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Abstract—Autonomous Vehicles (AVs) have the potential to
radically change the automotive industry. However, computing
solutions for AVs have to meet severe performance and power
constraints to guarantee a safe driving experience. Current
solutions either exhibit high cost and power dissipation or fail to
meet the stringent latency constraints. Therefore, the populariza-
tion of AVs requires a low-cost yet effective computing system.
Understanding the sources of latency and energy consumption is
key in order to improve autonomous driving systems. In this
paper, we present a detailed characterization of Autoware, a
modern self-driving car system. We analyze the performance
and power of the different components and leverage hardware
counters to identify the main bottlenecks.

Our approach to AV characterization avoids pitfalls of previous
works: profiling individual components in isolation and neglect-
ing LiDAR-related components. We base our characterization on
a rigorous methodology that considers the entire software stack.
Profiling the end-to-end system accounts for interference and
contention among different components that run in parallel, also
including memory transfers to communicate data. We show that
all these factors have a high impact on latency and cannot be
measured by profiling isolated modules.

Our characterization provides novel insights, some of the
interesting findings are the following. First, contention among
different modules drastically impacts latency and performance
predictability. Second, LiDAR-related components are important
contributors to the latency of the system. Finally, a modern
platform with a high-end CPU and GPU cannot achieve real-time
performance when considering the entire end-to-end system.

Index Terms—autonomous vehicles, workload characteriza-
tion, performance analysis

I. INTRODUCTION

Autonomous Vehicles (AVs) are a promising solution for
a better organized, more inclusive, and safer traffic [1], [2].
These appealing benefits had put AVs on the track of many
leading tech companies. Some prominent industry projects
include Waymo’s AVs [3] (formerly Google’s self-driving
car project), the NVIDIA’s Drive Platform [4], Tesla’s au-
topilot [5], and Baidu’s Apollo project [6]. Despite industry
progress, AVs are not yet on the large-scale production and
still a case of research. To reach market-level maturity, AVs
must be first-rate regarding safety, performance, and power-
efficiency.

AVs rely on a complex chain of algorithms to perform the
perception of the surrounding world (e.g., object detection and
object tracking) that is used to perform the driving decisions
(e.g., steering, accelerating, or braking). For safety reasons, the
computation tasks are constrained by time deadlines, assuring

the vehicle’s reaction to the traffic events is in time to avoid
accidents. Not surprisingly, the computing power of AVs is
under pressure for improvement. In a recent report [7], Huawei
states that the future’s full-sell driving technology should be
able to deliver 100× the performance (in TOPS) of nowadays
driving assistance solutions. Furthermore, since AVs rely on
power-hungry hardware, usually a combination of high-end
CPUs and GPUs, power and energy consumption must also
be taken into account. If energy consumption is too high, the
autonomy of the vehicle will be reduced [8]. Also, the power
dissipation from the computing platform adds extra cooling
necessities, further increasing energy consumption.

To overcome these challenges and assure the improvement
of AVs, it is mandatory to have a broad yet deep understanding
of their software stack and its interaction with underlying hard-
ware, investigating bottlenecks and issues in these complex
architectures. Unfortunately, few previous works had put effort
into identifying these bottlenecks and quantifying them in
actual numbers. Moreover, industry leaders generally restrict
the knowledge of their projects within their company, because
of market competition, making it hard for outsiders to have a
grasp on the open problems for state-of-the-art AVs.

In this work, we present a thorough characterization of a
self-driving architecture, detailing open problems in current
software and hardware for future research on AVs. The inves-
tigation is performed with a modern and fully open-sourced so-
lution, namely Autoware [9], [10], which is built upon cutting-
edge algorithms for AVs. We stimulate Autoware’s software
stack with real-life sensor data and profile several of its traits.
The measurement includes the individual computation latency
of different modules, the end-to-end latency from sensor data
collection up to complete scene recognition and the power and
energy required for those tasks.

Some of the novel findings are the following:
• Depending on the image detection method chosen, tail la-

tency of other components varies between 34% and 97%
due to contention. Profiling nodes in isolation leads to a
significant underestimation of latency and predictability.

• Autoware cannot guarantee real-time perception on a
modern computer with a high-end GPU, as its end-to-end
latency frequently exceeds time requirements by more
than twofold.

• LiDAR-related components, that are key to drive the car
safely, are important contributors to end-to-end latency,
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showing execution times in the order of tens of ms.

II. AUTONOMOUS VEHICLES ARCHITECTURE OVERVIEW

To introduce the main concepts of AVs we leverage the
Autoware project [9] as a representative cutting-edge solution.
Autoware was first introduced in 2015 [11], and has been
constantly improved by the open-source community, including
significant contributions from industry companies [10]. Al-
though Autoware is not the only open-source project available,
it has the largest autonomous driving community on GitHub
and does not impose limitations as other projects in the same
tier of maturity and complexity. For instance, Baidu’s Apollo
project, which is also open-source, has some vital parts of the
code, such as Deep Neural Network (DNN) models for visual
detection, released as black-box libraries [12].

In a high-level, AVs technology can be divided into a set of
layers that interact and collaborate to perform self-driving, as
we depict in Figure 1. The next subsections detail the modules
that compose each of these layers.

A. External Data

We start explaining the external data that feeds the AV
computing system, such as sensors data and HD maps.

