

Edinburgh Research Explorer

HETSIM: Simulating Large-Scale Heterogeneous Systems using
a Trace-driven, Synchronization and Dependency-Aware
Framework
Citation for published version:
Pal, S, Kaszyk, K, Feng, S, Franke, B, Cole, M, O'Boyle, MFP, Mudge, T & Dreslinski, RG 2020, HETSIM:
Simulating Large-Scale Heterogeneous Systems using a Trace-driven, Synchronization and Dependency-
Aware Framework. in 2020 IEEE International Symposium on Workload Characterization (IISWC). Institute
of Electrical and Electronics Engineers (IEEE), pp. 13-24, 2020 IEEE International Symposium on Workload
Characterization , Virtual Conference, 27/10/20. https://doi.org/10.1109/IISWC50251.2020.00011

Digital Object Identifier (DOI):
10.1109/IISWC50251.2020.00011

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2020 IEEE International Symposium on Workload Characterization (IISWC)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1109/IISWC50251.2020.00011
https://doi.org/10.1109/IISWC50251.2020.00011
https://www.research.ed.ac.uk/en/publications/b603f956-e1fa-40c6-8d6f-d8e676f12df8

HETSIM: Simulating Large-Scale Heterogeneous
Systems using a Trace-driven, Synchronization and

Dependency-Aware Framework
Subhankar Pal∗ Kuba Kaszyk† Siying Feng∗ Björn Franke† Murray Cole†

Michael O’Boyle† Trevor Mudge∗ Ronald G. Dreslinski∗

∗
University of Michigan, USA

†
University of Edinburgh, UK

∗{subh,fengsy,tnm,rdreslin}@umich.edu
†
kuba.kaszyk@ed.ac.uk

†{bfranke,mic,mob}@inf.ed.ac.uk

Abstract—The rising complexity of large-scale heterogeneous
architectures, such as those composed of off-the-shelf processors
coupled with fixed-function logic, has imposed challenges for
traditional simulation methodologies. While prior work has
explored trace-based simulation techniques that offer good trade-
offs between simulation accuracy and speed, most such proposals
are limited to simulating chip multiprocessors (CMPs) with up to
hundreds of threads. There exists a gap for a framework that can
flexibly and accurately model different heterogeneous systems, as
well as scales to a larger number of cores.

We implement a solution called HETSIM, a trace-driven,
synchronization and dependency-aware framework for fast and
accurate pre-silicon performance and power estimations for
heterogeneous systems with up to thousands of cores. HETSIM
operates in four stages: compilation, emulation, trace generation
and trace replay. Given (i) a specification file, (ii) a multi-
threaded implementation of the target application, and (iii) an
architectural and power model of the target hardware, HETSIM
generates performance and power estimates with no further
user intervention. HETSIM distinguishes itself from existing
approaches through emulation of target hardware functionality
as software primitives. HETSIM is packaged with primitives
that are commonplace across many accelerator designs, and the
framework can easily be extended to support custom primitives.

We demonstrate the utility of HETSIM through design-space
exploration on two recent target architectures: (i) a reconfig-
urable many-core accelerator, and (ii) a heterogeneous, domain-
specific accelerator. Overall, HETSIM demonstrates simulation
time speedups of 3.2×-10.4×(average 5.0×) over gem5 in syscall
emulation mode, with average deviations in simulated time and
power consumption of 15.1% and 10.9%, respectively. HETSIM
is validated against silicon for the second target and estimates
performance within a deviation of 25.5%, on average.

Index Terms—architectural simulation, trace-driven simula-
tion, binary instrumentation, heterogeneous architectures

I. INTRODUCTION

In the last few decades, there has been a strong and
consistent trend of adding more parallelism into new archi-
tectures and systems [10]. Core counts have increased across
all platforms, with new domain-specific accelerators being
continually developed with up to thousands of cores [11],
[12]. Google’s TPUv3, which can scale up to 2,048 parallel
cores per pod, with 32 TB of memory, is just one of many
examples [13]. More recently, new architectures have been
driven by a demand for accelerating not only increasingly
parallel applications, but also increasingly irregular ones that
rely on memory-intensive algorithms such as sparse linear
algebra operations [14]–[18].

The post-Dennard scaling era has experienced a simi-
lar trend, with heterogeneous systems that have multiple
CPUs working in tandem with fixed-function accelerators and
GPUs [19]. This includes the broad categories of loosely-
coupled accelerators, where the fixed-function logic has sepa-
rate data/control path from the main pipeline (e.g. [20]–[22]),
as well as tightly-coupled accelerators, where the logic shares
resources with the pipeline (e.g. [23]–[26]).

Cycle-accurate simulation has been the standard tool for
evaluating such systems in the pre- register-transfer level
(RTL) stage, due to its level of detail and flexibility. However,
this simulation approach is inherently sequential, and relies on
frequent synchronization across all parts of the architecture at
small timesteps. Parallel simulation efforts that use multiple
event queues have not met much success, as synchronization
is still needed every few timesteps [27], particularly for parallel
architectures that involve shared memories. With application
execution runs reaching billions or even trillions of cycles,
this approach clearly does not scale well to more than a few
cores, thus hitting the simulation wall [5]. In addition to the
pressure on compute resources, cycle-accurate simulators are
constrained by memory; these factors well limit the scale of
experiments that can be performed. This is a well-established
problem across the computer architecture community – bench-
marks that take less than an hour to execute natively can take
up to a year in detailed simulations [28].

Cycle-accurate simulation is not necessary in all steps of
the design process, and can be replaced by more relaxed
approaches in the early phases of design. At this stage,
the design of the accelerator largely focuses on high-level
features, such as the number of processing elements (PEs),
sizes of caches, and relative layout of the architecture, with
micro-architectural improvements requiring complete accuracy
only needed in subsequent stages of design. Approximations
in simulations come with a modest reduction in accuracy,
however in return they greatly reduce the simulation time
and memory consumption, and enable simulations of larger
workloads, and a larger design space, with faster turnaround.

Prior work has explored trace-driven simulation techniques
that offer good trade-offs between simulation accuracy and
speed, however, there exists a gap for a framework that enables
fast simulation of large-scale heterogeneous systems with
many PEs, while providing reasonably accurate estimations

TABLE I
COMPARISON OF HETSIM WITH PRIOR TRACE-DRIVEN SIMULATION FRAMEWORKS.

Work ISA Threading Execution Sim. Limit Synchro-
nization

Target
Type

Trace Gen./
Replay

Reported
Sim. Speed

Reported
Timing Error

SST/Macro [1] N/A Multi OoO 1,000 MPI Multi-CMP
Systems Native/Custom N/R <10.0%

Netrace [2] Agnostic Multi InO 64 N/A CMPs gem5/Custom N/R N/R
Elastic
Traces [3] Agnostic Single OoO N/A N/A CMP gem5/gem5 7.2× over

gem5-FS 15.3%

ElasticSim-
MATE [4] Armv7/8 Multi OoO 128 OpenMP CMP gem5/gem5 3.8× over

gem5-FS 7.1%

Synchro-
Trace [5] Agnostic Multi InO 64 Pthreads/

OpenMP CMP Native/gem5 9.6× over
gem5-FS 5.7%

AccelSim [6] SASS/PTX Multi (Warp) InO 80 Cycle-Level NVIDIA GPU Nvbit [7]/Custom 12.5 KIPS 15.0%
MacSim [8] PTX/GEN Multi (Warp) InO 48 Cycle-Level NVIDIA/Intel GPU PTX/ProtoBuf N/R N/R
Rhythm [9] x86 Multi InO/OoO >32 Pthreads CMPs Native/Native O(MIPS) 7.2%

HETSIM
[this work] Agnostic Multi

InO with
OoO memory
accesses

4,160 Pthreads/
Custom

Accelerators/
Heterogeneous
hardware

Native/gem5

5.0× over
gem5-SE
∼10× over
gem5-FS

15.1% over
gem5-SE
25.5% over
silicon

of important metrics. We observe that the traces used in many
existing frameworks are fairly generic, with at least three key
features missing from them:
1) Tokens defining inter-PE communication.
2) Annotations of dependent memory addresses.
3) Program counters, in case of programmable PEs.

Tokens that encode communication between heterogeneous
PEs are critical in ensuring that the performance impact of
communicating between PEs is modeled correctly, e.g. the
performance difference between modeling a blocking call and
omitting it could even be equivalent to the runtime of a full
application on a particular PE. Furthermore, the number of
units executing concurrently at any point will have a significant
impact on the estimated power of the system.

Dependency analysis is critical when modeling accelerators,
in particular for those that target memory-bound applications
and support memory-level parallelism [29]. Within our tracing
framework, we employ strategies that trade-off reduced accu-
racy for compute operations, in return for improved accuracy
in modeling the PEs’ interaction with the memory subsystem.

Prefetching is a well-known technique to ensure that data is
available in the caches when the program requires it, and often
relies on the program counter [30], [31]. Tracking the program
counter in our traces is a simple, yet important addition when
attempting to accurately model the memory subsystem.

