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Abstract—Cloud computing based systems, that span data cen-
ters, are commonly deployed to offer high performance for user
service requests. As data centers continue to expand, computer
architects and system designers are facing many challenges on
how to balance resource utilization efficiency, server and network
performance, energy consumption and quality-of-service (QoS)
demands from the users.

To develop effective data center management policies, it be-
comes essential to have an in-depth understanding and synergistic
control of the various sub-components inside large scale comput-
ing systems, that include both computation and communication
resources. Prior studies on performance and energy issues in
data centers largely focus on either servers or the network
and completely ignore issues relating to the other components,
or consider only high level analytical models without sufficient
detail, which can lead to non-optimal solutions. Unfortunately, it
is prohibitively expensive or in some cases even impossible to have
complete access to an operational large-scale computing system
(e.g., production server farms). Therefore, a comprehensive
simulation infrastructure that models all major hardware and
system components, and offers interfaces to manage the interplay
between both computation and communication resources are crit-
ical in advancing future research for more effective performance
and energy optimization in data centers.

In this paper, we propose HolDCSim, a light-weight, holistic,
extensible, event-driven data center simulation platform that
effectively models both server and network architectures. HolD-
CSim can be used in a variety of data center system stud-
ies including job/task scheduling, resource provisioning, global
and local server farm power management, and network and
server performance analysis. We demonstrate the design of our
simulation infrastructure, and illustrate the usefulness of our
framework with several case studies that analyze server/network
performance and energy efficiency. We also perform validation
on real machines to verify our simulator.

I. INTRODUCTION

Rapid advancements in information technology and growth
in user needs over the past decade have significantly pushed
for the adoption of large scale server systems. Today’s In-
ternet Services typically require a tremendous amount of
computation, communication and storage resources. As a
result, service providers continue to scale out and scale up
the hardware infrastructure. While considerable amount of
hardware resources offered in large-scale computing systems
continue to enable various application paradigms, they also
pose unprecedented challenges when it comes to effectively
managing these resources to achieve higher performance,
resource utilization and power efficiency. Meanwhile, many of
today’s cloud services come with service level agreements that
specify the expected quality-of-service needs from customers.

Optimizing the various aspects in data center systems with the
consideration of user-level service agreement is a critical and
challenging mission [21], [31], [41], [43], [68].

While performance and efficiency on single server platforms
have been extensively studied by prior work [27], [47], man-
aging scale-out services that leverage task-level parallelism re-
quires understanding of the interactions among major data cen-
ter components including both server and network resources.
As such, the data center infrastructure typically involves thou-
sands of servers, hundreds of network devices (e.g., switches,
routers) and complex network topology configurations. Often
times, physical access to these testbeds are very limited, con-
stricting researchers’ ability to understand the landscape for
optimizing these systems. Thus, a comprehensive simulation
platform that models both computation and communication
hardware is a necessary tool for effective and rapid modeling
of these large scale system configurations, and would allow for
end-to-end, holistic large-scale data center workload studies
including workload characterization, performance engineering
and energy optimization.

Existing data center simulation tools by and large fall into
two classes: 1) simulators that model details of the machine
hardware (e.g., gem5 [12], zsim [56] and dist-gem5 [50]).
These tools are able to provide cycle-accurate simulation with
fine-grained performance and power models; 2) tools that
simulate a cluster of servers in a distributed setting where
each individual server is modeled as a pool of resource slots
for task scheduling [15], [49], [58]. These frameworks allow
modeling of high-level resource management with the goal
of improving server-level or network-level performance and
energy efficiency. While these simulators have been demon-
strated to be useful in several use cases, they have potential
shortcomings that make them less effective for comprehensive
studies of data center systems: (1) While architecture simula-
tors give high-resolution statistics on many microarchitectural
level components, they typically take hours or days to simulate
even one-second execution in real systems. This makes them
unsuitable to capture macro-level operations for distributed
applications running in data center systems. (2) Existing cloud
simulators either model server-only [49] or network-only data
center components [30], or they model only at a very high
level largely abstracting away hardware characteristics (e.g.,
low power state for line cards) [15], [40] that make them
less effective in simulating fine-grained hardware activities for
certain applications such as latency-critical workloads.