Sensing. A mandatory layer in AV platforms is composed
by the vehicle sensors, whose data will be further processed to
characterize the driving scene. Although different companies
use different sets of sensors, a list of common sensors includes
i) one or more cameras, which capture images for object
detection; ii) Light Imaging Detection and Ranging (LiDAR),
that measures the distance from the car to surrounding objects
through laser scan. LiDAR generates a collection of points
(named point-cloud) which is used for fine-grain localization
and object detection; iii) RADAR, for object detection in higher
distance ranges compared to LiDAR, but with lower precision;
iv) Global Navigation Satellite System (GNSS), to provide an
approximate position to the localization algorithms; v) Inertial
Measurement Unit (IMU), which provides data such as linear
velocity, useful to refine localization.

Autoware interfaces with all previously mentioned sensors
except RADAR (as in Figure 1), which is under development.
It is also worth to mention that LiDAR is the only sensor
among Autoware’s minimum requirements [13]. This is due
to the versatility of LiDAR generated point-clouds, that can
be used for both localization and object detection.

HD Map. AVs require very high precision when localizing
themselves [14]. For this reason, commodity map applications
(e.g. Google Maps) do not apply for AVs. Instead, localization
algorithms generally depend on pre-existent High-Definition
(HD) Maps. These HD maps contain a detailed point-cloud of
the whole drivable area, which is used by localization algo-
rithms to reach centimeter-level precision, orders of magnitude
more accurate than GNSS’s meter-level precision. Building an
HD map requires precise calibration and is often performed
by specialized companies. After collecting the point-cloud of
the mapped area, the map is enriched with useful information
such as disposition of lanes, allowed ways, speed limits, and
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Fig. 1: A high-level description of the Autoware architecture.
Sensor data and pre-existing high-definition maps feed the
software stack.

nodex
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Fig. 2: The publisher-subscriber scheme for node communica-
tion in ROS. A node publishes its output into a memory space,
called topic. Multiple nodes can subscribe to this topic, being
notified by ROS when new messages are published.

3D position of traffic lights, road signs, and zebra crossings.
All this information can be used by the AV system to improve
its surroundings perception and actuation.

B. Computing

Autoware software stack is built upon the Robot Operat-
ing System (ROS) [15]. ROS is a middleware collection of
libraries, tools, and underlying infrastructure that increases
productivity on robot systems development. The project is
divided into multiple software modules, named nodes, whose
purpose is to individually solve a task (e.g., detect an object)
while globally collaborating towards a major goal (e.g., suc-
cessfully self-drive a vehicle). The nodes communicate among
each other through a publish-subscribe arrangement: nodes can
publish their outputs into a shared memory space, referred as
a topic in ROS jargon, which other nodes can subscribe to, as
we depict in Figure 2. When new messages are published, all
subscriber nodes are notified, being able to read and process
data. This simple solution allows node collaboration.

Additionally, ROS topics specify an interface for message
publication, thus supporting different nodes implementations
as long as the interface is respected. For example, Autoware
has multiple nodes that perform object detection. Users can
quickly choose which image detector implementation they
want during a given autonomous driving execution.

Following, we review the most relevant nodes from the
Autoware software stack.

Perception. Prior to performing driving actions, self-driving
vehicles must first understand the scene they are into, through
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perception algorithms. As we depict in Figure 1, the perception
layer is undertaken by different modules:

• Localization is one of the major tasks to be per-
formed by an AV. In Autoware, the process of lo-
calization starts with down-sampling the input point-
cloud, acquired from LiDAR sensor, through a node
called voxel grid filter1. This filtered point-cloud is then
processed by the ndt matching [16] node, which tries to
match the sensed point-cloud with a sub-part of the pre-
existing HD map point-cloud. At this point, the GNSS can
indicate an initial position for the matching algorithm to
start its search, speeding up the localization. Additionally,
the IMU may be used to anticipate where the subsequent
positions are likely to be. When the algorithm finishes,
the best matching between the LiDAR’s acquired point-
cloud and the map is selected as the current position for
the car with centimeter-level precision.

• Detection must identify objects in the environment, clas-
sify them (e.g., a car, a pedestrian), and assert their
relative localization. In Autoware, object detection can
be performed with both LiDAR and camera data. We
consider the euclidean cluster node for LiDAR detection,
which clusters points nearby each other to perceive them
as objects, although it cannot classify their type. The
algorithm also calculates the cluster centroids to stipulate
how distant the objects are from the vehicle. For image-
based object detection, Autoware provides support for
the latest versions of SSD [17] and YOLO [18]. After
detecting and classifying objects in the images, the output
is fused with the LiDAR-based detection. This task is
completed by the range vision fusion node, based on
calibration between camera and LiDAR devices. This
fusion provides several benefits to detection. On the one
hand, LiDAR detection adds a 3D perspective to the
image-based detection (giving a sense of volume to the
object), and also localizing them in the map. On the
other hand, image detection adds semantic to the objects,
through the classification (e.g., vehicle, pedestrian...).

• Tracking aims at keeping an identification of different
objects along with successive frames, in order to deter-
mine how the different traffic participants are moving.
This can be performed based on detected objects (from
Detection task) and the ray ground filter node, which
filters the point-cloud acquired by LiDAR to separate the
ground points and the non-ground points (above ground
level). The tracking must cope with several challenges
since detected objects may experience occlusion, dis-
similar motion patterns and clutter [19]. To cope with
these problems, Autoware has the imm ukf pda tracker
node, which is inspired in previous works [20], [21]

1There are other down-samplers available. We do not try out an exhaustive
combination of all possible implementations, but rather, use the recommended
algorithms accordingly with Autoware documentation [10]. This also holds
for other tasks, whenever there is a consensus on a given solution. When the
best algorithm/implementation is not clear or incurs considerable trade-offs
(e.g. object detection DNNs) we experiment the different possibilities.

that combine different filter algorithms to overcome the
challenges. The Tracking then publishes the list of tracked
objects with information such as position, velocity, and
associated identification.