As a solution to fill the gap in prior work, we have developed
HETSIM, an end-to-end framework that targets new or existing
users of gem5, which is a widely-used system and architectural
simulator [32], [33]. We expose significant features missing
from existing trace formats, that allow us to accurately model
modern applications and target hardware including tokens
defining heterogeneous communication, dependency tracking
between memory accesses, and tracking the program counter.
Furthermore, by trading-off detail where it is not critical,
HETSIM improves simulation times by 3.2×-10.4×, with little
additional overhead.

We provide users with a flexible, unified infrastructure,
containing utilities for generating enhanced traces, replaying
them, and incorporating new architectural features. For this,
we introduce the notion of a primitive, which in this context is
a hardware feature that can be modeled in software emulation,
e.g. an operation where a PE interacts with a hardware buffer.
HETSIM is packaged with a set of such common primitives,
and also allows the user to add support for custom primitives.

Additionally, each primitive has an entry in a trace specifica-
tion file that contains metadata information required to model
it accurately during simulation. In Section IV, we demonstrate
the required efforts for multiple use-cases, comprising of (but
not limited to) using HETSIM with a new model, profiling new
applications, tweaking an existing model, and so on. HETSIM
additionally features a standalone mode, that is useful for rapid
early-stage evaluation without building detailed PE models.

We evaluate HETSIM on two heterogeneous target architec-
tures – a recently-proposed programmable, reconfigurable ac-
celerator, and a fixed-function ASIC for sparse matrix-matrix
multiplication (SpMM). Across a set of three well-known
workloads, HETSIM achieves runtime and power estimations
errors of 0.2%-57.0% (average 15.1%) and 0.0%-24.2% (av-
erage 10.9%), respectively, while achieving simulation time
improvements of 3.2×-10.4× (average 5.0×), over a detailed
gem5 model in syscall emulation mode. HETSIM is also
validated against prototyped silicon, and estimates runtime
with a deviation of 2.2%-46.4% (average 25.5%) of the chip.

II. RELATED WORK

Trace-Driven Simulation. A few prior work have explored
techniques that enable faster simulations by relaxing the con-
straints of full-system simulation. However, they are targeted
specifically for general-purpose processors, such as CMPs
and GPUs. We provide a qualitative comparison of HETSIM
against these work in Table I.

Perhaps the closest to our work is SynchroTrace [5],
[34]. Like SynchroTrace, HETSIM is a dependency- and
synchronization-aware trace-based simulator that uses native
execution for trace generation and gem5 for trace replay. How-
ever, SynchroTrace targets CMP systems and their frontend
tools work with standard Pthreads-based multithreaded code.
In contrast, HETSIM targets accelerators and heterogeneous
architectures and uses the notion of primitives defined in a
trace specification format to model the behavior of custom
hardware blocks in the target. Unlike SynchroTrace, which
works with unmodified benchmarks, HETSIM requires the user
to implement parts of their multithreaded code using HETSIM
primitives. However, this requirement is key in enabling HET-
SIM to model arbitrary hardware functionality beyond CMPs.
Heterogeneous System Simulators. gem5-Aladdin [35],
based on the Aladdin pre-RTL estimation framework [36],
provides a gem5-based infrastructure that explores the design

Functionally
Verified Code

Native Execution on SMP

Performance
Estimates

Target Architecture Model

TRE
Subsystem

Memory Subsystem

Power Model

Power
Estimates

c) Trace Generation

b) Emulator Verification

d) Trace Replay

Compute
SubsystemSwap

Native Execution on SMP

…

a) Compilation

Compiler
Plugin

Natively-Provided w/ ExtendibilityAuto-Generated

1. Analysis

2. CodeGen

User-Provided

Once per app. {;}

JSON
Multithreaded

Application
Tracing

Specification

Emulation Lib

Primitive #1

Primitive #2
Primitive #3

0111
0000
1101

Application
Binary

Instrumented
Binary

0111
0000
0011

Tracing Lib
Primitive #1

Primitive #2

Primitive #3

TRE Lib

Primitive #1

Primitive #2

Primitive #3

Compiler CPP

TRC

…

…

Once per target

TRC

TRCTRC

…

Fig. 1. The end-to-end approach employed in HETSIM, consisting of four
stages: compilation, emulator verification, trace generation and trace replay.
In its current implementation, HETSIM uses LLVM as the compiler on the
native machine, and gem5 for target architecture modeling and trace replay.

space of fixed-function accelerators and captures their interac-
tions within the SoC. Although gem5-Aladdin explores DMA
interactions in the SoC, Aladdin only focuses on standalone
datapaths and local memories. HETSIM, in contrast, focuses on
simulating a single target accelerator and faithfully modeling
its interaction with the memory subsystem. Rogers et al.
recently proposed a gem5 extension for accelerator modeling
that uses an LLVM frontend for cycle-accurate full-system
simulation [37]. HETSIM, on the other hand, performs trace-
driven simulations and uses LLVM only as a frontend to
instrument the emulation binary with trace-emitting function
calls. PARADE is a cycle-level full-system simulator for the
design-space exploration of accelerator-rich systems, and is
also integrated into gem5 [38]. It uses high-level synthesis
(HLS) and RTL simulation for the accelerator, and gem5 for
the uncore [39]. HETSIM uses simple trace replay engines
that parse through trace files and execute the trace operations,
while using native gem5 support for the rest of the system.
ZSim is another well-known simulator that is an alternative to
gem5 and scales up to thousands of cores [40]. In contrast
to HETSIM, however, ZSim targets heterogeneous systems
consisting of general-purpose cores only.

To the best of our knowledge at the time of writing, HETSIM
is the first customizable trace-driven simulator targeted for
heterogeneous accelerator-based systems, that enables fast
early-stage design-space exploration of novel architectures.

III. PROPOSED APPROACH

HETSIM comprises a streamlined multi-phase simulation
infrastructure that aims to remove much of the burden from

the user, and enable larger simulations with reduced over-
heads, while incurring little loss of accuracy in terms of
both performance and power estimations. At a high level,
HETSIM follows a trace-driven approach; execution traces
for an application are generated from an emulation of the
target architecture on a native machine. This is followed by
a replay of the traces on a lightweight model of the target
architecture that swaps out the compute units, or processing
elements (PEs), in the target with trace replay engines (TREs).
This is illustrated in Figure 1 and is discussed in-depth in the
remainder of this section.

HETSIM requires the following inputs from the user:

• A target architectural model that comprises a set of parallel
PEs and a memory subsystem. Some examples of such
architectural templates supported by HETSIM are: multi-
core CPUs (PE = thread), systolic arrays (PE = multiply-
accumulate unit + control logic), coarse-grained reconfig-
urable architectures (PE = ALU + routing logic), and so
on. It is assumed that target-specific hardware interactions,
such as a PE pushing data to its neighbor, are already
handled in the detailed model provided by the user. These
interactions are mapped to HETSIM primitives, and while
HETSIM provides a library of common primitives, it can
also be extended to support custom ones.

• A power model of the target architecture. HETSIM supports
any arbitrary power modeling tool that is compatible with
gem5, as long as the tool can be enhanced to extract PE
activity from the HETSIM-generated traces or TRE statistics.

• A C/C++ program that models each PE using Pthreads and
invokes primitive implementations from HETSIM’s emula-
tion library. HETSIM flexibly supports the addition of new
primitives (discussed in Section IV-D2).

• A tracing specification for primitives in the target hardware.
This is implemented as a JSON file with one entry per
primitive operation, and allows the user to tune knobs, such
as latency, that model the behavior of the primitive when
executed by a given PE-type on the target architecture.

• A native SMP machine with sufficient threads and memory
capacity for trace generation and replay. A system with more
resources speeds up the trace generation phase, although
trace generation overhead is generally amortized by reusing
the traces across multiple experiments.

HETSIM also supports a standalone mode, in which the user
builds their gem5 model around the TREs to begin with, rather
than providing a model consisting of detailed PEs.

The framework is split into four distinct, yet fully integrated
stages: compilation, emulator (functional) verification, trace
generation, and trace replay. These are illustrated in Figure 1.
HETSIM supports heterogeneous PEs that differ in terms of
sequence of operations, latency of each operation, among other
factors. In its current state, HETSIM uses gem5 for trace
replay, and supports the syscall emulation (SE) mode.
Functional Correctness. HETSIM takes a functional-first ap-
proach and validates the output of the user application during
the emulator verification stage. The results of simulation, i.e.
the trace replay step, however, are not functionally correct,
since HETSIM traces do away with the original compute op-

TABLE II
LIST OF PRIMITIVES BUILT INTO HETSIM. IMPLICIT AND EXPLICIT

PRIMITIVES ARE DISTINGUISHED BY @ AND PREFIXES, RESPECTIVELY.

