
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Evaluation of Graph Analytics Frameworks Using the GAP Benchmark Suite

Permalink
https://escholarship.org/uc/item/4vc7g1zc

ISBN
9781728176451

Authors
Azad, Ariful
Aznaveh, Mohsen Mahmoudi
Beamer, Scott
et al.

Publication Date
2020-10-30

DOI
10.1109/iiswc50251.2020.00029

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NoDerivatives License, availalbe at https://creativecommons.org/licenses/by-nd/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vc7g1zc
https://escholarship.org/uc/item/4vc7g1zc#author
https://creativecommons.org/licenses/by-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


Evaluation of Graph Analytics Frameworks Using
the GAP Benchmark Suite

Ariful Azad∗, Mohsen Mahmoudi Aznaveh†, Scott Beamer‡, Mark Blanco§, Jinhao Chen†, Luke D’Alessandro∗,
Roshan Dathathri¶, Tim Davis†, Kevin Deweese‖, Jesun Firoz∗∗, Henry A Gabb††, Gurbinder Gill¶,

Balint Hegyi‡‡, Scott Kolodziej†, Tze Meng Low§, Andrew Lumsdaine ∗∗‖, Tugsbayasgalan Manlaibaatar
x
,

Timothy G Mattson††, Scott McMillan§, Ramesh Peri††, Keshav Pingali¶, Upasana Sridhar§,
Gabor Szarnyas‡‡, Yongzhe Zhang

xi
, Yunming Zhang

x

∗Indiana University, †Texas A&M University, ‡University of California, Santa Cruz, §Carnegie Mellon University,
¶The University of Texas at Austin, ‖University of Washington, ∗∗Pacific Northwest National Laboratory, ††Intel Corporation,

‡‡Budapest University of Technology and Economics,
x
Massachusetts Institute of Technology,

xi
The Graduate University for Advanced Studies, SOKENDAI

Abstract—Graphs play a key role in data analytics. Graphs and
the software systems used to work with them are highly diverse.
Algorithms interact with hardware in different ways and which
graph solution works best on a given platform changes with the
structure of the graph. This makes it difficult to decide which
graph programming framework is the best for a given situation.
In this paper, we try to make sense of this diverse landscape. We
evaluate five different frameworks for graph analytics: SuiteS-
parse GraphBLAS, Galois, the NWGraph library, the Graph
Kernel Collection, and GraphIt. We use the GAP Benchmark
Suite to evaluate each framework. GAP consists of 30 tests:
six graph algorithms (breadth-first search, single-source shortest
path, PageRank, betweenness centrality, connected components,
and triangle counting) on five graphs. The GAP Benchmark Suite
includes high-performance reference implementations to provide
a performance baseline for comparison. Our results show the
relative strengths of each framework, but also serve as a case
study for the challenges of establishing objective measures for
comparing graph frameworks.

Index Terms—graph algorithms, benchmarking

I. INTRODUCTION

A graph represents relationships among items. Mathemati-
cally, a graph is simply a set of vertices and a set of edges
between vertices. How this mathematical definition translates
into software systems for graph problems, however, is both
diverse and complex. There are multiple ways to represent
graphs, and for a given representation, multiple abstractions
for defining graph algorithms.

In response, many software frameworks for implementing
graph algorithms have emerged. Choosing between them can
be overwhelming. Complicating matters further, the suitability
of a graph framework for a class of problems can depend
on the graph itself. A framework that performs well for a
particular type of graph may perform poorly for another type.

A number of benchmarking projects exist to help choose
between graph programming frameworks. One of the better
known benchmarks in HPC is Graph 500 [36], [37], which
generates a synthetic, scalable graph for a range of problem
sizes. Two algorithms are considered, a breadth-first search
(BFS) and multiple single-source shortest paths (SSSP). As

implied by the name, the benchmark is often used to rank the
top 500 HPC systems for performing graph computations.

A more recent benchmarking effort is the GraphChal-
lenge [41]. These are a set of problems and a repository of
large graphs to encourage “community approaches to develop
new solutions for analyzing graphs.”