• Prediction takes place after tracking updates the status
of the objects. This module utilizes the object’s current
position, velocity, and direction to stipulate a path they
are likely to follow in the future. Currently, Autoware
considers the objects have constant velocity (both when
driving straight as when turning), hence the prediction
node name naive motion predict. Finally, the tracked
objects associated predicted paths, and the LiDAR point-
cloud feed the costmap generator node. This node gen-
erates the available areas for the vehicle to drive (i.e.,
not occupied by objects or to be occupied in the near
future, based on the trajectory predictions). This is key
for finding the possible trajectories the AV itself can take.

Actuation. Once the vehicle has a broad comprehension of
the current traffic scenario and its participants, it can plan and
execute driving actions through the following components:
• Planning determines the trajectory for the vehicle.

In Autoware, it is divided in two parts: global
and local planning [22], respectively implemented by
op global planner and op local planner nodes. The
global planner defines a high-level route to reach the
target destination. The local planner details how the route
will be followed depending on the perception outcome.

• Motion modules generate the control output to maneuver
the vehicle in order to follow the planned path. Autoware
implements the pure pursuit algorithm [23] (pure pursuit
node) to calculate the linear and angular velocity the
vehicle should perform. These velocity values are sub-
mitted to a low-pass filter (twist filter node), used to
smooth the driving actions. Finally, Autoware interfaces
with the vehicle through a drive-by-wire system, sending
the control performing the driving actuation.

III. METHODOLOGY

In this section, we present the methodology for the Au-
toware characterization. We detail tools, configurations, and
steps to acquire the data.

A. Autoware Execution Environment

Prior to characterize Autoware, we need to prepare its
execution environment. Setting up Autoware in a vehicle
is costly and inhibit the reproducibility of the experiments.
Instead, we rely on a set of ROS tools and data collected
during a vehicle drive to provide trustworthy data input to the
Autoware software-stack. Figure 3 introduces how we arrange
the experimentation. We start by stimulating Autoware with
two inputs: sensor data (in the form of a ROSBAG file), and
a point-cloud map.

The sensor data (ROSBAG file) contains ROS topics previ-
ously collected during a real-world vehicle driving. This means
that we can use sensor data as an input as if Autoware was
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TABLE I: Summary of important Autoware nodes.

Node Description

voxel grid filter Downsample an input point-cloud, reducing the amount
of points to simplify further computations.

ndt matching Localize the vehicle by matching LiDAR acquired point-
cloud with a region of the HD map point-cloud.

euclidean cluster Cluster LiDAR acquired points nearby each other, identi-
fying volumes that can be perceived as objects.

YOLO / SSD DNN-based nodes used to detect and classify objects (e.g.,
vehicles, pedestrians) from images.

range vision fusion Combine LiDAR and image-based detected objects into
the same coordinates, improving objects perception.

ray ground filter Separate an input point-cloud in two: points that compose
the ground, and points above the ground level.

imm ukf pda tracker Track objects by assigning them an identification and
keeping it coherent among subsequent frames.

naive motion prediction Extrapolate the current trajectory of different objects to
predict where they will be in the future.

costmap generator Determine drivable areas in the map, i.e., with no objects
at the time or predicted to be in the near feature.

op planner Global and local path planning based on the current scene
and target location.

pure pursuit Calculate the necessary motion (linear and angular accel-
eration and velocity) to follow the desired path.

twist filter A low-pass filter applied over motion control to smooth
the vehicle driving.

receiving the data from the sensors from a vehicle in real-
time. More importantly, we can re-run the same ROSBAG, to
stimulate Autoware with the same data from sensors as many
times as needed. Hence, we can experiment with Autoware
with multiple combinations of nodes, metrics, and profiling
tools, always using the same input, improving reproducibility,
and easing further data analysis. In our experiments, we rely
on data from an 8 minutes driving, recorded in the city of
Nagoya in Japan, which is available at the Autoware Data
repository [24].

To completely stimulate the Autoware stack we also need
an HD map, as explained in Section II-A. However, HD maps
are often proprietary and cover very small parts of the globe.
Moreover, the HD map should cover the same region where
the original ROSBAG file was recorded, but the sensor data
we use is not accompanied by an HD map. To overcome this,
we use an Autoware utility (ndt mapping), which creates a
point-cloud map based on the LiDAR data from the ROSBAG
file. This, however, only generates a point-cloud map, useful to
stimulate the localization nodes, but does not contain the whole
HD map with annotations (speed limit, traffic light poles, etc.).
We discuss the limitations of this process later on.

The specific hardware and software upon which nodes run
on are detailed in Table II. We highlight most of the software
versions presented in the Table are required by Autoware, for
compatibility reasons. As for the different knobs to configure
the nodes, we use the predetermined configuration released
with the Autoware (Autoware.ai 1.12 in our case). The vision
detection models and pre-trained weights were also obtained
following the Autoware guidelines. The SSD vision detector

ROSBAG

(Sensor Data)

Point-Cloud 

Map

AutowareAutoware

node node

node

topic

node

node

node

topic

node

node

node

topic

topic

topic

topic

node node

node

topic

node

node

node

topic

node

node

node

topic

topic

topic

topic

Profiling Power Data

Performance Data

Fig. 3: The experimental setup. Preexistent files for sensor data
and point-cloud map provide the real-life inputs. Profiling tools
collect characterization data.