Primitive Description
@load(&a) Load word from address &a
@store(&a,v) Store word v to address &a
@iop integer op; modeled as stall during replay
@fop floating-point op; modeled as stall during replay

__load_block(&a)
Load word from address &a and block other
primitives until response returns

__load_uncache(&a)
Load word from address &a directly from main
memory

__load_block_uncache
(&a)

Load word from address &a directly from main
memory and block other primitives until re-
sponse returns

__store_block(&a,v)
Store word v to address &a and block other
primitives until response returns

__store_uncache(&a,v)
Store word v to address &a directly into main
memory

__store_block_uncache
(&a,v)

Store word v to address &a directly into main
memory and block other primitives until re-
sponse returns

__barrier_init(&b,n) Initialize barrier at address &b with n PEs
__barrier_wait(&b) Wait at barrier at address &b
__mutex_lock(&m) Lock mutex at location &m
__mutex_unlock(&m) Release mutex at location &m
__sleep() Go to sleep until signaled by another PE
__signal(id) Signal PE[id] to wake up
__push(dir,v) Push v to PE in direction dir
__pop(dir) Pop from PE in direction dir
__dump_stats() Dump gem5 statistics into stats.txt
__reset_stats() Reset gem5 statistics

__dump_reset_stats()
Dump gem5 statistics into stats.txt and
reset them

erations. Instead, HETSIM attempts to model the performance
(and optionally, power) of the target as accurately as possible.

A. Creating the Tracing Compiler Plugin

The tracing plugin (Figure 1-a) contains the compiler pass
that automatically instruments the user’s application with trac-
ing calls. It is an LLVM plugin that is invoked as a user-defined
pass in the clang compiler. It is generated once per target
architecture from a user-specified list of primitives, which are
extracted from a trace specification file. The specification file
is composed of a list of primitives and their mappings to trace
tokens, augmented with metadata necessary for instrumenta-
tion and accurate modeling of the primitive. Additionally, the
specification includes valid address ranges for the target, in
order to filter-in only relevant memory accesses. Primitives
to be traced can be user-specified as an allow-list of valid
instruction types, or a deny-list of ignored primitive types.
Further filtering can be done in the application source code,
by specifying regions-of-interest (ROIs) to be traced.

Two types of primitives can be traced - explicit and implicit.
Explicit primitives include any primitives that are explicitly
called in the emulated application. These for example, can in-
clude synchronization primitives, such as lock or unlock calls
on a mutex. Implicit operations include any primitives that are
identified by the compiler without user specification, such as
compute operations (modeled as stalls) and memory accesses.
These constructs are not represented in the emulated code by
any specific function calls, but are implicitly performed, for
example by accessing arrays or performing arithmetic opera-
tions, however they are critical to the performance prediction,
and therefore need to be traced. These operations are instead
traced at the LLVM intermediate representation (IR) level, and
are specified by instruction type.

HETSIM is provided with a trace specification containing
primitive constructs (see Table II) that are common across
many computing paradigms, such as synchronization primi-
tives (CPUs and GPUs), queuing and signalling operations
(domain-specific accelerators such as TPUs), and so on. How-
ever, the system is designed to be flexible, and the trace
specification is exposed to the user to allow the addition
of custom primitives. The format for this specification has
been designed to have low overhead, requiring only the bare
minimum input from the user. The format is a JSON file, and
contains the following components:
1) The function name or IR instruction that is to be traced.
2) The trace token emitted into the trace when the function is

encountered.
3) Optional arguments to the trace token, and their mappings,

e.g. address and value for a load operation.
4) The latency (cycles) that this token is emulating.
5) Memory access penalties, designed to mimic the overhead

of dynamic operations such as synchronization.

B. Compilation and Emulator Verification

In this step, the user provides the application program that is
to be simulated on the target. The compiler generates two bi-
naries. The first is un-instrumented, and is used for functional
verification of the program (Figure 1-b). The second, is an
instrumented binary, and is used for trace generation (Figure 1-
c). When creating the instrumented binary, the compiler takes
the application source, scans it for uses of functions described
in the tracing specification, and instruments these functions
with the appropriate tracing calls. A use case and specification
format are discussed later in Section IV.

The emulation code is automatically instrumented to gen-
erate traces using the LLVM compiler plugin. The emulation
code is first compiled into LLVM IR, after which our custom
compiler pass scans the IR for occurrences of accelerator
primitives, and injects a tracing call for each primitive. The
tracing call holds references to any relevant parameters, which
are resolved later during runtime. The resulting binaries are
compiled for the native SMP, however our tracing infras-
tructure relies only on functional behavior, which remains
consistent across all ISAs.

Following the compilation phase, HETSIM performs func-
tional verification of the program, by executing it natively.

1) Memory Operations: To instrument memory operations,
the compiler scans for load and store operations and injects
tracing calls into the code. During runtime, these calls generate
tokens into the trace file. The token entry for a memory
access records whether it is a load or store, the virtual
program counter at which it occurs, and a list of dependent
loads and stores. This list preserves operations that must
be executed before the current operation, and is useful for
modeling targets with wide in-order cores or PEs that support
multiple outstanding memory accesses. We rely on LLVM’s
data-dependence graph (DDG) [41], [42], in order to add
dependence information to each memory token.

2) Arithmetic and Miscellaneous Operations: Upon en-
countering any non-memory instruction types, the compiler
increments the number of cycles associated with that specific

instruction, i.e. stalls. Typically, these would include integer
and floating-point compute operations, which are a crucial
part of any application code. To avoid runtime overhead, the
compiler only emits these when absolutely necessary. We have
identified two points at which the compiler must emit any out-
standing stalls. Firstly, on encountering a memory instruction,
in order to preserve the correct ordering of arithmetic and
memory operations. Secondly, at the end of a basic block –
since this compiler pass is static, we cannot increment the
cycle count across basic block boundaries, as we do not know
for certain how dynamic control flow will execute.

Noting the shift in emerging applications from compute-
dominated ones to those bounded by memory, we deem that
tracing all non-memory instructions may result in unnecessary
slowdown, without necessarily improving accuracy. Therefore,
in order to allow flexibility, we allow the user to specify which
instructions are to be traced. This can occur either via allow-
listing them in the specification file for the compiler plugin,
or deny-listing instructions that do not require tracing.

C. Trace Generation

Trace generation (Figure 1-c) is performed with the instru-
mented application binary. During execution, instrumentation
calls are made to the tracing library, which emits trace tokens
into the trace file(s). Since this is an emulation of the target
system on a native SMP, the runtime system plays an important
role in performing the mapping from host to target. For
example, the compiler alone cannot resolve whether a memory
access is made to target memory or to host memory. The
compiler therefore instruments all memory operations within
the marked code segment, and the runtime decides whether or
not the accessed address is a valid access to the target memory,
based on information in the trace specification. If it is, then a
tracing call is executed by the runtime. Otherwise, the access
is executed for functional correctness, but ignored in the trace.
Manual Trace Generation. The tracing API is exposed,
should the user wish to manually insert tracing calls into
the application program. This can be useful in situations
where more fine-granular performance tuning is required, for
example, where different instances of the same primitive type,
executed by the same PE, incur different latencies in the target
architecture. Another instance could be for a target executing
a multi-phase algorithm, where the simulator needs to be
artificially throttled to emulate data transfer latency across
algorithm phases. We note that this is orthogonal to automatic
tracing and only required to model pathological cases.

D. Trace Replay

The final step in the execution of HETSIM is trace replay
(Figure 1-d). As a prerequisite to this step, the user’s detailed
gem5 model is modified to swap out detailed core models for
our trace replay engines (TREs). A TRE is a simple engine that
parses through its designated trace file and executes each trace
token. For simple operations, such as stalls, the TRE simply
schedules to read the next trace token after “stall count”
cycles. This simplification of convoluted operations is the most
important source of speedup for HETSIM. Memory operations
i.e. loads and stores, in contrast, are sent out as packets to

1: [...]
2: __register_core_id(peId); // populate internal map
3: pthread_barrier_t bar;
4: // assume bar is initialized to N_PE (number of PEs)
5: [...]
6: __barrier_wait(&bar); // uses emulation library
7: // iterate over array of size N
8: for(int i=0; i<N; ++i) {
9: float v;
10: if(peId == 0) v=A[i]; else val = __pop(Dir::LEFT);
11: v = foo(peId, val);
12: if(peId != N_PE-1) __push(Dir::RIGHT, v); else A[i]=v;
13: }
14: __barrier_wait(&bar);
15: [...]

b)
 A
pp
li
ca
ti
on
 C
od
e

1: [...]
2: // implementation of blocking push using STL queue
3: void __push(Dir dir, float v) {
4: auto myID = tid_to_core_id_map.at // internal map
5: (std::this_thread::get_id());
5: // invoke helper that returns systolic queue ID
6: q_intfc_t * queue = queues.at(getQID(myID, dir));
7: std::queue<uint64_t> & q = queue->q;
8: std::mutex * m = queue->m;
9: std::condition_variable * emptyCv = queue->emptyCv,
10: * fullCv = queue->fullCv;
11: // grab the lock to this queue
12: std::unique_lock<mutex> lock(*m);
13: while (q.size() == queue->size) { // check if full
14: // release lock and sleep until consumer PE notifies
15: fullCv->wait(lock);
16: }
17: q.push(v);
18: // if some PE is waiting on this queue, notify them
19: empty->notify_one();
20: }
21: [...]

c)
 E
mu
la
ti
on
 L
ib
ra
ry

a) Example target architecture: 1D systolic array

Wrkr Wrkr Wrkr Wrkr

On-Chip Memory and Network

…

Fig. 2. a) Example accelerator composed of 1D systolic array of worker
PEs with datapath to main memory via an on-chip network. b) Example
multithreaded application program written in C++ with std::threads that
uses HETSIM primitives (prefixed with “ ”). c) Implementation of one of
these primitives, i.e. __push(), as part of the HETSIM emulation library.

the memory subsystem in the same way as with the detailed
model. This leads to high fidelity of the activity in the on-
chip network and memory, as well as off-chip, but trades-off
simulation speed.