As data center systems continue to evolve, it is crucial to
understand application performance and power characteristics
by considering both server and networking hardware, along
with their interactions as a whole. The design of a simulation
platform should incorporate two aspects to close the existing
gaps:

o There needs to be an appropriate level of abstraction
for servers that sufficiently exposes hardware-level knobs
(e.g., core- and package-level power management fea-
tures) that could be leveraged by high-level system
components. This will close the gap between architec-
tural simulation platform where many hardware low-
level features are simulated but may be unnecessary
for study of large scale systems (e.g., statistics such as
branch prediction accuracy, mis-speculation flushes in the
pipeline), and current cloud computing simulators where
only high-level tasks and hardware resource capabilities
(e.g., VMs and number of cores) are modeled but are
lacking mechanisms to realistically control or study these
features (e.g., incorporate sleep states to manage power
vs. performance tradeoffs, ability to do performance anal-
ysis with realistic network traffic flow models between
jobs running in a data center system).

e The simulator will need to jointly incorporate compu-
tation and communication in a systematic manner in
order to enable full control of the system across the
hardware and software stack. This essentially bridges the
gap between cloud and network simulation platforms by
integrating important communication aspects into cloud
applications for more realistic modeling of such systems.

To satisfy the above two design goals, there is an acute
need to build a holistic data center simulation infrastructure
that completely models all of the critical components including
servers and their processors, network switches and configura-
tions (topologies, workloads, traffic patterns).

In this paper, we present HolDCSim, a lightweight, highly-
extensible event-driven data center simulator that jointly sim-
ulates data center servers and networks. HolDCSim efficiently
models the components of server and network devices with
necessary hardware details (queuing, dynamic power manage-
ment and idle power management) to sufficiently capture end-
to-end application performance and power characteristics. We
systematically demonstrate the various modules in HolDCSim
along with our design considerations. HolDCSim considers
queuing effects from both network and servers, and accounts
for performance based on various sources of delays in them.
Finally, it provides interfaces to access many state-of-the-art
power management features that are available in modern server
and network switch systems, which enable future studies on
joint server and network power optimizations.

We demonstrate the use of HolDCSim with four detailed
case studies: (1) data center level system resource provision-
ing, (2) managing active servers by monitoring utilization
levels, (3) fine-grain adaptive power optimization policy using
processor low power states to improve energy efficiency for

latency-critical workloads with QoS constraints, and 4) joint
server-network low power state management that judiciously
coordinates server and network resources.

II. MOTIVATION

To motivate the need for holistic modeling of servers and
network in data centers, we will consider the issue of improv-
ing the job response time and energy efficiency for latency-
critical workloads in data centers, which have been studied by
several prior works [23], [33], [41], [70]. Specifically, when
a job request is received, the job is interpreted as a set of
tasks to be executed. The data center front-end will schedule
the tasks onto one or several servers. The task request then
traverses through network links and switching devices until it
arrives at the back-end server. This procedure may encounter
congestion on links, ports and switching fabric (e.g., line
cards). Upon receiving the request (i.e., network packets), the
server hardware (e.g., processors and DRAM) may need to
be woken up if they have entered low-power states. Once
activated, servers will allocate their available resources (e.g.,
cores, memories and I/O) for the task to execute. The results
of the task are forwarded to its dependent tasks and eventually
the job completes with final results sent back to users.

Based on the above description, we know that the latency
for a job has two major sources — network latency and server
latency. Server latency can be further divided into hardware
latency, queuing latency and computation latency. As servers
continue to offer higher performance and power efficiency,
network latency and power consumption become a significant
component [S5]. This is especially true for latency-critical
workloads that form many critical distributed services.

Motivated by the aforementioned observations, we argue
that in order to formulate effective system power policies and
performance tuning, it is important for the simulation platform
to provide the following capabilities:

o Modeling of server processors with the ability to
include hardware-level parallelism. Such modeling is
important as multi-core processors are ubiquitous in mod-
ern computing systems, especially in the cloud. Multi-
core applications exhibit new challenges as compared to
traditional single-thread processing due to the effects of
interference and resource sharing. Additionally, heteroge-
neous processors with performance varying cores should
also be considered due to their advantages in bringing
better performance-power tradeoff.

o Modeling of global and local job scheduler. Today’s
data center systems commonly feature a global-level
job scheduling module that is responsible for dispatch-
ing users’ job requests to individual servers. Moreover,
there is typically a local scheduler within each server
which manages task dispatching to each execution unit.
Local scheduler is application dependent, and several
prior works have shown the performance impact of local
scheduler policies (e.g, a unified task queue or per-core
task queue [37]).