TABLE II: Environment hardware and software platforms

CPU GPU

H
ar

dw
ar

e Model Intel i7-7700K NVIDIA GeForce GTX 1080

Architecture Kaby Lake Pascal

Frequency 4.2 GHz 1.6 GHz

# Cores 4 (8 Threads) 2560

L1 Cache (I/D) 32 KB (8-Way) -

L2 Cache (Unified) 256 KB (4-Way) 4 MB

L3 Cache (Unified) 8 MB (16-Way) -

Main Memory 64 GB DDR4 8 GB GDDR5X
So

ft
w

ar
e

Operating System Ubuntu 16.04 x86 64

Kernel 4.15.0-96-generic

ROS Kinetic

Autoware Autoware.ai 1.12

CUDA 9.0

is assessed with models SSD300 and SSD512, with data
from [25]. The YOLO vision detector was assessed in its
third version, namely the YOLOv3-416 model and pre-trained
weights from [26].

B. Characterization Procedures

We divide the characterization into three main steps: i)
latency measurement, ii) system-wide utilization and power
dissipation, and iii) architecture-level characterization. Follow-
ing we detail the purpose of each of these steps and how they
were performed.

Latency Measurement. AVs are subject to time constraints,
since assuring the vehicle always finish the computation within
a given time limit is necessary to guarantee safety standards.
Some previous works consider a reaction time under 100ms
[8], [27], in order to be faster than a high-skilled human
reaction. This time constraint poses the AV to be four times
faster than the average time humans take to process objects,
as studied in [28]. Naturally, reducing the computation latency
even further is also beneficial since it improves reaction time
achieving higher safety standards. For this reason, it is vital
to assess the AV’s computation latency on Autoware.

We leverage code instrumentation to measure two latency
values: single node latency, and perception end-to-end latency,
as illustrated in Figure 4. Single node latency measures the
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amount of time to process the input, and it is defined as the
elapsed time from the moment an input arrives at the node until
the output is ready. This will serve to identify latency-hungry
nodes, which are potential bottlenecks. We augment the code
with C++ chrono library calls to collect the execution times
along the whole driving.

We also assess end-to-end latency for perception. For
this, we first define different computation paths, as pointed
out in Figure 4. Each computation path corresponds to the
accumulated time a given sensor input entered the system
until its final contribution to the vehicle’s perception was
performed. In this case, the input is processed along with
different nodes, and thus the computation path latency will
include both the computation time inside each node and also
the communication time (ROS subscribe-publish). The end-to-
end latency is defined as the computation path that takes the
longest time to finish. Figure 4 depicts this situation, where
inputs take different execution paths along with the nodes of
the system, and the worst-case computation path equates to
the perception’s end-to-end latency.

Differently from previous work (e.g., [29]) that perform a
simple summation of the individual nodes to measure end-
to-end latency, our measurement is more trustworthy since
contention and communication overheads are also assessed.
Furthermore, we analyze a broader number of computation
paths, hence increasing the identification of performance bot-
tlenecks. To measure the end-to-end latency we trace the
timestamp of messages since they first entered the system
until they are published by the final perception nodes. We
track initial inputs through different nodes by tracking down
the header information of the messages, which is passed along
the subscribe-publish mechanism in ROS. Note that we profile
the entire Autoware software stack, with multiple ROS nodes
running in parallel. Therefore, unlike previous work [8], we
consider interference among nodes, contention, and communi-
cation overheads. We show this is key for accurate estimation
of latency and performance variability.

System-wide utilization and power dissipation. Com-
plementary to the latency assessment we also gather overall
information regarding CPU and GPU utilization. We measure
the timeshare different nodes take in both platforms and

node1 node2topic1

publish

node4topic2 topic4

End-to-end process time

Single node process time

node3 topic3

Computation path 3-4

Computation path 1-4

Fig. 4: The latency measurements accounted in our experimen-
tation. Single node process time corresponds to the processing
inside a node, excluding communication overheads. End-to-
end process time measures the worst case latency since a frame
(e.g., camera image, lidar point-cloud) enters the system until
its final contribution to the AVs’ perception.

also how their power dissipation varies. The goal is to find
resource-hungry nodes, so we can identify nodes that consume
most of the energy. We can also identify if some specific
node may require a dedicated platform to run on, or if their
execution affects the performance of other nodes. We use the
atop tool to measure the CPU utilization, collecting utilization
every second (the finest grain possible on the tool), while using
nvidia-smi to obtain GPU utilization and power dissipation,
also every second.

Architecture-level characterization. In the final step of
our characterization, we rely on hardware counters to obtain
further details of important nodes (inferred by the previous two
steps), collecting several metrics such as cache accesses and
misses, Instructions per Cycle (IPC), cycle counts, instruction
mix, branch misprediction rate, the share of time in the
CPU/GPU (for nodes that run on both platforms) and the
CPU/GPU memory bandwidth. The analysis of this data is
extensively covered in our Characterization Analysis, Section
IV. To collect the architecture-level metrics we use the PAPI
library and valgrind, for CPU, and the nvprof tool for the GPU.
This data will serve to support insights and claims during the
analysis.