The actual trace replay step entails running the traces
generated in the previous step through the TRE-enabled gem5
model. At the end of the replay step, statistics are dumped as
with any other gem5 simulations. While statistics associated
with the detailed core model are lost, the TRE model itself
provides some basic statistics, such as the load count, store
count, stall count, and “instructions” completed. Finally, the
optional power model provided by the user is modified to parse
through these statistics (or the generated traces) to analyze
activity at the PE-level, in addition to estimating the power
connsumed by the rest of the system.

IV. USAGE

We describe in detail various use cases of HETSIM in this
section, with the example of a target architecture.

A. Supporting a New Architectural Model
A new architecture is implemented in HETSIM using the

following end-to-end steps, with automated steps which other-

Wrkr Wrkr Wrkr Wrkr

On-Chip Memory and Network

…

Mgr

Fig. 3. An enhanced version of the target architecture in Figure 2 a). A
manager PE is added that communicates over a bus to the worker PEs, using
hardware FIFO buffers.

wise would require significant additional user effort italicized:
1) Implement the detailed model in gem5, along with a power

model if power estimations are desired.
2) For each primitive in the trace specification, tweak prim-

itive parameters (per PE-type) to match its behavior on
the target. HETSIM automatically generates an updated
compiler plugin based on the specification file.

3) Modify the gem5 model to instantiate TRE objects in place
of the detailed PE models.

4) Modify the power model to incorporate power estimation
of the PEs based on corresponding TRE statistics or traces.

5) Implement the application to be profiled using primitives
from the emulation library. Note that if the design requires
custom primitives, they are incorporated as discussed below
in Section IV-D2.

6) Run the HETSIM compiler pass to generate the instru-
mented and un-instrumented application binaries.

7) Execute the un-instrumented binary on the native machine
and verify that the code is functionally correct.

8) Execute the instrumented binary on the native machine to
generate the traces.

9) Run the TRE-enabled gem5 model to obtain performance
and power estimates with the generated traces.

Standalone Mode. In the standalone mode, the user simply
skips implementing detailed models of the PEs in the target
architecture (i.e. in step 1 above) and instead uses the TREs
directly in their model. This is useful at early stages of the
design process, when coarse performance/power estimates are
desired with fast turnaround times.
Illustrative Example. We consider a target architecture com-
posed of a simple 1D systolic array [43] of PEs that are
connected via hardware FIFO queues (Figure 2-a). Here,
the PEs have access to the main memory via an on-chip
network. Figure 2-b presents an application program that runs
on this architecture. Worker[0], the first PE, streams-in an
array A from the memory into the systolic array, element-by-
element. Each worker applies a function foo() to the element
and passes to its right neighbor. The final worker writes
the result back to array A (in-place). We note that this ex-
ample uses three primitives, namely __barrier_wait(),
__pop(), and __push(), that have target-specific hard-
ware implementations and are not software constructs on
the target. __register_core_id() is a generic primitive
call required for emulation runs in HETSIM. These calls
are implemented as part of HETSIM’s emulation library and

invoked while running the steps in Sections III-B and III-C. We
illustrate, in Figure 2-c, the emulation library implementation
of one of these primitives, __push(), which models the
behavior of a worker PE pushing to a neighboring FIFO (and
blocking if the FIFO is full). This specific implementation uses
locks to ensure mutually-exclusive accesses to the FIFO by
two PEs, and condition variables to avoid busy-waiting, thus
speeding up the trace generation step. Note that the primitives
used in this example are not supported by existing trace-
driven simulation frameworks, and yet they are commonplace
in heterogeneous accelerators, We posit that it is critical to
simulate such primitives correctly for accurate estimations.

B. Profiling New Applications on Existing Models
Another typical use of HETSIM is when new applications

are executed on an existing architectural model. Consider
again the system in Figure 2-a. Say that have a new application
for the systolic array that operates on a matrix M instead of
array A in L10. The user first implements the changes on
top of the existing application code, e.g. adding new for-
loops, bounds-checking, etc. Next, steps 6-9 outlined above
are repeated. Without an automated tracing system, the user
would need to manually instrument the application source
code, which is both time-consuming and prone to errors.

C. Exploring New Design Points on an Existing Model
Given the TRE-enabled architectural model, a power model,

and an application to profile, HETSIM easily allows users to
perform design space exploration on the target hardware.

In our running example, the user may choose to, say, explore
power-performance trade-offs for the following:
• Sizing the FIFO structures in the design.
• Sizing bus widths and other interconnect parameters, such

as the number of virtual channels [44].
• Clock speed and dynamic voltage-frequency scaling.
• Capacities of caches in different levels of hierarchy.
• Experiments with scaling-out the number of cores.
Note that the user only needs to re-run the trace generation
step when they want to explore design-points that affect the
operations executed by a PE. Among the listed experiments,
only the final one (core-scaling sweeps) requires trace gener-
ation to be repeated for each point.

D. Modifying the Hardware on an Existing Model
Next, we describe the steps to use HETSIM with modi-

fications to an existing TRE-enabled architectural model. We
now add heterogeneity to our running example by instantiating
a “manager PE” in the design that communicates with the
worker PEs via FIFO buffers (Figure 3). The user thus provides
HETSIM with an updated gem5 model and power model.

1) Extension with Supported Primitives: Say that we want
to now use the manager PEs to distribute pointers to vector
A before the start of computation. The user writes a new
program for the manager PE that includes __push() calls
corresponding to each worker PE. Also, the existing worker
PE application code is modified to include the corresponding
__pop() call. Note that this modification leverages existing
HETSIM primitives. After this, steps 6-9 in Section IV-A are
re-performed, and no additional steps are required.

1: [...]
2: void __trace__mgr__push_bcast(float v) {
3: register_trace_entry("PUSH_BCAST " +
4: std::to_string(cycles) + "\n");
5: }
6: [...]b)

 T
ra
ci
ng

Li
br
ar
y

1: [...]
2: void TRE::tick() { // this is called each "clock tick"
3: [...]
4: else if (getNextToken() == "PUSH_BCAST") {
5: // fill metadata into global object bcast
6: bcast.blocked = false;
7: // get cycle penalty
8: bcast.cycles = std::stol(getNextToken());
9: bcast.source = this;
10: schedule(pushBcastEvent,
11: clockEdge(Cycles(bcast.cycles)));
12: [...]
13: }
14: void TRE::pushBcast() {
15: // iterate over all TREs, skipping over the current one
16: for (auto &tre : allTREs) {
17: if (tre != this) {
18: // check the queue that connects this to consumer
19: if (queues->q.at(this, tre).size() ==
20: queues->size) {
21: // give up for now if the queue is full
22: bcast.blocked = true; return;
23: }
24: }
25: }
26: // all consumers' queues are !full, so push to all
27: for (auto &tre : allTREs) {
28: if (tre != this) queues->q.at(this, tre)
29: .push(0); // value doesn't matter
30: }
31: schedule(tickEvent, clockEdge(interval)); // continue
32: }
33: void TRE::pop() {
34: [...]
35: // if push was blocked because of full queue(s), release
36: if (bcast.blocked) {
37: bcast.source->schedule(pushBcastEvent,
38: clockEdge(Cycles(bcast.cycles)));
39: bcast.blocked = false;
40: [...]
41: }

d)
 T
RE
 L
ib
ra
ry

1: [...]
2: "pe" : { // contains entries for each PE type
3: "mgr" : { // contains primitives for PE type == "mgr"
4: [...]
5: "__push_bcast(float)" : { // primitive_name(arg)
6: "token": "PUSH_BCAST", "cycles": 2, "enable": 1
7: },
8: [...]

a)
 U
se
r
Sp
ec

Auto-Generate

1: [...]
2: void __push_bcast(float v) {
3: for (int i=0; i<N_PE; ++i) {
4: __push(Dir::PE + i, v); // reuse existing primitive
5: }
6: }
7: [...]c)

 E
mu
la
ti
on

Li
br
ar
y

Fig. 4. Example steps to add support for a new primitive,
__push_bcast(), that broadcasts a piece of data from one PE to
all others. a) The user augments the specification file with the new primitive.
Here, the user enables the primitive and specifies its metadata only for the
manager PE-type. b) The user specification file is automatically parsed into
the tracing library call. c) The user extends the emulation library with an
implementation for the new primitive. d) The user models the behavior of
the new primitive by extending gem5’s TRE class implementation.

