan van den Braak, Akash Kumar, and Henk Corporaal.
"Adaptive and transparent cache bypassing for GPUs." In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, p. 17. ACM, 2015.