C. Methodology Acknowledgements

As aforementioned, the lack of an HD map with rich
annotation imposes a few limitations. Since we do not have the
annotation for traffic light poles position, we cannot perform
traffic light detection algorithms. Also, since there is no spec-
ification of roads, allowed lanes, and speed limits, we cannot
stimulate control and motion algorithms, namely op planning,
pure pursuit, and twist filter. It is possible to use game-
engine based simulators [30], which provide this information
in a simulated traffic environment. However, such simulators
demand high CPU/GPU utilization. Given the considerable
overheads introduced to the system, these simulators are more
suited to verify functionalities instead of profiling. Finally, the
profiling focuses on perception nodes, as they represent the
vast majority of the execution time [8], [29].

IV. CHARACTERIZATION ANALYSIS

This section presents the characterization of Autoware. We
first provide an analysis of Autoware’s latency, followed by the
system-wide utilization and energy consumption, and finally
entering in more detail about relevant nodes.

A. Latency Characterization

Single node latency. Figure 5 presents the latency dis-
tribution (y-axis) for different nodes, when using different
algorithms for image detection. Each series in the plot depicts
a node’s range of latency values (y-axis), and also how
the latency values are distributed (indicated by the shaded
thickness). White circles identify the mean values for each
series, and two dashed lines limit the first and third quartile
of the data distribution, whereas the two continuous lines show
the minimum and maximum latencies. The computation path
each node belongs to (see Figure 4) will be detailed later.
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(a) Autoware with SSD512 image detector.
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(b) Autoware with SSD300 image detector.
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(c) Autoware with Yolo image detector.

Fig. 5: Autoware’s single node latency for different nodes. Experimentation include different image detector nodes.

We start discussing the mean values, as they suggest the
typical latency values, to identify critical nodes on the Au-
toware software-stack. In all three scenarios ndt matching,
ray ground filter, and vision detection have average latency
above 20ms, being the vision detection the more critical,
regardless the vision detection algorithm. For instance, if
Autoware runs with SSD512 (Figure 5a), the vision detection
algorithm takes more than 80ms in its mean latency. If we
consider a 100ms as the target time constraint for reaction
time, as in previous works [8], [27], we are devoting at least
80% of the time only to process the image detection task.
When we consider other options such as SSD300 (Figure 5b)
and YOLO (Figure 5c), average latency improves, being
under 40ms. Although latency plays a major role in choosing
the image detection solution for AVs, we acknowledge that
assessing the most propitious image detector is out of the scope
of this work, since other metrics which are not evaluated here
(e.g. detection precision) also need to be taken into account.

We enrich the analysis considering the tail latency of the
nodes. Although values are mostly around the mean, where the
shaded thickness is more apparent in Figure 5, the latency of
the nodes can occasionally increase and create latency outliers
during the execution. In the case of an AV, these outliers
cannot be neglected since they can cause the system to miss
a time deadline for a frame, which in turn introduce a safety
flaw. Observing the tail latency serves to identify a broader
number of nodes with performance threats for the system.
For instance, costmap generator obj, euclidean cluster, and
imm ukf pda tracker reach peak latency above 20ms in all
three scenarios. Sometimes their latency can scale up by a
great margin, as costmap generator obj taking up to 120ms
when running alongside with SSD512 (Figure 5a). Besides the
intrinsic time variability from CPU scheduling, these nodes
also take different amounts of time to perform depending on
the number of objects in the driving scene. For instance, the
more the driving players, the higher the time to track each
of them (imm ukf pda tracker), project their occupancy site
in the world (costmap generator obj), and obtain their cluster

TABLE III: Dropped messages during Autoware execution

Topic Subscribed by Node Dropped
Messages

With SSD512
/detection/fusion tools/objects imm ukf pda tracker 0.1%
/image raw SSD512 16.3%
prediction/motion predictor/objects costmap generator obj 0.6%

With SSD300
/detection/fusion tools/objects imm ukf pda tracker 0.1%
/image raw SSD300 0.0%
prediction/motion predictor/objects costmap generator obj 1.0%

With Yolo
/detection/fusion tools/objects imm ukf pda tracker 0.2%
/image raw YOLO 0.0%
prediction/motion predictor/objects costmap generator obj 1.0%

centroids and distance (euclidean cluster).
Figure 5 also shows another interesting finding: the tail

latency of some relevant nodes is highly affected by the
other components running in parallel. For example, the
costmap generator obj shows a tail latency of 72 ms when
using SSD300 as the image detector, but it increases to 120
ms when using SSD512. This large increase of more than 66%
in tail latency is due to the interactions among different nodes,
as they run in parallel and compete for shared resources. Other
nodes such as ndt matching and voxel grid filter also see a
significant increase in tail latency of 34% and 97% respectively
depending on the image detection module employed.

Finding 1: Profiling individual components in isolation
leads to a large underestimation of tail latency. The entire
system must be profiled to account for communication costs
and contention among nodes.

To complement the latency analysis, let us examine the mes-
sages exchanged in Autoware, depicted in Table III. The table
contains topics that presented at least one dropped message,
together with the dropping percentage. Messages are dropped
from a topic every time a newer message arrives on that topic
and the previous message (which is dropped) was not yet
consumed by the destination node2. This typically indicates
the node is struggling to compute its inputs in time, which
can occasionally occur if the single node latency increases.

We underscore the high amount of dropped messages
in SSD512, whose long processing time results in more
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than 16% of messages being dropped. Other nodes such
as imm ukf pda tracker and costmap generator obj also
present some degree of message dropping. Hence, each node
must always complete execution before a new input arrives,
assuring messages are always processed. In general, the max-
imum single node latency is ultimately defined by the input
sensor frequency (e.g. LiDAR or camera), which defines the
minimum processing pace all nodes should be able to run.
Otherwise, if a single node takes too long to execute, there
will be message dropping and the whole input processing will
not complete, leaving the AV with no perception information
for that frame.