2) Extension Requiring New Custom Primitives: Consider
the case where the user wants to optimize the hardware to push
a task to all worker PEs using a single instruction. The user
first implements hardware support in the original gem5 model
to enable broadcast in the manager ↔ worker bus. Next, the
following extensions to HETSIM are made (Figure 4):

• Figure 4 a): A new entry in the trace specification file,

1: [...]
2: STALL 100 () // startup latency
3: PUSH_BCAST 2 // stall 2 cycles &
4: // then broadcast to all workers
5: PUSH_BCAST 2
6: PUSH_BCAST 2
7: STALL 1 () // empty list
8: // indicates no deps
9: POP 1 0 // PE-ID, no extra stalls
10: POP 2 0
11: POP 3 0
12: [...]

a)
 M
an
ag
er
 T
ra
ce
s

1: [...]
2: STALL 100 () // startup latency
3: POP 0 2 // mgr ID on mgr<->wrkr bus
4: POP 0 2
5: POP 0 2
6: LD @10 0x2000 () // A[0]
7: LD @11 0x3000 () // B[0]
8: STALL 1 (0x2000 0x3000)
9: // compute A[0]+B[0]
10: ST @12 0x4000 () // C[0]=A[0]+B[0]
11: PUSH 0 0 // mgr ID on mgr<->wrkr bus
12: [...]

b)
 W
or
ke
r
Tr
ac
es

Fig. 5. Snippets of the trace generated for an example application on the
target hardware in Figure 3. The manager broadcasts pointers to three arrays,
A, B and C, to worker PEs. The workers collaboratively perform a vector-sum
of A and B into C. Each memory access token is annotated with the virtual PC
(prefixed with @). The arrows indicate dependencies captured between the
loads and the addition operation. One key feature of HETSIM is that it enables
modeling multiple outstanding accesses by tracking these dependencies. Note
that the comments are not emitted in the actual traces.

__push_bcast(), is created with appropriate metadata.
• Figure 4 b): HETSIM automatically generates an updated

compiler plugin based on the specification file. The imple-
mentation is shown in the figure.

• Figure 4 c): The user creates an implementation of the new
primitive in the emulation library source code.

• Figure 4 d): Finally, the user implements the behavior of
the new primitive in the TRE source code (part of gem5)
and then re-builds gem5.
Lastly, steps 6-9 discussed in Section IV-A are re-executed

to obtain estimations from HETSIM for the modified target.

E. Comparison with different PE Types
Users may need to perform studies of different PE types

with varying levels of heterogeneity in the architecture. This
is natively supported in HETSIM. For instance, with the
__push_bcast() primitive in our running example, we can
simply vary the the cycles parameter in the specification
file to model different types of manager cores. A similar
modification to the power model is also required (not shown).

F. Modeling ISA Extensions
HETSIM also supports ISA extensions for any type of

processor. The extension itself needs to be defined as another
primitive, and incorporated into HETSIM as explained in
Section IV-D2. HETSIM does not distinguish between ISA
extensions and hardware primitives.

G. Example Traces
The generated traces for the manager and worker[0], for the

example of a vector-addition application, is shown in Figure 5.
HETSIM preserves dependent addresses for operations that do
not block, e.g. loads, stores, and stalls. In Figure 5 (right), we
see that worker[0] can concurrently issue loads to elements
A[0] and B[0], assuming that the worker PE itself is capable
of issuing multiple memory accesses. This accurate modeling
of the behavior of complex PEs is made feasible by HETSIM’s
dependency tracking feature.

V. EXPERIMENTAL SETUP

We evaluated HETSIM on an AMD Ryzen Threadripper
2990WX 32-core processor with 2-way SMT, 128 GB 2133
MHz DDR4 main memory, and 2 TB PCIe SSD storage.
Our experiments were performed on Ubuntu 16.04, however
HETSIM can be used with any operating system supported by

gem5. HETSIM requires LLVM (minimum version 10.0) for
the tracing compiler support. With this setup, we were able
to simulate a system with up to 4,160 PEs, beyond which the
memory capacity became the bottleneck.

We use HETSIM to perform design space exploration on
two target accelerator systems.

1) Transmuter Architecture: Our first target for evalua-
tion using HETSIM is a recently-proposed reconfigurable
accelerator called Transmuter [45]–[47]. Transmuter is highly
amenable as a target architecture for HETSIM, since it exposes
multiple options for both design-time parameter exploration
and run-time reconfiguration.
Design. Transmuter is a tiled heterogeneous architecture com-
posed of a set of in-order, general-purpose processing elements
(GPEs), with a separate local-control processor (LCP) that
manages a tile of GPEs. See Figure 4 in [45] for a detailed
block diagram. The GPEs are connected through a two-
level (L1 and L2), non-coherent, reconfigurable cache-crossbar
hierarchy to a high-bandwidth memory interface (HBM). The
reconfigurable network and memories enable Transmuter to
morph into one of sixty-four possible configurations.
Workloads. We evaluate Transmuter with HETSIM on three
important linear algebra applications, namely general matrix-
matrix multiplication (GeMM), general matrix-vector mul-
tiplication (GeMV) and sparse matrix-matrix multiplication
(SpMM). These workloads exhibit varying characteristics in
terms of the nature of data (dense/sparse) as well as arithmetic
intensities (compute-/memory-bound).

GeMM and GeMV are implemented using traditional block-
ing/tiling techniques that are deployed in modern software
libraries [48], [49]. The input matrix is blocked to fit into
the L1 cache of the target design. The SpMM implementation
is based on the outer product algorithm where the SpMM is
performed in two phases, the multiply and merge phases [17].
Modeling and Correlation. The detailed reference Trans-
muter model and power calculator are taken from the prior
work [45]. Transmuter maintains its input and output data
structures in a memory region that is separated from each
core’s stack/heap, called SHARED SPACE. We allow-listed
only memory accesses to this region in HETSIM to achieve
higher simulation speeds. For the detailed (baseline) model,
we instantiated the GPEs and LCPs as scalar, single-issue Mi-
norCPU cores. We also adapted the power model to estimate
core power using the statistics dumped by TREs.

For our experiments with HETSIM, we switched the Mi-
norCPU cores with our TREs that replay the traces generated
from the instrumented application binary (Section III), and
removed the instruction caches. We correlate the performance
and power estimations provided by HETSIM with the detailed
gem5 model in SE mode for the three workloads.

Note that we had to extend HETSIM with primitives that
are specific to the Transmuter architecture. Particularly, we
implemented the __pop_mmap() and __push_mmap()
primitives on top of the existing __push() and __pop()
calls. These implement the push and pop functionalities, re-
spectively, as loads and stores to special addresses that access
the memory-mapped work-queue and status-queue hardware
structures in Transmuter.

Design Space. We sweep the following design points in
Transmuter, and use HETSIM to perform the experiments.
1) Design-Time. Number of tiles, number of GPEs per tile,

L1 bank sizes, L2 bank sizes, off-chip bandwidth.
2) Run-Time (Hardware). Reconfiguration of the L1 and L2

caches from private to shared and vice versa.
3) Run-Time (Software). Block size parameter in the applica-

tion code for GeMM and GeMV.
Owing to space constraints, we omit presenting our exper-
iments with core count and memory bandwidth scaling on
Transmuter in this paper.

2) SpMM Accelerating Chip: We now discuss the case
study of a prior heterogeneous sparse matrix-matrix multipli-
cation (SpMM) accelerator prototype chip [18], [50].
Design. This chip accelerates the outer product algorithm
using a loosely-coupled heterogeneous accelerator design. The
chip is composed of 8 tiles with 4 fixed-function multiplier
PEs and 2 in-order Arm Cortex-M class cores per tile. See
Figure 4 in [18] for a block diagram. A PE comprises a
floating-point multiplier, an 8-wide outstanding-request queue
that tracks loads and stores to the memory system, and simple
control logic. The in-order cores in a tile are a pair of Arm
Cortex-M0 and Cortex-M4F processors. They share ports to
an L0 crossbar with the PEs. Each tile has an L0 cache layer
and the tiles share a second (L1) layer. Further, the L0 cache
can reconfigure between cache and scratchpad memory. Lastly,
the chip communicates with an off-chip host through a custom
front-side bus interface.
Workload. The multiply phase in the chip is performed by the
PEs with the L0 in cache mode. For merge, the chip leverages
the decoupled access-execute paradigm (DAE) [51] to partition
the outer product merge phase computation between a fetch
core (Cortex-M0) and a merge core (Cortex-M4F). During the
merge phase, the M0 prefetches data into the L0 scratchpad,
while the M4F sorts and merges lists of partial products in
the L0 scratchpad. The Arm cores are turned off during the
multiply phase and the PEs are turned off during merge.
Modeling and Correlation. We considered a HETSIM model
based on the chip specifications (32 PEs, 8 merge cores, 2 kB
cache banks, etc.) and evaluated a multithreaded version of the
outer product application code. We instantiated two PE types
in the user specification to model the differences between the
fixed-function PE and the Arm core. Dependency tracking in
HETSIM was particularly beneficial to faithfully model the
multiple outstanding requests supported by the PEs, which is
critical for the memory-bound SpMM workload. In addition,
HETSIM’s capability of modeling heterogeneous PEs allowed
for it to effectively model DAE in the merge phase.