Both the Graph 500 and GraphChallenge efforts have been
impactful and have helped drive the state of the art in large-
scale graph analytics. However, they only cover a small portion
of the graph analytics landscape. They do not provide suffi-
cient diversity of algorithms and graph topologies to represent
the needs of the data analytics community. While their focus
on large-scale systems is important, most graph problems are
concerned with medium-sized graphs (i.e., a few billion edges)
that fit on a single server. Also, with advances in memory
technology, it is possible and even advantageous to process
large graphs (i.e., > 100 billion edges) on a single system [22].

The LDBC Graphalytics [25] project provides a more di-
verse mix of graph algorithms and graph topologies. Graph-
alytics covers BFS, SSSP, PageRank (PR), weakly connected
components (CC), community detection using label propaga-
tion (CDLP), and local clustering coefficient (LCC) over a mix
of 39 medium-sized real and synthetic input graphs.

These benchmarking efforts, however, do not use the same
hardware for each graph programming framework. This makes
it difficult to distinguish between differences due to hard-
ware from those due to the underlying algorithms. Hence,
there is still considerable confusion about the fundamental
performance differences between graph frameworks. In this
study, we compare several frameworks for graph algorithms:
the SuiteSparse implementation [18] of the GraphBLAS spec-
ification [12], [27], the Galois framework for data parallelism
in irregular algorithms [30], the GraphIt domain-specific lan-
guage [55], a new graph library called NWGraph that builds on
the Parallel BGL [13], [23], plus hand-tuned implementations
of specific graph algorithms in the Graph Kernel Collection
(GKC) [2].

The benchmarks are run on the same system to eliminate



hardware differences. The development team behind each
framework ran the benchmarks to ensure correct and efficient
usage. The results from each team were cross-validated by
the other teams to minimize inconsistencies in both what is
measured and how results are generated.

We used the GAP Benchmark Suite [7] in this effort. GAP
consists of five medium-sized real and synthetic graphs, each
with distinct characteristics. In addition to the benchmark
specification, high-performance reference implementations of
each graph algorithm are also provided. The 30 GAP tests
(six graph algorithms times five input graphs) provide good
coverage of the graph analytics landscape and reveal the
relative strengths of each framework.

Our main contribution is the performance data in Table IV
and Table V. Together these constitute the highest quality,
consistent performance numbers that we are aware of for
comparing graph frameworks. Such comparisons are vital to
understanding ways these frameworks need to evolve.

II. OVERVIEW OF THE GAP BENCHMARK SUITE

The GAP Benchmark Suite is designed to ease evaluating
graph processing systems. Rather than leaving each effort to
determine its own evaluation methodology and workload, a
shared standard gives the community a common goal to work
towards. The benchmark is described in a publicly-available
specification [7]. Any implementation that follows those rules
is thus easy to compare to other compliant evaluations. To
establish baseline performance, the benchmark also provides
high-performance reference implementations. Providing the
specification and reference code separately best serves users
who may only need only one of the two artifacts. For example,
a graph framework developer may want to use the specification
to ensure their results are easy to compare. Alternatively, a
computer architecture researcher can use the reference code
as a target software workload to accelerate.

The benchmark was designed in conjunction with a work-
load characterization [9] to ensure it exposes a range of com-
putational demands. The graph kernels in the benchmark were
selected based on their popularity in the research literature [6].
The benchmark does not require the use of specific algorithms
to implement these kernels, but it does state the requirements
of correct solutions to avoid ambiguity. The kernels contain an
interesting mix of traits and are sufficiently scalable to run on
large graphs. The emphasis on scalable algorithms focuses the
benchmark on the more data-intensive traits that distinguish
graph processing from other workloads.

The benchmark suite uses five input graphs selected for
topological diversity and availability (Table I). One of the
biggest takeaways from the workload analysis is that because
graph processing is data-driven, the graph topology can have
a bigger impact on the workload characteristics than the
algorithm. The input graphs are from both real-world data
(Road, Twitter, Web) and synthetic generators (Kron and
Urand). The graphs1 have been added to the widely-used
SuiteSparse Library [19].

1https://sparse.tamu.edu/GAP

We briefly describe the benchmark’s graph kernels while
highlighting some common differences, but we recommend
consulting the specification for details [7]:

• Breadth-First Search (BFS) is a fundamental traversal
order, and we track the parent vertices rather than depths.

• Single-source Shortest Paths (SSSP) finds the distances
to all reachable vertices from a starting vertex.