Moreover, whereas any message drop is a potential se-
curity flaw, the small percentage of message losses for
imm ukf pda tracker and costmap generator obj nodes (1%
or less message drops) indicates that latency values rarely
reach the peak latency depicted in Figure 5. This accentuates
the importance of stimulating the AV system on a varied
number of situations to capture such flaws.

End-to-end latency. The autonomous-driving task depends
on the collaboration of multiple nodes, as introduced in
Section II. We now examine different computation paths that
Autoware relies on to perceive the environment. We consider
the latency of four computation paths, which are presented
in Figure 6. The set of nodes and topics that compose each
computation path are described in Table IV.

As depicted in Figure 6, the perception latency for dif-
ferent computation paths reaches the order of hundreds of
milliseconds. Further, regardless of the chosen image detector
algorithm, our measurements show that the end-to-end latency
(worst case among all computation paths) always reaches
more than 200 ms to compute when considering tail latency.
Thereby, there are moments during the AV driving where
the system takes more than twice the time commonly stip-
ulated to drive safely (100 ms). This is an interesting finding
considering our measurements are over a mature self-driving
project. Notwithstanding, we highlight our computing platform
(see Table II) is a high-end computer, and larger computing
arrangements are hardly an option for AVs due to size and
energy consumption constraints. This indicates self-driving
algorithms and computing platforms must be improved even
further to assure the required performance.

Finding 2: The Autoware software solution in combination
with a high-end computing platform is not able to assure end-
to-end perception latency under 100 ms during a complete
driving task.

The more demanding computation paths are those that
extract semantics (with object detection or clustering),
and perform tracking and prediction. If SSD512 is used
(Figure 6a), then the path with the vision detection
(costmap vision obj ssd) holds the worst average latency.

2ROS topics are queues. Messages are dropped only when a new message
arrives and finds the queue full. In the Autoware implementation, however,
queues have the size of one. With this, Autoware prioritizes newer frames by
keeping only the most up-to-date message in the queue, and avoids investing
time to process old messages that no longer describe the current environment.

When faster vision detection algorithms are used, e.g.,
SSD300 (Figure 6b) or YOLO (Figure 6c), the worst av-
erage latency relies on the computing path with the eu-
clidean cluster, namely costmap cluster obj. Revisiting the
single node latency data (Figure 5) together with the end-
to-end path analysis, we conclude that vision detection,
ray ground filter, and euclidean cluster are the most impor-
tant nodes where optimization efforts should focus, since they
are time-consuming while also being part of the critical end-
to-end path.

B. System-Wide Utilization and Power Dissipation

Following the latency analysis, we present system-wide
measurements. This guides the understanding of how Auto-
ware utilizes the available computation resources.

Computing platforms utilization. Table V presents the
mean time share each Autoware perception node utilized dur-
ing our experimentation. Notice that only vision detection and
euclidean cluster have a share of execution in the GPU.

At first sight, we can observe that changing the vi-
sion detection algorithm has some impact on the CPU uti-
lization, going from the most CPU-hungry node when running
SSD512, but the second most when running with SSD300 or
YOLO. Particularly, YOLO uses less than half of the CPU
compared to SSD512. Even more considerable is the impact
on GPU utilization, where, for instance, values drop from 26%
with SSD512 to around 16% when using SSD300.

The behavior of the remaining nodes is not profoundly
affected by the different vision detection algorithms exper-
imented, but rather have their utilization share and ordering
(most CPU-hungry to least CPU-hungry) kept along with
the different scenarios. We highlight the GPU share for eu-
clidean cluster drops considerably when running alongside
with SSD300. This accompanies the fact that SSD300 is
the least resource-consuming implementation on the GPU,
which can relieve GPU stress improving algorithms running
alongside in the GPU, such as the euclidean cluster.

When verifying the total utilization it is possible to see that
the utilized setup is not under pressure, with CPU and GPU
utilization under 40% in average.

Finding 3: Resource availability is not a limiting factor for
the software-stack and higher performance should be achieved
with a more efficient implementation.

Power dissipation. Complementary to the resource uti-
lization, we also assess the mean power dissipation during
Autoware execution, for both the CPU and GPU. Table VI
presents this data. We observe that CPU mean power values
are generally smaller and vary less with the vision detection
algorithm than GPU power dissipation. Since all nodes utilize
the CPU, improving or changing a single node (as we change
the vision detection algorithm) does not induce great impacts
to reduce the total power consumption. Also, not only the
nodes but also the complete Operating System and ROS
stack are running on the CPU, which diminishes the overall
contribution from each individual node.
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TABLE IV: Computation paths description

Computation Path Path description (/topic → node)

localization /points raw → voxel grid filter → /filtered points → ndt matching

costmap points /points raw → ray ground filter → /points no ground → costmap generator

costmap vision obj * /image raw → vision ssd detection → /detection/image detector/objects → range fusion 01 → /detection/fusion tools/objects → imm ukf pda 01
→ /detection/object tracker/objects → ukf track relay → /detection/objects → naive motion predict → /prediction/motion predictor/objects →
costmap generator

costmap cluster obj /points raw→ ray ground filter→ /points no ground→ lidar euclidian cluster detect→ /detection/lidar detector/objects→ range fusion 01→ /de-
tection/fusion tools/objects→ imm ukf pda 01→ /detection/object tracker/objects→ ukf track relay→ /detection/objects→ naive motion predict
→ /prediction/motion predictor/objects → costmap generator
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(a) Autoware with SSD512 image detector.
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(b) Autoware with SSD300 image detector.
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(c) Autoware with Yolo image detector.