VI. EVALUATION

In this section, we present details on our experiments with
HETSIM and comparison with detailed gem5 models for the
two target accelerators in Section V.

A. Simulation Time Profile and Scalability of HETSIM

Figure 6 shows the wall clock time for trace generation and
replay on the native SMP for two problem sizes across each of
the evaluated workloads. Except for SpMM, the overhead of

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

4x
8

8x
8

8x
16

16
x1

6
16

x3
2

32
x3

2
32

x6
4

64
x6

4
4x

8
8x

8
8x

16
16

x1
6

16
x3

2
32

x3
2

32
x6

4
64

x6
4

4x
8

8x
8

8x
16

16
x1

6
16

x3
2

32
x3

2
32

x6
4

64
x6

4

Si
m

ul
at

io
n

Ti
m

e
(s

)

0
200
400
600
800

1,000
1,200
1,400

4x
8

8x
8

8x
16

16
x1

6
16

x3
2

32
x3

2
32

x6
4

64
x6

4
4x

8
8x

8
8x

16
16

x1
6

16
x3

2
32

x3
2

32
x6

4
64

x6
4

4x
8

8x
8

8x
16

16
x1

6
16

x3
2

32
x3

2
32

x6
4

64
x6

4

Si
m

ul
at

io
n

Ti
m

e
(s

)
Trace Replay

SpMM – Multiply
SpMM – Merge

Trace Generation

GeMM
Dim. 256

GeMV
Dim. 4k

SpMM
Dim. 4k, den. 0.32%

GeMM
Dim. 512

GeMV
Dim. 8k

SpMM
Dim. 4k, den. 0.64%

Fig. 6. Trace generation and replay timing profile on the Threadripper system,
across different workloads and Transmuter sizes. Each simulated core is a 4-
stage in-order pipeline. The total number of cores simulated for an NT×NG
Transmuter configuration (x-axis) is NT ·(NG+1), where NT is the number
of tiles and NG is the number of GPEs per tile.

(parallelized) trace generation plateaus with increasing number
of simulated cores, whereas (serialized) trace replay using
gem5 scales with the simulated system size. Note that for the
speedup results in the remainder of this section, we exclude the
cost of trace generation due to two reasons. First, the trace gen-
eration overhead is amortized over multiple trace replay runs
(Section IV-B). Second, the trace generation step is hardware-
dependent, and can be sped up using a native machine with
more cores and a faster secondary storage. Across all our
experiments, the one-time cost for trace generation was 0.1×-
2.5× the time for one trace replay run.

B. Accuracy and Correlation vs. Detailed gem5 Model

We first provide results that compare HETSIM simulations
with those performed on the detailed gem5 model, for the
same inputs and architectural configurations. We note that it
is generally not possible to obtain 100% accurate estimation
with HETSIM, due to limitations arising from a lack of support
of pipelining, instrumentation at the LLVM IR level, among
others. We list the major sources of inaccuracy in Section VII.

Due to space constraints, we only report results for two
Transmuter configurations, (i) where the L1 and L2 are both
configured as private caches, and (ii) where they are both
configured in the shared mode. Specifically, we report the
following metrics, where we note that deviation is calculated
using the formula (metricHETSIM – metricdetailed) / metricdetailed.

• Deviation in simulated time, i.e. the time to execute the
workload on the target, as estimated by the simulator.

• Deviation in power consumption, i.e. the estimated average
power for running the workload on the target.

• Deviation in L1 access count, i.e. the average number of
accesses to each L1 cache bank in the Transmuter design.

• Wall clock speedup of HETSIM over the detailed gem5
model on the native machine.

0

2

4

6

8

10

-50%

-30%

-10%

10%

30%

50%

 8 16 32 Sp
ee

du
p

D
ev

ia
tio

n

Matrix Block Size

Simulated Time Power

0

2

4

6

8

10

-50%

-30%

-10%

10%

30%

50%

 8 16 32 Sp
ee

du
p

D
ev

ia
tio

n

Matrix Block Size

0

2

4

6

8

10

-50%

-30%

-10%

10%

30%

50%

 8 16 32 Sp
ee

du
p

D
ev

ia
tio

n

Matrix Block Size

L1 Accesses Speedup

0

2

4

6

8

10

-50%

-30%

-10%

10%

30%

50%

 8 16 32 Sp
ee

du
p

D
ev

ia
tio

n

Matrix Block Size

0

2

4

6

8

10

-50%

-30%

-10%

10%

30%

50%

 8 16 32 Sp
ee

du
p

D
ev

ia
tio

n

Matrix Block Size
0

2

4

6

8

10

-50%

-30%

-10%

10%

30%

50%

 8 16 32 Sp
ee

du
p

D
ev

ia
tio

n

Matrix Block Size

Matrix Dim. 64 Matrix Dim. 64

Matrix Dim. 128 Matrix Dim. 128

Matrix Dim. 256 Matrix Dim. 256

Private Cache Shared Cache

Fig. 7. Accuracy of performance, power and L1 cache access count estima-
tions of HETSIM compared to the detailed gem5 model of 2×8 Transmuter,
for GeMM with varying block sizes and two HETSIM configurations.

We now analyze these metrics on Transmuter for the three
workloads – GeMM, GeMV and SpMM, and compare them
with those estimated by the MinorCPU-based detailed model.
GeMM. We evaluate blocked-GeMM on Transmuter while
sweeping the matrix dimension and block size. Figure 7
shows our results. We achieved an average speedup of 5.0×
using HETSIM. We note the following observations from
our experiments. The L1 access count is underestimated by
only 5.7% on average, showing that memory accesses are
reproduced faithfully. The accuracy of performance and power
estimates improve with the matrix dimension, varying from
–2.6 to +16.2% for timing, and –21.9 to –5.3% for power.
The deviations in estimates are visibly higher for the shared
mode in comparison to the private mode, since the shared
cache configuration involves much higher cache hits, and thus
the timing is almost entirely dependent on the accuracy of
simulating the compute operations.
GeMV. We evaluate blocked as well as unblocked versions
of GeMV on Transmuter. From Figure 8, we observe that the
blocked GeMV implementations have much lower runtime de-
viation with HETSIM (10.6%), in comparison to the unblocked
version (30.0%). This is because the GPEs in the blocking
version synchronize with LCPs after computing every “block
size” elements, thus leading to self-correction of the errors
introduced due to approximation of compute operations. Since
GeMV is memory-bounded, the generated traces are majorly
composed of memory operations that execute fairly accurately
on HETSIM, translating to small deviations particularly for
power (+2.0 to –5.7%). HETSIM executes, on average, 5.2×
faster than the detailed model.
SpMM. We evaluate outer product based SpMM on Trans-
muter with uniformly-random synthetic sparse matrices. Fig-
ure 9 shows the results for 6 different matrices on the two
Transmuter configurations. For the shared cache configuration,
we note an increase in speedup as the matrix gets larger (fixed

0

2

4

6

8

-50%

-30%

-10%

10%

30%

50%

 Unblock. 16 32 Sp
ee

du
p

D
ev

ia
tio

n

Block Size

Simulated Time Power

0

2

4

6

8

-50%

-30%

-10%

10%

30%

50%

 Unblock. 16 32 Sp
ee

du
p

D
ev

ia
tio

n

Block Size

L1 Accesses Speedup

0

2

4

6

8

10

-50%

-30%

-10%

10%

30%

50%

 Unblock. 16 32 Sp
ee

du
p

D
ev

ia
tio

n

Block Size
0

2

4

6

8

10

-50%

-30%

-10%

10%

30%

50%

 Unblock. 16 32 Sp
ee

du
p

D
ev

ia
tio

n
Block Size

0

2

4

6

8

10

-50%

-30%

-10%

10%

30%

50%

 Unblock. 16 32 Sp
ee

du
p

D
ev

ia
tio

n

Block Size
0

2

4

6

8

10

-50%

-30%

-10%

10%

30%

50%

 Unblock. 16 32 Sp
ee

du
p

D
ev

ia
tio

n

Block Size

Dim. 1,024 Dim. 1,024

Dim. 2,048 Dim. 2,048

Dim. 4,096 Dim. 4,096

57
%

Private Cache Shared Cache

Fig. 8. Accuracy of performance, power and L1 cache access count estima-
tions of HETSIM compared to the detailed gem5 model of 2×8 Transmuter,
for GeMV with varying block sizes and two HETSIM configurations.

0

2

4

6

8

10

12

-50%

-30%

-10%

10%

30%

50%

1024 2048 4096 Sp
ee

du
p

D
ev

ia
tio

n

Matrix Dim.

Simulated Time Power

0

2

4

6

8

10

12

-50%

-30%

-10%

10%

30%

50%

1024 2048 4096 Sp
ee

du
p

D
ev

ia
tio

n

Matrix Dim.

L1 Accesses Speedup

0

2

4

6

8

10
12

-50%

-30%

-10%

10%

30%

50%

1024 2048 4096 Sp
ee

du
p

D
ev

ia
tio

n

Matrix Dim.
0

2

4

6

8

10
12

-50%

-30%

-10%

10%

30%

50%

1024 2048 4096 Sp
ee

du
p

D
ev

ia
tio

n

Matrix Dim.