HolDCSim BigHouse [49] CloudSim [24]
Server Multi-core processor; Multiple sockets Multi-core processor; Multiple sockets Multi-core processor
Supports Heterogeneous architecture
Network Models switch, linecards and ports No switch model Models switch, link and ports
Switch-only (e.g., fat tree [8]) Use BRITE topology generator
Topology Server-only (e.g., CamCube [7]) No topology model
Hybrid-only (e.g., BCube [1])
Communication Packet-level No communication model Packet-level
Flow-based
Job/Task Multi-task job Single-task job Multi-task job
Supports task-dependency DAG
Per-core DVFS
Core and package sleep states Extension models
Power ACPI system sleep states Single processor low power state server system sleep states [62]
Switch link rate adaption
Switch port and linecard low power states
Scalability More than 20K servers <1K servers About 1.5K servers

TABLE I: Comparison of HolDCSim with two widely-used simulators.
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Fig. 1: Overview of the design of HolDCSim

o Inclusion of power mode control mechanisms. Partic-
ularly, the simulator should provide commercial off-the-
shelf power management features that can be leveraged
for enhancing idle power and dynamic power consump-
tion. The power model should be constructed in a hierar-
chical fashion that takes into account the core, package
and socket infrastructure for servers and power, line card,
and switching fabric for network switches.

Integrated modeling of servers, network devices and
topology. Existing research has shown that packet switch-
ing and network topologies play a crucial role in deter-
mining the overall application performance, and hence the
ability to model their performance and power consump-
tion in conjunction with servers is a key consideration
to accurately understand overall performance of data
centers.

We aim to equip HolDCSim with all the above-mentioned
capabilities. Table I compares HolDCSim with two state-of-
the-art simulators, one that models servers in detail (BigHouse)
and another that models distributed cloud systems (CloudSim).

III. HoLDCSIM SYSTEM DESIGN

At a high level, HolDCSim has three major components:
workload module, server module, and network topology/switch

module. The workload generator module generates load to
the simulated data center by injecting job requests. Each job
represents a user’s service request (e.g., a search query [11] or
a request for cached content [4]) that will lead to a sequence
of executable tasks performed in the back-end servers. The
server module instantiates a cluster of servers based on a
configurable user script. Each server has one or several multi-
core processors, a DRAM component and other platform
resources (e.g., disks and power supply unit). Servers schedule
local hardware resources including core and memory to each
task. Each core is considered as a processing unit that can
serve one task at a time. Core performance is determined
by its hardware configuration (e.g., operating frequency) and
task settings (i.e., computation intensiveness). Additionally, we
build an extensive ACPI-based power model for servers, and
provide for a fine-grained power management for processors
and their peripheral hardware.

HolDCSim models a complete data center infrastructure by
modeling network devices (e.g., switches) and interconnection
among various nodes in the system (i.e., topologies). The
network module creates a complete topology by connecting
the switches and servers with network links. Network com-
munication is modeled at two levels of granularity: packet-
based communication and flow-based communication. Each




Server Socket

) o
=] =]

Task Queue

=)
=)
@

Socket

|Sleep Contmlle& ::i

=) [x)
=] =]

[x)
o
@

Fig. 2: Overview of server model in HolDCSim.

network switch contains several key hardware components
including ports, line cards and chassis. HoIDCSim models
packet queuing and packet-forwarding for each switch. Similar
to servers, we also build a power model considering various
switch power management features such as Low Power Idle
(LPI [45]) and dynamic link rate adaptation [25].

Figure 1 illustrates the high-level workflow design for
HolDCSim. HolDCSim takes a workload model, server and
switch profile as inputs to run experiments. During simulation,
HolDCSim keeps track of several types of runtime statistics
such as power and energy consumption, network delays, job
latency, and power state transitions.

A. Server Architecture

Cores have the capability to enter multiple levels of power
states. Each server maintains a local queue where all incoming
task requests are buffered. Meanwhile, each core can also have
its local task queue, and serves one task at a time. Queuing
delays are taken into account for task processing latencies. The
task processing time for each task is determined by the service
time of the task and the operating frequency of the core on
which it executes. Note that we also model various types of
workloads with different levels of computation intensiveness.

HolDCSim models server power based on the widely de-
ployed Advanced Configuration and Power Interface (ACPI
standard) [13]. ACPI uses global states, GG, to represent
states of the entire system. For each G, state, there is one or
more system sleep states, denoted as S,. System sleep states
define power status for various server components. When the
system sleep state is Sy, the processor is allowed to reside in
a set of C states such as C0O. C state enables fine-grained core
and uncore components (shared caches and coherence fabric)
low-power modes to achieve various levels of power savings.
Finally, performance states can be configured to determine the
speed of instruction execution at runtime (i.e., DVFS). Modern
processors generally provide high parallelism by integrating
multiple cores within a processor package. Low-power C states
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Fig. 3: Overview of switch model in HolDCSim.

are supported at both core- and package levels that are modeled
in HolDCSim.