• PageRank (PR) computes a popularity score for all
vertices in the graph. We execute it until the scores are
sufficiently close to convergence.

• Connected Components (CC) labels all vertices by
which (weakly) connected component they are in.

• Betweenness Centrality (BC) determines a vertex’s in-
fluence on the graph by the fraction of shortest paths
that pass through it. Computing BC exactly requires an
unreasonable amount of time, so we approximate it by
considering only four root vertices per trial.

• Triangle Counting (TC) counts the number of triangles
(cliques of size three) in the graph. It counts each triangle
once regardless of the permutation of its constituent
vertex identifiers.

The reference code included with the benchmark serves not
only as a baseline, but also an educational tool. Internally, the
code implements many leading algorithms. We recommend
consulting the appendix of the specification for details [7].

The goal of the benchmark suite is to help the community
develop new innovations. To ensure the innovations are practi-
cal and not overly specialized, the benchmark rules discourage
optimizations that are infeasible in a general-purpose graph
framework or that presuppose something about the structure
of the answer. For example, all algorithm implementations of a
framework must operate on the same graph format unless they
include the time to convert the general-purpose graph format
to the specific format used. The most common issue is when
an optimization is only beneficial in some cases or requires
an input-sensitive parameter. Practical implementations must
determine which of these optimizations to use via run-time
heuristics.

To capture the possibilities of both practical and specialized
optimizations, we perform the benchmarks in this study under
two different sets of requirements. The Baseline Performance
data set (Section IV-A) captures the spirit of the GAP Bench-
mark Suite and disallows optimizations that overly specialize
for the graph or kernel. The results from the Baseline give
a sense of how frameworks will perform in practice. The
Optimized Performance data set (Section IV-B) removes those
restrictions, and gives a view into the peak performance of a
framework.

III. GRAPH ANALYTICS FRAMEWORKS

In this work, we compare the frameworks listed in Table II.
They were created by a variety of different institutions for
different purposes, and range from direct implementations
of algorithms, to libraries to build algorithms, to compiled
domain-specific languages. By evaluating this collection of

https://sparse.tamu.edu/GAP


Name Description # Vertices (M) # Edges (M) Directed Degree Degree Distribution Approx. Diameter References
Road Roads of USA 23.9 57.7 Y 2.4 bounded 6,304 [20]
Twitter Twitter Follow Links 61.6 1,468.4 Y 23.8 power 14 [31]
Web Web Crawl of .sk Domain 50.6 1,930.3 Y 38.1 power 135 [10]
Kron Kronecker Synthetic Graph 134.2 2,111.6 N 15.7 power 6 [33], [37]
Urand Uniform Random Graph 134.2 2,147.5 N 16.0 normal 7 [21]

TABLE I
GRAPHS USED FOR EVALUATION

Framework GAP GKC Galois NWGraph SuiteSparse GraphIt

Type direct
implementations

direct
implementations

generic high-level
library

header-only
library

high-level
library

domain-specific
language compiler

Internal Graph
Data Structure
Provides

outgoing &
incoming edges

outgoing &
(opt.) incoming

edges

outgoing and/or
incoming edges

adjacency list as
range of ranges

outgoing & incoming
edges w/ (opt.)
hypersparsity

outgoing & incoming
edges w/ (opt.)

blocking
Programming
Abstraction

vertex-centric arbitrary vertex, edge, or
chunked-edges centric

range-centric w/
tuple edge properties

sparse
linear algebra

vertex or
edge centric

Execution
Synchronization

level-
synchronous

algorithm-specific,
level-synchronous

level-synchronous or
asynchronous

algorithm-specific,
level-synchronous

level-
synchronous

level-
synchronous

Dependences C++11, OpenMP C++11, OpenMP C++17, boost, libllvm C++17, libtbb C11, OpenMP C++11, OpenMP, cilk

Intended Users
researchers,

benchmarkers
application
developers

graph domain
experts

practicing
C++ programmers

graph/matrix
domain experts

graph domain
experts

TABLE II
MAIN ATTRIBUTES OF FRAMEWORKS CONSIDERED

frameworks on a common benchmark, we can assess the im-
pact of design decisions on performance and programmability
(e.g., whether the programming abstraction provided by a
framework eases or complicates the implementation of some
graph algorithms).