Fig. 6: Autoware’s end-to-end perception latency. Experimentation considers the usage of different image detector nodes.

TABLE V: CPU and GPU utilization share among Autoware
nodes

CPU Usage % GPU Usage %

Node With
SSD512

With
SSD300

With
YOLO

With
SSD512

With
SSD300

With
YOLO

vision detection 12.95% 7.41% 6.51% 26.00% 15.98% 30.47%
costmap generator obj 8.60% 8.23% 8.51%
ndt matching 4.15% 4.01% 4.03%
euclidean cluster 3.71% 3.37% 3.44% 5.19% 3.19% 5.39%
imm ukf pda tracker 2.84% 3.00% 2.81%
ray ground filter 2.79% 2.80% 2.42%
range vision fusion 1.57% 1.61% 1.64%
voxel grid filter 1.13% 1.05% 1.08%
naive motion prediction 0.71% 0.70% 0.66%

Total 38.44% 32.18% 31.11% 31.18% 19.17% 35.86%

TABLE VI: CPU and GPU mean power dissipation

CPU GPU Total

With SSD512 44.90 W 122.14 W 167.05 W
With SSD300 42.63 W 67.08 W 109.71 W
With YOLO 42.35 W 116.73 W 159.08 W

In the GPU side, otherwise, improving or changing a single
algorithm may be much more impactful. For instance, moving
from SSD512 to SSD300 reduces 34% of the total power
dissipation. With the previous observations, we can argue that
nodes using GPU are preferred candidates for improvement if
reducing power is the main goal.

C. Architecture-Level Characterization

At this point, we have a broad high-level understanding of
Autoware regarding latency, resource utilization, and power
dissipation. Based on the aforementioned analysis we have
selected a subset of critical nodes, to examine them in depth.

Core microarchitecture metrics. Table VII details a list of
six nodes from Autoware software-stack, and a data collection
based on hardware-counters (for the CPU execution). The
nodes were selected for their distinguished impact on the
overall system, having either meaningful processing latency
or CPU/GPU utilization. Additionally, we present two figures:
Figure 7 presents the instruction mix for the evaluated nodes;
and Figure 8, which gives further details on the latency
distribution of the two vision detection algorithms evaluated
in this section (SSD512, and YOLO).

We start our microarchitecture analysis by considering the
two vision detection algorithms (SSD512, and YOLO). As
shown in Figure 8, both nodes largely differ in their CPU
usage. The SSD512 spends more than half of its processing
time running on the CPU, whereas YOLO spends more than
90% of the time in the GPU. This means that CPU hardware-
counters (presented in Table VII) are more significant to
SSD512. With that in mind, we see that both SSD512 and
YOLO have moderate to low IPC. For SSD512, which holds
the worst IPC among all nodes, this is a consequence of
the large branch misprediction rate (9.78%). When analyzing
further, we discovered that 71% of CPU time of SSD512 was
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executing a sorting algorithm in the output layer of its Convo-
lutional Neural Network (CNN), utilized by SSD512 to rank
the predicted rectangle boxes that delimit detected objects.
Because the branches inside the sorting will depend on the
unpredictable input (data to be sorted), the CPU struggles
to reach higher accuracy branch predictions. Both vision
detection algorithms also present a decent memory locality
when running in the CPU, given the moderate L1 cache misses
for reads, and especially for writes.

Following, we examine euclidean cluster. We can see from
Figure 7 that 50% of its CPU instructions are loads/stores.
Also, we derive from Table VII that euclidean cluster has the
highest L1 miss rate for reads (4.66%) and writes (5.21%).
The euclidean cluster operates on point-cloud data, whose
irregular structure imposes poor memory locality. Therefore, a
deeper study on the memory access pattern for this node may
expose fruitful paths to achieve a better implementation.

Another point-cloud based node, ndt matching, presents a
different behavior. Although loads and stores are also domi-
nant (sum up to 52% of the executed instructions), memory
locality (in terms of L1 misses) is better when compared to
euclidean cluster. We recall, however, that ndt matching re-
ceives a down-sampled point-cloud from voxel grid filter (see
Table IV), which may alleviate the memory concerns for
this node. We also investigated why the loads and stores
account for so much in the instruction mix and discovered
that in more than 90% of its CPU time, ndt matching runs
code from the point-cloud library [31]. For the most part,
it is manipulating tree-like data structures that contain the
collections of points the algorithm is trying to match at the
moment. Nevertheless, traversing those data-structures can
also explain the considerable branch misprediction faced by
the node, which sums up to more than 3%.

We then analyze the imm ukf pda tracker node. First, its
instruction mix indicates a more control-flow behavior. Even
though, branch misprediction is low and locality does not
appear as a threat since L1 miss rate is low.

Finally, we investigate the costmap generator obj node.
As we can see from the instruction mix (Figure 7), this
node is more computation-bound, with the fewest share of
load/store instructions among all nodes. Because of this,
costmap generator obj presents a good IPC of 2, and low
values for both L1 misses and branch mispredictions. Overall,
this node has propitious characteristics to execute in the CPU.