B. Switch and Network Architecture

The profile of network switches is modeled from real
systems and online power modeling tools. Network switches
can have multiple line cards, and line cards can have many
ports. Configurable parameters of line cards include number
of ports and power consumption in different power states. The
link rate, buffer size, power state, and transition delay can be
configured for each port.

In our simulator, we assume three power states for each
switch port: active, LPI (Low Power Idle [19]), and off state.
Currently, we are also assuming three power states for each
switch line card: active, sleep, and off. Similar to the server
power states, hierarchical power states are modeled.

Our simulator provides the interfaces to model switch-
based, server-based, and hybrid network architectures. Switch-
based architectures use only switches for packet forwarding;
a server-only network leverages servers for both computation
and switching; Finally, hybrid architectures use a combination
of switches and servers for communication. Our simulator
offers network configuration corresponding to several state-
of-the-art topologies, including fat tree [8] and flattened but-
terfly [34] for switch-based architectures, the CamCube [6]
topology for server-based architectures and the BCube [26]
topology for hybrid architectures.

The network module currently models communication at
two levels: packet-level communication and flow-based com-
munication. When dependent tasks in a job need to communi-
cate, they can either send a single flow of data or break the flow
into packets to route them. Switches will forward these flows
or packets along a route of linked switches and/or servers.
There is a link rate capacity associated with these links.
Multiple flows or packets can simultaneously travel along a
link if it has not yet been saturated. The routing path between



a source and destination can be either statically generated or
dynamically computed based on the communication model.

C. Job and Task Modeling

In HolDCSim, each job comprises of multiple tasks that
may have both spatial (e.g., multi-tiered applications) and
temporal dependence (e.g., input/output dependence). Servers
in the simulated environment can be configured to perform
different tasks. For example, a web request can be modeled
as two sequential tasks, one that is serviced by the application
server and another corresponding to queries sent to database
servers. Such task relationships are denoted as spatial inter-
dependence. On the other hand, temporal inter-dependence
exists when a task cannot start executing until all of its parent
tasks have finished their execution, and until after their results
have been communicated to the server assigned to the task. A
job is considered to have finished when all of its tasks finish
execution.

Formally, each job j can be represented as a directed acyclic
graph (DAG) G’ (V7 E7), where V7 is the set of tasks of
job j. In DAG, if there is a link from task ¢ to task r, then
task i/ must finish and communicate its results to task 77
before r7 can start processing. Each task v/ € V7 has a
workload requirement, namely task size or execution time
requirement w{) for the core. For each link in E7, there is
a data transfer size DZ associated with it, which denotes the
bandwidth requirement to transfer the result over link [ (from
the task at the head of DAG link to the task at the tail) when
assigned a network flow.

D. Workload Modeling

We use two types of workload arrival models: synthetic
workloads based on stochastic process, and actual system
trace-based workload simulation. HolDCSim currently pro-
vides two stochastic workload models:

Poisson-based job arrivals: Both the job service times and
job inter arrivals are modeled as an exponential distribution
with a mean service time, 1/, where p is the service rate
of a server. In a multi-core based server farm, the rela-
tion between system utilization p and job arrival rate A is:
p = u*nserve/r\s*ncores’ where nServers is the number of
servers and nCores is number of cores per server. Poisson
process is widely used in prior works to model data center
workloads [48], [64].

MMPP-based bursty job arrivals: MMPP or Markov-
Modulated Poisson Process utilizes a continuous-time Markov
chain to model different stages or states of the workload. Each
state x corresponds to a Poisson Process with job arrival rate
Az. By orchestrating the transitions among various states with
high and low \s, MMPP is able to model workload burstiness
at a finer-grain level. We use a 2-state MM PP model, in which
one state has a high job arrival rate )\; representing periods
of bursty arrivals, and the other state has a low arrival rate
(A7) and models non-bursty periods of operation. There are
two approaches to tune the levels of burstiness — increasing
the ratio of job arrival rates between bursty and non-bursty

state, R, = A/, or decreasing the proportion of time the
process stays in bursty state. Detailed exploration of workload
burstiness modeling is a rich area of study [55].

E. Scheduling

The simulated data center has a global scheduler which
receives job requests from the front end. It is responsible for
constructing a set of inter-dependent tasks corresponding to
the request. The global scheduler then assigns tasks to servers
based on a predetermined configured scheduling policy. We
have built several global scheduling policies including round-
robin and load-balancing. Note that the scheduling policy
can be easily extended to support many modern distributed
computing frameworks such as Hadoop and web services [36].
After a task has been assigned to a server, it will be passed on
to the server’s local task scheduler. The local task scheduler
performs task assignment based on the availability of processor
cores. It can also consider the capability of the core if
heterogeneous processors are modeled.