The benchmark only specifies the graph problems, so each
framework is free to choose which algorithms it implements
(Table III). Each framework’s choice of algorithm is guided by
many factors, including its intended audience, the framework’s
flexibility, and the developer’s awareness of new algorithms.
Additionally, some frameworks exploit implementation opti-
mizations such as Galois’ occasional use of asynchronous
scheduling and GKC’s use of SIMD instructions.

For some graph problems, such as BFS and BC, there
are well-established algorithms such as Direction-Optimizing
BFS [8] and Brandes [11]. For other problems such as
SSSP, the established delta-stepping algorithm [35], has been
recently improved with bucket fusion [54]. CC shows the
greatest algorithmic diversity, ranging from the classic label-
propagation approach, to revised versions [32], [53] of the
prior standard Shiloach-Vishkin [42] algorithm, and the new
Afforest algorithm [45]. For PR, all of the implementations
repeatedly perform a sparse matrix vector multiply (SpMV),
but they differ in whether the updated values are available
immediately (Gauss-Seidel) [4] or after an iteration (Jacobi).
For TC, most of the implementations reduce the search space
by only counting one permutation of each triangle, and they
use heuristics to consider whether to relabel/reorder the graph
to further accelerate the search.

A. LAGraph/GraphBLAS

SuiteSparse:GraphBLAS [18] is an implementation of the
GraphBLAS C API [12] that describes a set of sparse matrix
operations over semirings. In a semiring, the multiplication
C = A ∗ B of two matrices A and B is redefined. In the

conventional semiring, cij =
∑

k aik × bkj . In a different
semiring, the multiplicative operator (×) can become any bi-
nary operator, and the reduction via the additive operator (

∑
)

becomes any monoid (associative and commutative operator
with an identity element). The data types of the three matrices
can change as well. For example, in the Boolean semiring, the
three matrices are all Boolean, and cij = ∨kaik ∧ bkj . In the
min-plus tropical semiring, cij = mink aik + bkj .

Sparse linear algebra over a semiring is a powerful frame-
work for expressing a wide range of graph algorithms, in-
cluding those in the GAP benchmark. The sparse matrix
becomes the adjacency matrix of the graph. For example, a
single “push” step of a breadth-first-search can be written as
the matrix-vector multiply q’<!pi>=q’*A, followed by the
assignment pi<q>=q, where q is a vector of nodes in the
current level, A is the adjacency matrix of the graph, and
pi is a vector containing the parent of the node in the BFS
tree. The operation C<M>=... is a masked assignment, where
C(i,j) can be modified only if the mask M(i,j) allows
it. Many graph algorithms include a conditional if statement
in their innermost loops, and the masked assignment captures
this behavior in a single bulk expression over the entire result.
GraphBLAS does not include any graph algorithms directly;
these are in algorithms that use GraphBLAS. For the GAP
benchmark, we developed six algorithms in the LAGraph
library [34]:

• BFS: The expression q’<!pi>=q’*A (written in a
C API) forms the essential kernel of the direction-
optimizing BFS, using the any-secondi semiring, where
A has arbitrary type and q is int64. Assuming A and
A’ are in compressed sparse row (CSR) format, this is a
push BFS step, while q<!pi>=A’*q is a pull step using
same semiring. The z=any(x,y) function serves as the
monoid for the semiring and is defined as x or y at the
discretion of the operator itself. This allows the monoid to



Task GAP GKC Galois NWGraph SuiteSparse GraphIt
BFS Direction-optimizing Direction-optimizing3 Direction-optimizing4 Direction-optimizing Direction-optimizing Direction-optimizing
SSSP Delta-stepping1 Delta-stepping3 Delta-stepping4 Delta-stepping Delta-stepping Delta-stepping1

CC Afforest Shiloach-Vishkin Hybrid Afforest4 Afforest FastSV Label Propagation
PR Jacobi SpMV Gauss-Seidel SpMV3 Gauss-Seidel SpMV Gauss-Seidel SpMV Jacobi SpMV Jacobi SpMV
BC Brandes Brandes Brandes4 Brandes Brandes Brandes
TC Order invariant2 Lee & Low2,3 Order invariant2 Order invariant2 Order invariant2 Order invariant2

TABLE III
ALGORITHMS USED BY EACH FRAMEWORK WITH FOLLOWING ADDITIONS: 1 - BUCKET FUSION, 2 - HEURISTIC-CONTROLLED GRAPH RELABELLING,

3 - SIMD, 4 - AN ADDITIONAL ASYNCHRONOUS VARIANT

terminate as soon as any parent is found for a node in the
next level. The multiplicative operator secondi(aik, bkj)
returns the row index of the second operand, which is the
parent node id.