Density 0.32% Density 0.32%

Density 0.64% Density 0.64%

Private Cache Shared Cache

-5
9%

Fig. 9. Accuracy of performance, power and L1 cache access count estima-
tions of HETSIM compared to the detailed gem5 model of 2×8 Transmuter,
for SpMM with varying matrix dimension and density (uniform random), and
two HETSIM configurations.

density). The timing deviation is slightly higher for SpMM,
averaging 13.2%. This is however attributed to register spill/fill
accesses that are omitted due to allow-listing only accesses
to the SHARED SPACE in HETSIM, as evidenced by the L1
access count deviation of up to –59%. Power consumed in the
memory subsystem is underestimated due to the same reason.

C. Scaling with Problem Size and Configuration
We evaluate the performance predicted by the detailed gem5

model with HETSIM for the two Transmuter configurations.
The detailed results for the three benchmarks are shown in
Figures 10-12. We sweep the matrix and block size for GeMM
and GeMV. For SpMM, we split the results for multiply and
merge phases separately.

For GeMM, HETSIM made the same prediction about the
better Transmuter configuration as the detailed model for 7
of the 8 reported experiments. For both GeMV and SpMM,
HETSIM achieved 100% accuracy in predicting the faster
Transmuter configuration, thus showcasing its efficacy for fast
and accurate design space exploration.

Block
Size 16

0.0

1.0

2.0

3.0

4.0

32 64 128 256

G
FL

O
PS

/s

Matrix Dimension

HetSim-Shared Detailed-Shared

0.0

1.0

2.0

3.0

32 64 128 256

G
FL

O
PS

/s

Matrix Dimension

HetSim-Private Detailed-Private
Block
Size 32

Fig. 10. Strong scaling performance comparison between different 2×8
Transmuter configurations on a blocked GeMM implementation, using HET-
SIM and the detailed model.

0

0.5

1

1.5

2

512 1,024 2,048 4,096

G
FL

O
PS

/s

Matrix / Vector Dim.

HetSim-Private Detailed-Private

0

0.5

1

1.5

2

512 1,024 2,048 4,096

G
FL

O
PS

/s

Matrix / Vector Dim.

HetSim-Shared Detailed-Shared
UnblockedBlocked

Fig. 11. Strong scaling performance comparison between different 2×8
Transmuter configurations on two GeMV implementations, using HETSIM
and the detailed model.

D. Scaling with Cache Sizes
One typical use case of HETSIM is in design-space ex-

ploration of power-performance-area trade-offs by varying
different parameters of the target hardware. We exemplify this
through a Pareto frontier analysis of the L1 and L2 cache
bank capacities in a 4×16 Transmuter. Figure 13 shows the
power and performance with fixed input sizes for GeMM,
GeMV and SpMM. The L1 and L2 cache bank sizes are varied
from 1 kB to 64 kB. We observe that the greatest benefit of
increasing cache capacity is observed for GeMV, followed by
GeMV. SpMM does not see drastic performance differences
with cache capacity because it is bottlenecked by cold misses.

E. Evaluation of SpMM Accelerator Chip
As with any architectural simulator, it is important to vali-

date its estimations against real silicon. For this, we performed
sensitivity analysis on the prior SpMM chip that uses outer
product. Figure 14 (right) shows the variation of the chip’s
measured performance with memory bandwidth and number of
fixed function PEs/merge cores. The average error in estimated
performance of HETSIM compared to the chip is 32% for the
multiply phase and 16% for the merge phase computation.
We hypothesize that the higher error for multiply is due to the
behavior of the custom off-chip memory interface, which we
modeled approximately using the stock DDR model in gem5.

VII. DISCUSSION

HETSIM fundamentally trades off simulation accuracy for
faster simulation speeds. We report here a list of known
sources of error that directly impact the accuracy of HETSIM.
• Effect of not modeling pipelined execution within a PE, and

instead assigning a fixed latency to each operation.
• Effect of frequent synchronization and busy-waiting (e.g. for

mutexes and barriers), for which memory traffic is dynamic
depending on factors such as contention.

• Differences due to trace generation on a system with a
different ISA than that used by the target PE.

• Effect of instrumenting at the RISC-like LLVM-IR level.

0

50

100

150

200

250

1024 2048 4096

M
 N

N
Z/

s

Matrix Dim.

HetSim-Private Detailed-Private

0

10

20

30

40

1024 2048 4096

M
 N

N
Z/

s

Matrix Dim.

HetSim-Shared Detailed-Shared
SpMM - MergeSpMM - Multiply

Fig. 12. Strong scaling performance comparison between different 2×8
Transmuter configurations on an SpMM outer product implementation with
uniform random matrices, using HETSIM and the detailed model.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

4 9 14

Po
w

er
 (

W
)

0
0.2
0.4
0.6
0.8

1
1.2
1.4

20 70 120
Simulated Time (ms)

0
0.2
0.4
0.6
0.8

1
1.2
1.4

5.7 5.9 6.1

GeMM,
Dim. 256

1kB,
64kB★ ★ ★

GeMV,
Dim. 8,192

SpMM, Dim. 4,096,
Den. 0.32%

4kB,
4kB

1kB, 1kB

Fig. 13. Pareto analysis for GeMM, GeMV and SpMM on 4×16 Transmuter.
The datapoints correspond to CapL1 ∈ {1, 4, 16, 64} kB, CapL2 ∈ {1, 4, 16,
64} kB, CapL1 ≤ CapL2. Star indicates the design with best energy-efficiency.

• Impact of over-filtering (deny-listing) primitives in the user
specification file.

• For targets with programmable PEs, HETSIM ignores:
– Effect of bandwidth sharing and performance/energy im-

pact due to not accounting for I-cache misses.
– Power impact of instruction fetch and decode in the

pipeline, and SRAM accesses within I-caches.
HETSIM is under active development and is being used in a

multi-University program as of this writing. We have released
a version of HETSIM that works with the latest version
of gem5, gem5-20 [52], as a public GitHub repository1. It
contains an example target architecture that is intended to serve
as a template for users to implement their own architectures.
This initial release is bundled with the set of primitives in
Table II, and can be extended with user-defined primitives. We
encourage and appreciate user contributions to this repository.

We are also exploring orthogonal features, such as trace
compression [5], that we will enable in future HETSIM re-
leases. Another scope of our future work is to provide the
option to select a trade-off between speed and accuracy that
would better cater to the user’s requirements.

VIII. CONCLUSION

We developed HETSIM as an end-to-end framework to
speed up pre-silicon performance and power estimation of
heterogeneous systems. HETSIM addresses the issue of simu-
lating heterogeneous systems with thousands of cores within
practical time and resource limitations. In contrast to exist-
ing frameworks, HETSIM introduces the notion of hardware
primitives and implements them in a software emulation
library that is exposed to the user application. Additionally,
HETSIM supports complex cores and prefetching mechanisms
by embedding crucial information, such as dependent memory
addresses and program counter values, within its traces.

1GitHub repository: https://github.com/umich-cadre/HetSim-gem5

1

10

100

1000

0.05 0.5 5 50 500

M
 N

N
Z/

s

Available Mem. Bandwidth (GB/s)

Measured HetSim (32 PEs)
HetSim (64 PEs) HetSim (128 PEs)
HetSim (256 PEs)

1

10

100

0.05 0.5 5 50

M
 N

N
Z/

s

Available Mem. Bandwidth (GB/s)

Measured HetSim (8 MCs)
HetSim (16 MCs) HetSim (32 MCs)
HetSim (64 MCs)

SpMM - MergeSpMM - Multiply

Fig. 14. Weak scaling characteristics with different memory bandwidth values
for the SpMM chip running the two phases of outer product SpMM with
matrix dimension = 100,000 and density = 0.008%.

In this work, we evaluated HETSIM on two target ar-
chitectures and reported that HETSIM speeds up measured
simulation times by 3.2×-10.4× over detailed gem5 models
for the same targets. We also noted that HETSIM enables
such fast design space exploration with a small impact in
terms of accuracy of estimated performance and power. We
observed deviations of 0.2%-57.0% and 0.0%-24.2% in terms
of simulated time and power, respectively, for three different
applications on the targets.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their feedback. The
material is based on research sponsored by Air Force Research
Laboratory (AFRL) and Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8650-18-2-
7864. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of Air Force
Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

REFERENCES

[1] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar et al.,
“A simulator for large-scale parallel computer architectures,” IJDST,
2010.

[2] J. Hestness, B. Grot, and S. W. Keckler, “Netrace: dependency-driven
trace-based network-on-chip simulation,” in Third International Work-
shop on Network on Chip Architectures, 2010, pp. 31–36.

[3] R. Jagtap, S. Diestelhorst, A. Hansson, M. Jung, and N. When, “Explor-
ing system performance using elastic traces: Fast, accurate and portable,”
SAMOS, 2017.

[4] A. Nocua, F. Bruguier, G. Sassatelli, and A. Gamatie, “ElasticSim-
MATE: A fast and accurate gem5 trace-driven simulator for multicore
systems,” ReCoSoC, 2017.