The global scheduler can utilize a global task queue for task
assignment. Specifically, before dispatching a task to servers,
it will first query the servers that are configured to serve
the specific type of task. If no servers are available at that
time, the global scheduler will place the task in the global
queue. When servers have finished the assigned task and have
available cycles, it will attempt to pull a task request from the
global task queue. This scheduling model is used to model
applications that have centralized control. Additionally, our
global scheduler can perform task dispatching without the
global queue. Under this configuration, the global scheduler
first dispatches tasks to the working servers based on certain
policy. The assigned server will put the task in its local task
queue if no processing unit is available.

FE. Power Model

HolDCSim allows users to input power profiles for various
system components. The simulator also implements a few
configurable power state transition controllers for the respec-
tive components. Additionally, the user can also prototype
their own power policies by writing control algorithms and
observing individual component’s state values.

Server power profile. Users can derive server power profiles
either by performing power measurements through configur-
ing the system in various activity states, or by using other
power estimation tools specifically for this purpose. In the
former case, the power measurement can be done by reading
a performance counter in the processor (e.g., Intel RAPL
interface [29]) or by using external power meters. For the
latter option, the users may use power modeling tools such
as CACTTI [39] and McPAT [38].

Network power profile. Similar to server power, the user
can model various components in network switches such as
ports and line cards. Line cards can be considered to have
their own C-state and P-state to conserve power similar to
servers. Lu et al. [44] derived their power model by breaking
down the various architectural components of a switch and



using tools such as CACTI to model switch memory power.
The default C-state controller controls idle to sleep state
transitions using the packet queue size as a threshold. We note
that HolDCSim provides flexibility to the users to implement
their sleep state transition policies through considering other
observable behaviors such as traffic patterns.

IV. CASE STUDIES

In this section, we will present several data center case
studies on our simulation platform to demonstrate the capa-
bility of HolDCSim. In Section IV-A, we show a dynamic
resource provisioning policy that manages server resources
according to data center loads. We then study the effectiveness
of leveraging system sleep state with simple delay timers

to enhance data center energy efficiency in Section IV-B. -

Section IV-C demonstrates fine-grained energy management
using both processor and system low power states. Finally,
Section IV-D shows a server-network joint energy optimization
algorithm for latency-critical workloads.

A. Data Center Resource Monitoring and Provisioning

Resource provisioning is an important task for data center
operators in order to budget the right amount of resources
based on user demands. In this case study, we analyze the
amount of servers that need to be kept active at runtime for
a certain workload in HolDCSim. We simulate a server farm
with 50 four-core servers, and use the Wikipedia trace [59] as
our workload input. Each job consists of a simple task that
has an execution time ranging from 3ms — 10ms. Initially, all
servers are in the active state. The global scheduler predicts the
load per server in the system as it dispatches jobs to servers.
Specifically, each server is configured with a minimum and
maximum load threshold. If the current load per server drops
below the minimum load threshold, one server will be put
aside after finishing its pending tasks. If the current workload
per server exceeds the maximum load threshold, one server
will be set to active state. During the initial phase, servers are
gradually put to low power mode until the number of active
servers stabilizes (i.e., current workload per server falls within
the two thresholds). As the job arrival rate fluctuates in the
system, the number of active and low-power servers will be
adjusted accordingly as shown in Figure 4.

Having the ability to understand active components through-
out a certain period gives insight into how to properly provi-
sion resources in a data center. Using this case study, users can
predetermine the number of active servers required for their
performance needs to save energy costs.

B. Delay Timer-based Task Scheduling

In this case study, we illustrate how HolDCSim can be used
as a prototype to study a server power management policy.
One commonly studied approach is to turn off standby servers
to save wasteful energy consumption. However, prior studies
have shown that aggressively turning off servers can lead to
even worse energy efficiency when job arrival rate fluctuates
frequently [22]. To tackle this issue, a possible solution is to
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Fig. 4: Number of active jobs and number of active servers over time.
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maintain the server in highly responsible idle state for a period
of time (i.e., delay timer T) before it’s turned off. However,
the delay timer values need to be set judiciously in order to
achieve satisfactory energy-latency trade-off.