• SSSP: The SSSP implementation uses the delta-stepping
algorithm [35], [44] and relies on the min-plus-int32
tropical semiring.

• BC: LAGraph includes Brandes’ algorithm for computing
betweenness centrality [11], which uses the plus-first-float
semiring in GraphBLAS.

• TC: The LAGraph triangle counting method can be writ-
ten in pseudo MATLAB notation as L=tril(A,-1);
U=triu(A,1); C<L>=L*U’;, based on the formu-
lation in [49] using the plus-pair-int64 semiring. It is
preceded by an optional permutation of A, decided by
a heuristic.

• CC: LAGraph includes an implementation of the FastSV
connected components algorithm [53], which uses the
min-second-uint32 semiring.

• PR: PR can be written quite easily in terms of con-
ventional linear algebra (plus-times-float). However, LA-
Graph uses the plus-second-float semiring so that only
the structure and not the values of the adjacency matrix
are accessed.

B. Galois

Galois [22], [38] is a C++-based general-purpose program-
ming library and runtime for graph processing that permits
optimizations to be specified in the program at compile- or
run-time, giving the application programmer a large design
space of implementations to explore. Galois supports a rich
data-centric programming model called the operator formu-
lation [40] that enables efficient, scalable graph analytics
algorithms to be implemented without having to worry about
concurrency bugs such as race conditions and deadlocks.

In typical graph analytics applications, each node has one or
more labels (e.g., distance from the source node in the single-
source shortest path), which are updated during algorithm
execution until a global quiescence condition is reached. The
labels are updated by repeatedly applying a computation rule,
known as an operator, to active nodes in the graph. Each
algorithm has its own set of operators. For example, SSSP
problems are solved by applying the well-known relaxation
operator to active vertices. When an operator is applied to an
active vertex, this activity may read and update an arbitrary

portion of the graph around the active vertex, known as the
neighborhood of that activity.

Most graph analytics systems support only vertex programs
in which operator neighborhoods are limited to the immedi-
ate neighbors of the active vertex. In contrast, the operator
formulation does not restrict the neighborhoods of operators.
Galois permits more efficient algorithms to be implemented
such as the Afforest algorithm [45] for the CC problem. It
also supports more complex algorithms that modify or mutate
the graph like Delaunay mesh refinement [29] and METIS
graph partitioning [26]. Due to its general non-vertex pro-
gramming model, Galois has been used to build frameworks
for more complex graph computations such as graph pattern
mining [14].

Galois provides highly scalable concurrent data structures
such as worklists to implement work-efficient data-driven
algorithms [40] that dynamically track active nodes or the
frontier. For data-driven algorithms (e.g., BFS, SSSP, BC, CC),
Galois uses a sparse worklist (as large diameter graphs tend to
have sparse frontiers), unlike most other frameworks (which
use a dense bitvector). Galois uses a dense worklist to store the
frontier only for topology-driven algorithms [40] (e.g., PR).

The concurrent sparse worklists also enable Galois to sup-
port asynchronous [22], [38] data-driven algorithms, which in
contrast to bulk-synchronous algorithms do not have a notion
of rounds. They maintain a single sparse worklist, pushing and
popping active vertices from this worklist until it is empty.
These algorithms have better work-efficiency and make fewer
memory accesses, especially for BFS, SSSP, and BC on large
diameter graphs which may need thousands of rounds in bulk-
synchronous execution.

Another key factor impacting performance is memory allo-
cation. Galois explicitly uses huge pages of size 2 MB and
does not rely on the operating system to use Transparent
Huge Pages (THP). Huge pages can significantly reduce the
cost of memory accesses over small pages even when THP
is enabled [22], but we did not use it for this study. Galois
provides non-uniform memory access (NUMA) blocked al-
location (blocks the pages and distributes the blocks among
NUMA nodes), which has been shown [22] to perform better
for topology-driven algorithms over the NUMA local or inter-
leaved policies provided by Linux utilities such as numactl.
The Galois runtime system also optimizes program execution
to exploit NUMA locality. For example, it performs NUMA-
aware dynamic load balancing to ensure that computational
load is spread evenly among the cores of a shared-memory



system.
Galois supports CPU and GPU [39] computation as well

as distributed-memory CPU [15], [16] and GPU clusters [47].
The Galois source code [1] includes the Lonestar [29] suite
of graph algorithm implementations.