[5] K. Sangaiah, M. Lui, R. Jagtap, S. Diestelhorst, S. Nilakantan et al.,
“SynchroTrace: Synchronization-Aware architecture-Agnostic traces for
lightweight multicore simulation of CMP and HPC workloads,” ACM
Transactions on Architecture and Code Optimization (TACO), 2018.

[6] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim: An
extensible simulation framework for validated gpu modeling.”

[7] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “Nvbit: A
dynamic binary instrumentation framework for nvidia gpus,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 372–383.

[8] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho,
“Macsim: A cpu-gpu heterogeneous simulation framework user guide,”
Georgia Institute of Technology, 2012.

[9] M. Badr and N. E. Jerger, “A high-level model for exploring multi-core
architectures,” Parallel Computing, vol. 80, pp. 23–35, 2018. [Online].
Available: https://github.com/mariobadr/rhythm

[10] S. Feng, S. Pal, Y. Yang, and R. G. Dreslinski, “Parallelism analysis
of prominent desktop applications: An 18-year perspective,” in 2019
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2019, pp. 202–211.

[11] B. Bohnenstiehl, A. Stillmaker, J. J. Pimentel, T. Andreas, B. Liu et al.,
“Kilocore: A 32-nm 1000-processor computational array,” IEEE Journal
of Solid-State Circuits, vol. 52, no. 4, pp. 891–902, 2017.

[12] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal et al.,
“In-datacenter performance analysis of a tensor processing unit,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 2017, pp. 1–12.

[13] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image classifi-
cation at supercomputer scale,” arXiv preprint arXiv:1811.06992, 2018.

[14] X. He, S. Pal, A. Amarnath, S. Feng, D.-H. Park et al., “Sparse-
tpu: Adapting systolic arrays for sparse matrices,” in International
Conference on Supercomputing (ICS’20), 2020.

[15] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient
architecture for sparse matrix multiplication,” in 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2020, pp. 261–274.

[16] B. Asgari, R. Hadidi, T. Krishna, H. Kim, and S. Yalamanchili, “Al-
rescha: A lightweight reconfigurable sparse-computation accelerator,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 249–260.

[17] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng et al., “Out-
erspace: An outer product based sparse matrix multiplication acceler-
ator,” in 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2018, pp. 724–736.

[18] S. Pal, D.-h. Park, S. Feng, P. Gao, J. Tan et al., “A 7.3 m output non-
zeros/j sparse matrix-matrix multiplication accelerator using memory
reconfiguration in 40 nm,” in 2019 Symposium on VLSI Technology.
IEEE, 2019, pp. C150–C151.

[19] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in 2011
38th Annual international symposium on computer architecture (ISCA).
IEEE, 2011, pp. 365–376.

[20] L. Bauer, M. Shafique, S. Kramer, and J. Henkel, “Rispp: rotating
instruction set processing platform,” in Proceedings of the 44th annual
Design Automation Conference, 2007, pp. 791–796.

[21] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao et al.,
“Plasticine: A reconfigurable architecture for parallel patterns,” in 2017
ACM/IEEE 44th Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2017, pp. 389–402.

[22] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M.
Chaves Filho, “Morphosys: an integrated reconfigurable system for data-
parallel and computation-intensive applications,” IEEE transactions on
computers, vol. 49, no. 5, pp. 465–481, 2000.

[23] C. Tan, M. Karunaratne, T. Mitra, and L.-S. Peh, “Stitch: Fusible
heterogeneous accelerators enmeshed with many-core architecture for
wearables,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2018, pp. 575–587.

[24] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-
specific processing on a general-purpose core via transparent instruction
set customization,” in 37th international symposium on microarchitec-
ture (MICRO-37’04). IEEE, 2004, pp. 30–40.

[25] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Adres: An architecture with tightly coupled vliw processor and coarse-
grained reconfigurable matrix,” in International Conference on Field
Programmable Logic and Applications. Springer, 2003, pp. 61–70.

[26] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The garp architecture
and c compiler,” Computer, vol. 33, no. 4, pp. 62–69, 2000.

[27] “Parallel m5.” [Online]. Available: http://www.m5sim.org/Parallel M5
[28] A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten, S. Kaxiras, and

D. Black-Schaffer, “Full speed ahead: Detailed architectural simulation
at near-native speed,” in 2015 IEEE International Symposium on Work-
load Characterization. IEEE, 2015, pp. 183–192.

[29] L. Ceze, J. Tuck, and J. Torrellas, “Are we ready for high memory-level
parallelism,” in 4th Workshop on Memory Performance Issues, 2006.

[30] T.-F. Chen and J.-L. Baer, “Effective hardware-based data prefetching for
high-performance processors,” IEEE transactions on computers, vol. 44,
no. 5, pp. 609–623, 1995.

[31] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith, “Ac/dc: An adaptive
data cache prefetcher,” in Proceedings. 13th International Conference
on Parallel Architecture and Compilation Techniques, 2004. PACT 2004.
IEEE, 2004, pp. 135–145.

[32] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The m5 simulator: Modeling networked systems,” Ieee
micro, vol. 26, no. 4, pp. 52–60, 2006.

[33] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi et al.,
“The gem5 simulator,” ACM SIGARCH Computer Architecture News,
vol. 39, no. 2, pp. 1–7, 2011.

[34] S. Nilakantan, K. Sangaiah, A. More, G. Salvadory, B. Taskin,
and M. Hempstead, “Synchrotrace: Synchronization-aware architecture-
agnostic traces for light-weight multicore simulation,” in 2015 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2015, pp. 278–287.

[35] Y. S. Shao, S. L. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks, “Co-
designing accelerators and soc interfaces using gem5-aladdin,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–12.

[36] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A
pre-rtl, power-performance accelerator simulator enabling large design
space exploration of customized architectures,” in 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA). IEEE,
2014, pp. 97–108.

[37] S. Rogers, J. Slycord, R. Raheja, and H. Tabkhi, “Scalable llvm-based
accelerator modeling in gem5,” IEEE Computer Architecture Letters,
vol. 18, no. 1, pp. 18–21, 2019.

[38] J. Cong, Z. Fang, M. Gill, and G. Reinman, “Parade: A cycle-accurate
full-system simulation platform for accelerator-rich architectural design
and exploration,” in 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2015, pp. 380–387.

[39] H.-Y. Cheng, J. Zhan, J. Zhao, Y. Xie, J. Sampson, and M. J. Irwin,
“Core vs. uncore: The heart of darkness,” in 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 2015, pp. 1–6.

[40] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” ACM SIGARCH Computer
architecture news, vol. 41, no. 3, pp. 475–486, 2013.

[41] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe,
“Dependence graphs and compiler optimizations,” in Proceedings of the
8th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, 1981, pp. 207–218.

[42] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[43] H. T. Kung and C. E. Leiserson, “Systolic arrays for (vlsi).”
CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COM-
PUTER SCIENCE, Tech. Rep., 1978.

[44] W. J. Dally and H. Aoki, “Deadlock-free adaptive routing in multicom-
puter networks using virtual channels,” IEEE transactions on Parallel
and Distributed Systems, vol. 4, no. 4, pp. 466–475, 1993.

[45] S. Pal, S. Feng, D. hyeon Park, S. Kim, A. Amarnath et al., “Transmuter:
Bridging the efficiency gap using memory and dataflow reconfiguration,”
in IEEE 29th International Conference on Parallel Architectures and
Compilation Techniques (PACT) 2020, Virtual, October 3-7, 2020.
IEEE, in press.

[46] A. Soorishetty, J. Zhou, S. Pal, D. Blaauw, H.-S. Kim et al., “Ac-
celerating linear algebra kernels on a massively parallel reconfigurable
architecture,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp.
1558–1562.

[47] Y. Xiong, J. Zhou, S. Pal, D. Blaauw, H.-S. Kim et al., “Accelerating
deep neural network computation on a low power reconfigurable archi-
tecture,” in 2020 IEEE International Symposiumon Circuits and Systems
(ISCAS). IEEE, in press.

[48] A. Matthes, R. Widera, E. Zenker, B. Worpitz, A. Huebl, and M. Buss-
mann, “Tuning and optimization for a variety of many-core architectures
without changing a single line of implementation code using the alpaka
library,” in International Conference on High Performance Computing.
Springer, 2017, pp. 496–514.

[49] J. Filipovič, M. Madzin, J. Fousek, and L. Matyska, “Optimizing cuda
code by kernel fusion: application on blas,” The Journal of Supercom-
puting, vol. 71, no. 10, pp. 3934–3957, 2015.

[50] D.-H. Park, S. Pal, S. Feng, P. Gao, J. Tan et al., “A 7.3 m output non-
zeros/j, 11.7 m output non-zeros/gb reconfigurable sparse matrix-matrix
multiplication accelerator,” IEEE Journal of Solid-State Circuits, 2020.

[51] J. E. Smith, “Decoupled access/execute computer architectures,” ACM
SIGARCH Computer Architecture News, vol. 10, no. 3, pp. 112–119,
1982.

[52] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger et al.,
“The gem5 simulator: Version 20.0+,” arXiv preprint arXiv:2007.03152,
2020.