In this experiment, we explore various settings of delay
timers, and analyze their impacts on energy efficiency of two
representative data center workloads. We first run simulations
for servers configured with a single delay timer value. For
this simulation, we use the same server farm configuration
as discussed in Section IV-A. HolDCSim models two types of
workloads: a web search workload with relatively short service
times (5ms) and a web serving workload with longer service
times (120ms). For each workload, we ran the simulation
100 times in order to explore a wide range of possible delay
timer values. The exploration is performed at three different
utilization levels (p): 10%, 30% and 60%. Figure 5 shows how
the settings of delay time value influence the overall energy
consumption of the simulated server farm. We can see from
the figure that for each workload with a fixed utilization level,
there always exists one optimal delay timer setting that saves
the most amount of energy. This aligns with practices that high
energy consumption will occur if server are set to off state too
aggressively (so that many servers end up in waking up phase
most of the time) and too conservative (which leads to many
servers in standby mode even though they are not processing
any tasks). More importantly, we can observe that the optimal
delay timer values are consistent across different utilizations
for the same workload (0.4s for web search and 4.8s for web
serving). Our finding indicates that a single T value that
works well across varying system loads can be set to
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achieve maximum energy saving, which can significantly
reduce the power management tuning efforts for system
administrators.'

We further study the use of multiple delay timers to achieve
additional energy saving, which has been proposed initially
in [69]. The motivation is that, instead of a single T timer
controlling transition of system low power state for each
server, we could manage the servers into pools with low and
high T times. Under this scheme, a small portion of servers
with high T values are prioritized to process incoming jobs
and kept active, while the other servers with low T values
can quickly go to power-saving state once they finish their
tasks to further save energy. Similar to the exploration of
single delay timers, we run simulations on HolDCSim to
explore various settings including high T and low T values,
and number of servers associated each of the delay timers.
Figure 6 shows the energy saving by our proposed policy
compared to a baseline policy where server are put to idle
state when no tasks are assigned (Active-Idle). Our multiple
delay timer mechanism can achieve upto 45% energy reduction
as compared to the baseline mechanism. Additionally, as
compared to the single delay timer approach, the policy we
studied can save upto 21% energy saving while maintaining
comparable job tail latencies (i.e., QoS constraints). We also
observe similar energy savings when the size of server farm
changes from 20 to 100. These simulations are done with
minimal efforts due to the extensible implementation of our
simulator which allows flexible configuration of server power
management and global scheduling policies.

C. Energy-Latency Optimization using Processor/System
Sleep States

Modern processors incorporate a number of low power
states in addition to system sleep states. These low power
modes enable fine-grained power management for processors
besides the system-level low power states as discussed in
Section IV-B. While prior works [41], [43] have shown the
effectiveness of using processor low power states to improve

Note that the single delay timer may not be effective when the job arrivals
are highly bursty. In this case, extra server power management mechanism is
needed to activate servers in time to meet application’s QoS constraints.
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Fig. 7: The energy-latency optimization framework (top figure)
and the processor/system sleep state transitions controlled by
local power controller (bottom figure).

server energy efficiency, they have not studied the potential
of leveraging hierarchical low power states in multi-core
processors (i.e., core- and package-level low power states). In
this study, we aim to analyze the effectiveness of an energy-
latency optimization mechanism that leverage both processor
and system low power states to perform workload adaptive
data center power management [66].

Our proposed framework performs server power manage-
ment dynamically based on system-utilization at run-time.
We model a load estimator that monitors the utilization of
the system based on the number of pending jobs per server.
Servers are coordinated between two pools. In the first group
(active server pool), servers are configured with a local power
controller that only allows shallow sleep state (package C6). In
the second group (sleep server pool), each server’s power con-
troller transitions the server between shallow sleep (package
C6) and deep sleep (Suspend to RAM).

To enhance energy savings, we implement a workload adap-
tive scheduling algorithm that dynamically transitions servers
between these two pools based on current load and the target
tail latency of the application. An overview of the framework
is illustrated in Figure 7a. Figure 7b shows the core, processor
and system power states transitions for these two strategies.
Note that we have carefully selected core/package C6 sleep
as it can bring significant power savings without long wakeup
latencies (less than 1ms). Specifically, if this load rises above
the wakeup threshold (Tiyqkreup), @ server is moved from the
sleep server pool to the active server pool. On the contrary,
when the measured metric falls below the sleep threshold
(T’sieep), the global scheduler will migrate one server from
the active server pool to the sleep server pool. When there
are bursty job arrivals, the scheduler can promptly adjust the
resources in these two pool to server the requests while still
saving energy for the entire data center. The front-end load
balancer dispatches tasks to the servers in active server pool



only. The state of the cores, processors and the system platform
are determined by each server’s power controller locally.