C. NWGraph Library

The NWGraph library aims to fill the role of a reusable
library of generic graph algorithms for C++, similar to the
algorithms available in the standard template library. The
library draws on the lessons learned from the Boost Graph
Library (BGL) [43] and other libraries (PBGL [23], Galois,
Gunrock [48], GraphX [50], et al.), the evolution of the C++
language, and the evolution of C++ practice over the last 20
years.

The underlying principle for NWGraph is that it is a generic
library. That is, its algorithms are not written to use any
particular graph data structures, but rather are written in terms
of properties of types (aka concepts, finally to be available as a
language feature in the upcoming C++20 standard). Following
generic programming principles, the NWGraph concepts are
minimal, enabling algorithms to be composed with arbitrary
types. Users can therefore use NWGraph algorithms with the
data types around which they have already structured their
applications (which data structures are almost never graphs per
se). Pragmatically, the algorithms in NWGraph are function
templates written using modern C++ idioms, making them
accessible to programmers already familiar with core language
features and libraries and allowing them to leverage the full
power of C++ and of other libraries, frameworks, and tools.

The fundamental interface abstraction to NWGraph algo-
rithms is a “range of ranges” (expressed either as an it-
erator range or as C++20 ranges). The algorithms in turn
are expressed using C++ standard library algorithms (trans-
form(), reduce(), etc.). Again following modern C++ practice,
parallelization of NWGraph algorithms is effected through
mechanisms in the C++ standard. Since NWGraph algorithms
in turn are based on C++ standard library algorithms, a
modicum of shared-memory parallelization is immediately
available through the standard library algorithms (specified
with parallel execution policies). This parallelization approach
will continue to be developed in future language standards
and will be extended to encompass support for accelerators
and FPGAs (e.g., Thrust, oneAPI, SYCL) and, accordingly,
NWGraph will be able to take advantage of those advances.

Ideally, NWGraph prefers execution policies as the more
“hands off” approach to parallelization (used in CC and
BC implementations), but other approaches were explored as
well. For best parallel performance it is necessary in some
cases to manage parallelism directly through std::async (still
a C++ standard feature) (used in TC implementation) or via
Threading Building Blocks (TBB) primitives (used in BFS,
SSSP, and PR implementations). These implementation details
are not visible at the level of the library interface and the need
for non-standard (and non-execution-policy) approaches is ex-
pected to dissipate over time. (Indeed, our experience with this

benchmarking effort will aid future NWGraph development as
the team continues to participate in the C++ standards com-
mittee.) Other non-standard atomic features were also required
for competitive shared-memory performance, including atomic
references, atomic bitmaps, and atomic operators for floats.

D. GraphIt

GraphIt [54], [55] is a domain-specific language (DSL)
that achieves consistent high-performance across different
algorithms, graphs, and architectures while offering an easy-
to-use high-level programming model. GraphIt achieves this
by decoupling the algorithm specification from optimization
strategies for graph applications. Many graph applications
require different optimization techniques. Therefore, users
normally have to try out a large set of such techniques
to achieve performance. Separating the high-level algorithms
from performance optimizations solves this problem.

Users specify graph algorithms using the algorithmic lan-
guage involving just high-level operations on sets of vertices
and edges. They use the separate scheduling language to
compose different optimizations. The algorithmic language
exposes different high-level optimization opportunities such
as parallelization and edge traversal direction.

The scheduling language supports a large space of optimiza-
tion techniques such as edge traversal direction, data layout,
parallelization, cache efficiency, NUMA, and kernel fusion
optimizations. GraphIt uses scoped labels to target specific
operations to optimize. Moreover, it uses an abstract graph
iteration space model to represent, compose, and ensure the
correctness of edge traversal optimizations. The DSL guaran-
tees correctness by imposing restrictions on the GraphIt lan-
guage and automatically inserting atomic operations through
dependency analysis. To make it more user-friendly, GraphIt
also has a built-in autotuner based on Opentuner [3] that
explores the optimization space and finds high-performance
schedules quickly using methods such as AUC bandit and
greedy mutation.