Beyond single node analysis. Our work profiles a complete
AV environment, with multiple nodes running at the same
time and collaborating to achieve the driving-task successfully.
Differently from previous works, which often analyze nodes
individually, our approach leads to a more realistic charac-
terization since the different nodes executing may impact on
one another. Following, we present a quantitative comparison
of both approaches: running a node alone or running a node
together with its counterparts.

We perform this experiment on two image detection nodes
from Autoware, namely SSD512 and YOLO. We present their
mean execution time and standard deviation in Figure 8.

31% 13% 11% 45%

a) SSD512

33% 15% 11% 41%

b) YOLO

31% 19% 12% 37%

c) euclidean_cluster

37% 15% 7% 41%

d) ndt_matching

26% 17% 15% 42%

 e) imm_ukf_pda_tracker

23% 8% 14% 55%

f) costmap_generator_obj

Load Store Conditional Branches Other

Fig. 7: The instruction mix for the Autoware nodes.

Two main points arise from these experiments. First, when
nodes share the computing platform, running alongside other
nodes, their mean latency increase. For instance, SSD512 has
a mean latency of 73.45 ms, when executing alone, but the
mean latency increases up to 82.26ms when all nodes in
Autoware are also performing; an increase of 12%. As for
the YOLO node, the mean latency rises from 31.23 ms, when
running alone, to 33.14 ms, when the other nodes are also
executing; a 6% increase in the mean latency.

Finding 4: Using single node measurements to assess
latency bottlenecks can be a pitfall, since threats may be
under-considered as nodes perform better, in the average,
when running apart from the full system.

The second interesting finding is the impact on the standard
deviation. As we can assess from the error bars, sharing
the computing platform among multiple nodes increases the
standard deviation of the node’s latency. For SSD512 the
standard deviation goes from 1.01 ms, running alone, to 4.81
ms, when the complete set of nodes is running. Similarly, the
standard deviation for YOLO node latency goes from 0.88 ms,
running the node alone, up to 4.05 ms, when we execute all
nodes alongside.

Finding 5: When all nodes are executing, the predictability
of the latency for each node is weakened. Since AVs’ should
cope with worst-case scenarios, such as the ones who cause
tail latency, full system experimentation is best suited for pro-
filing purposes. In this case, the node’s variability increases,
causing unpredictable behavior that cannot be found when
nodes run alone.

V. RELATED WORK

Autonomous Vehicles (AVs) have attracted the attention of
industry [32], [33] and academia [11] in recent years. Prior
work [8], [29], [34] focused on characterizing the performance
of computing systems for AVs and understanding the main
bottlenecks. In this section, we review some of these previous
works and explain the differences with our characterization.
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TABLE VII: Microarchitecture Profiling of Different Autoware Nodes

SSD512 YOLO euclidean cluster ndt matching imm ukf pda tracker costmap generator obj

Instructions per Cycle 1.03 1.36 1.36 1.26 1.14 2.07
L1 miss rate (read) 2.36% 3.88% 4.66% 1.37% 1.55% 0.20%
L1 miss rate (write) 0.95% 0.45% 5.21% 0.52% 1.51% 0.29%
Branch misprediction 9.78% 0.10% 1.20% 3.06% 0.76% 0.11%
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(a) SSD512 image detector.
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(b) Yolo image detector.

Fig. 8: The CPU and GPU participation on the total latency
for SSD512 and Yolo image detectors. Two measurements
were performed: vision detection nodes running standalone,
and alongside all other nodes.

Lin et al. [8] analyze the requirements of autonomous
driving systems and quantify the latency and power of dif-
ferent components on CPUs, GPUs, FPGAs and ASICs. Our
work is different in several ways. First, they only consider
camera-based AVs, whereas we characterize a system that
includes both cameras and LiDAR, that we believe is more
representative of industry-level AVs such as Waymo’s self-
driving car [35]. Note that LiDAR related components, such
as euclidean clustering, exhibit significant tail latency and may
prevent real-time performance (see Section IV). Second, they
profile isolated components, whereas we consider the full AV
system to capture communication time, interference among
different nodes and contention for shared resources. We report
a large increase in latency variability when running the full
system and, therefore, we claim that the entire system must
be considered to obtain representative results.

Kato et al. [29] analyze the performance of Autoware on
an NVIDIA DRIVE PX2. They run the entire software stack
and measure end-to-end latency. However, they only consider
the latency of a single path from sensor to actuation that
includes localization and motion planning, but excludes some
of the main bottlenecks such as image detection. Furthermore,
they ignore the communication costs associated with pub-
lish/subscribe mechanism in ROS. Our approach is different
as we profile a much boarder number of paths and we report
end-to-end latency as the longest path, including the execution
time of all the relevant nodes and the communication time.

Toschi et al. [34] present a characterization of the perception
modules of Apollo, Baidu’s self-driving car solution. They
report execution time of individual components, whereas we
analyze end-to-end latency and power dissipation, and we use
a full open source solution, Autoware.

VI. CONCLUSIONS

This paper presents a detailed characterization of Autoware,
a modern autonomous driving system, based on a robust
methodology that profiles the full software-stack end-to-end.
This approach is novel in several ways. First, it includes
contention among multiple nodes that run in parallel and
communication costs. Our results show that these factors
severely impact both tail latency and performance predictabil-
ity, largely differing from the measurements obtained when
profiling isolated nodes. Second, we consider both image
processing nodes and LiDAR related components. Finally,
we characterize latency and power of the critical end-to-end
path, show that a modern hardware platform cannot guarantee
real-time performance, and identify candidates for software
optimization and hardware acceleration.
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