With HolDCSim, we explored the Pareto-optimal curve
to analyze the trade-off between energy and achieved job
tail latency (90" percentile) using different Topakeup> Tsicep
and T values. We simulate a 10-core 10 server server farm.
The processor’s power and performance characteristics are
based on the Intel Xeon E5-2680 processor. We use publicly
available job arrival traces, such as from Wikipedia [59]
to simulate real-world application arrival patterns. The 95!
percentile latency (QoS) is set to 2x the average service time
for each workload. Figure 8 illustrates the state residency
using our proposed energy-latency optimization framework
for web search and web serving workloads. We can clearly
see that our framework can effectively coordinate minimal
amount of servers for processing tasks as the active state
duration is almost the same as the system utilization. More
importantly, when servers are not active, they spend most
of the time in the least power-consuming state (i.e., system
sleep) upto utilization of 60%. These results indicate that
the studied scheduling mechanism is highly energy-efficient.
Figure 9 presents the energy breakdown for each of the servers
in the data center under the delay timer based approach
and our workload adaptive scheduler. As compared to the
delay-timer based approach that has almost uniform energy
consumption across servers, the workload adaptive framework
is able to automatically dispatch the tasks to a very small
subset of servers (server #6 and #10), and keep the rest of the
servers mostly in low-power states (package C6 state or system
sleep state). Overall, we have seen that the workload adaptive
approach can further achieve 39% energy saving as compared
to the delay timer approach. This case study demonstrates the
comprehensive server power modeling in HolDCSim, which
enables future studies considering hierarchical server power
management .

D. Sever and Network Cooperative Energy Optimization

Apart from providing the capability to characterize various
power saving schemes for servers, HolDCSim can also be
used to study techniques that co-optimize server and network
energy. In data centers, if load balancing of network traffic is
performed without considering servers, it may unnecessarily
wake up servers that could otherwise be in low power states.
Conversely, if load balancing is performed on servers without
taking network activities into account, it may traverse exces-
sive amount of network switches that lead to wasteful energy
consumption. Intuitively, if the server job allocation algorithm
is enhanced with awareness of network power assumption, we
could further improve the energy consumption for the entire
data center infrastructure.

In this case study, we modeled a data center using the
widely deployed fat-tree topology that has full bisection band-
width [8]. To simulate network traffic, each job is simulated
as a set of inter-dependent tasks as discussed in Section III-C.
The dependence among tasks is modeled as a DAG where
traffic pattern among these tasks are known. The flow size
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Fig. 8: Servers’ overall state residency under the energy-
latency optimization framework with different utilization.
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for each communication between servers is set to 100MB.
We model the Server-Network Aware power management
strategy in HolDCSim that works as follows: whenever there
is a need for an additional server to transit to active state, it
would first identify the server with the least network cost—the
amount of additional switches to be woken up in order to allow
communications to that server. For comparison, we consider
Server-Balanced policy where jobs are strictly load balanced
among servers. In this experiment, the network module models
flow-based communication. With HolDCSim, we study the
latency and power consumption for a set of jobs with randomly
assigned job execution time. Figure 11a presents the results for
average power consumption for web search application, along
with the CDF of job execution latency in figure 11b for a
simulation of 2000 jobs using Poisson arrivals. We can see
that we can obtain about 20% server and 18% network power
savings with negligible increase in job latency.
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V. VALIDATION OF HOLDCSIM COMPONENTS

In this section, we demonstrate our evaluation results of
HolDCSim and compare them against observations on real
systems. Specifically, we show that our simulator can accu-
rately generate the power traces for a multi-core server. We
also validate the power consumption of a simulated switch via
a commercial-off-the-shelf switch.

A. Server Power Validation

In order to validate the power model of HolDCSim, we
set up experiments based on a 10-core Intel Xeon E5-2680
processor server. We utilize the publicly-accessible NLANR
trace [2], which includes job arrival times for web service
requests. We modified httperf [52] to enable generation of
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HTTP requests based on existing traces. We set up apache web
service on the Xeon-based machine to serve users’ requests.
The server’s power consumption is measured using Intel RAPL
and IPMI interfaces [20], [29].

For this experiment, we enabled two sleep states for the
processor: CO and C6. We measured the power consumption
for each core as well as the entire package when they are in
these sleep states. Based on the power profile, the power model
for a 10-core processor server is configured in HolDCSim.
We then replay the same NLANR trace in the simulator
by enabling trace-based simulation. The power consumption
statistics are generated and collected in HolDCSim. Our
validation experiment shows that the power profile generated
using HolDCSim matches with the power consumption curve
of our physical machine with negligible error. Figure 12
shows a snippet of the power traces for both the physical
and simulated server. We observe that the average power
difference between the physical server and the simulated server
is only 0.22W, which indicates a minimal error (around 1.3%).
Additionally, the standard deviation on simulator power is only
about 1.5 W. Note that on the physical server power, there
are additional noise such as apache management thread and
other OS routines that contribute to the difference. Overall,
the patterns and values in the simulated and physical servers’
power traces match closely, validating that our simulator can
faithfully model servers’ power consumption behavior.

B. Switch Power Validation

Power validation was performed on a Cisco
WS—-C2960-24-S network switch. In the simulator, we
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Fig. 14: Representative segments of power traces for physical
and simulated switch.

set up 24 servers connected to one switch using the star
topology. We configure the switch power model using the
power profile of the physical switch. The simulated switch
has 24 ports, a base power of 14.7W, and a per port power
of 0.23W. The cluster is configured to simulate a Wikipedia
web service [60] using load balanced scheduling policy. Our
load generator generates user requests to the simulated cluster
using the Wikipedia trace [59]. HolDCSim created a log
of the port states for all the 24 ports along with the power
consumption for a 2-hour simulation.

We then implement a script for the physical switch which
controls the status of the switch (including the line card and
each of the ports) based on the aforementioned simulation
log. We use a Power Data Logger [3] to monitor the switch
power by connecting the power cable directly to the Logger.
The power consumption of the physical switch is sampled
every 1 second. Figure 13 shows the power consumption of the
simulated switch and the real switch over the 2-hour period.
As we can see, the two power curves are closely tracking
each other. We observe that the average power difference is
less than 0.12W with a standard deviation of 0.04W. In some
portions of the trace, the power of the simulated server is seen
to exactly match the trace of the physical switch (Figure 14a).
In other segments of the trace, we find that the power of the
physical switch is slightly higher than the simulated switch
consistently, as shown in Figure 14b. In summary, we can see
that HolDCSim can capture the power profiles for switches
fairly accurately under realistic data center workloads.

VI. RELATED WORK

Over the past decade, many simulators are developed
specifically for the prevelant computing paradigms [14], [15],
[28], [40]. BigHouse [49] uses a stochastic queuing model to
simulate a cluster of servers with multi-core processors. The
simulator is designed for studying data center server resource
management policies such as resource provision and power
capping. However, it does not model core and processor sleep
states (such as C states) that are widely supported in many
commodity servers. It also lacks network modeling, making
it less effective in exploring holistic data center management.
CloudSim is a cloud system simulator that is specifically de-
veloped to model management of virtualized resources (VMs)
on physical hosts. It is also extended to support network traffic
simulation [24]. However, CloudSim-based simulators do not
consider fine-grained hardware power management features in
servers and switches. Network simulators (e.g., [30], [35]) are
developed to model detailed protocols. They are typically not
suitable for simulating data center scale application spanning
tens of thousands of jobs. Finally, architecture simulators [10],
[51], [56] allow fine-grained cycle accurate simulation by
modeling hardware/microarchitecture components in detail.
While these simulators are widely used to study innovations
in computer architecture, they suffer scalability issues when
simulating large-scale distributed systems. Differently, HolD-
CSim allows users to have a more holistic view of data centers
by modeling both data center server and networks resources
with sufficient modeling of low-level hardware characteristics,
which enables fast and sufficiently accurate simulations in
terms of performance, power and energy management tech-
niques needed for future research in data centers.

Prior works have demonstrated techniques to improve en-
ergy efficiency of servers using various power controlling
knobs. NCAP [9] proposed packet aware dynamic frequency
scaling technique that save energy for latency critical work-
loads with bursty traffic. SleepScale [42] studies server pro-
cessor power management by orchestrating processor sleep
state and frequency settings based on application’s QoS re-
quirements. Similarly, architectural studies on the switch are
explored to improve performance and energy efficiency of data
center network [16]-[18], [32], [46], [53], [54], [57], [61],
[63], [65], [67], [69]. Note that our HolDCSim is designed
as a lightweight, extensible data center simulator that can be
leveraged to explore all these strategies.

Finally, several recent studies considered combined network
and server based job scheduling to improve energy efficiency
for data centers. Zheng et al. [71] propose techniques that
consolidate server and network flows to reduce data center
power consumption. Zhou et al. [72] demonstrate a joint
server-network energy saving scheme for latency critical work-
load by trading off latency slack in network communication
to offer more latency rooms for server side processing. By
using HolDCSim, these studies can be scaled to very large
configurations with minimal amount of efforts.



VII. CONCLUSION AND FUTURE WORK

In this work, we demonstrated HolDCSim, a light-weight,
holistic, extensible event-driven data center simulation plat-
form that effectively models both server and network archi-
tectures. HolDCSim is able to guide users for a variety of
data center system studies including understanding workload
patterns in job execution, data center resource provisioning,
global and local power management, as well as detailed
combined network and server performance analysis. We have
demonstrated the design of our simulation infrastructure and
have shown four case studies that illustrate the versatility of
our framework for varied data center related tasks.
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