GraphIt also achieves portability across CPUs, GPUs,
and domain-specific accelerators. GraphIt introduces a new
intermediate representation, GraphIR, to provide a com-
mon interface across different hardware backends. This
new IR lets the compiler separate hardware-independent
and hardware-dependent optimizations and achieve consistent
high-performance across CPUs and GPUs.

E. Graph Kernel Collection (GKC)

GKC is a collection of commonly used graph kernels that
are designed as a black-box library. These graph kernels are
designed by applying traditional high performance comput-
ing techniques used in linear algebraic libraries to graph
workloads. GKC embodies the hardware-software co-design
philosophy by taking into account algorithmic properties and
hardware features. This is implemented by identifying core
primitives used in graph algorithms and designing high per-
formance implementations of these primitives that leverage
hardware features, such as instruction set capabilities and



aspects of the memory hierarchy of a given platform. Below
we detail some techniques used in GKC.

1) Reducing false sharing: For implementations other than
TC, each thread allocates its own memory buffer. The local
buffer stores intermediate outputs (e.g., the next frontier for
breath-first traversal-based algorithms). This buffer is explic-
itly flushed back to the global buffer accessed by all threads to
form the global frontier for the next iteration of the algorithm.
The local buffer reduces false sharing because threads can still
read information stored in the global buffer while updating
values maintained in separate local buffers.

2) Hardware-aware implementations: Implementations of
the algorithms are tuned to the specific architecture on which
the benchmarks were run. Local buffers are sized according to
either the L1 or L2 cache sizes to ensure that they remain in
the appropriate cache level. SIMD instructions are used to load
and store data to and from local buffers. Computations, where
appropriate, also use SIMD. Notably, higher performance was
attained with AVX-256 over AVX-512 on the test platform.
We intend to examine this in greater detail in the future.

3) Use of inline assembly: We observed that the Intel® C++
compiler (icpc 19.1) occasionally replaces code with calls to
libraries (e.g., CLib). These libraries are efficient but include
additional code for general cases. As such, GKC contains
specialized kernels to handle specific tasks such as flushing
local buffers of specific sizes using techniques introduced
by Veras et al. [46]. C/C++ macros provide an intrinsics-
like interface and expand to one or more inline assembly
instructions surrounded by the volatile keyword. This
ensures that the desired sequence and selection of instructions
are untouched by the compiler.

IV. EVALUATION METHODOLOGY

A. Baseline Performance

This data set is intended to be a uniform comparison of
each framework. In a sense, it represents the performance
that a typical end-user would achieve after installing the
framework and running GAP using default parameters. Each
framework used the same number of processors (32 physical
cores) and NUMA policy (interleave=all). Frameworks with
existing internal auto-tuners and heuristics were allowed to use
them, but hand-tuning algorithms based on the graph topology
was not allowed for this data set. The only exception is the
delta parameter for SSSP. GAP allows customization of this
parameter based on the graph topology because it can lead to
orders of magnitude difference in performance otherwise.

Graph transposition was not included in the timing data
because the GAP reference implementations store both forms
of the graph. However, the cost of restructuring, relabeling, or
other graph transforms was included in the timing data.

B. Optimized Performance

This data set represents the best performance that each
framework can currently achieve for each GAP test. Teams
were free to optimize thread count, thread placement and
affinity, NUMA policy, etc. They could even tune for graph

characteristics. They were not required to include the time for
such tuning efforts in the timing data, but optimization details
and settings must be reported.

C. Benchmarking System

All performance measurements were collected on Intel®

Xeon®-based servers hosted in the Intel® DevCloud2. Each
server contains two Intel® Xeon® Platinum 8153 processors,
each with 16 physical cores (32 logical cores) running at 2.0
GHz. Each processor has 22 MB L3 cache. The total system
memory of each server is 384 GB DDR4 running at 2.6 GHz.

V. BENCHMARK RESULTS

With six algorithms, five graphs, and two ways of running
the benchmarks, the quantity of data is daunting. We present
our results in Table IV and Table V3. Table IV shows the best
time (in seconds) for each algorithm/graph pair. The color
coding of the cells indicate which framework achieved the
best result for each GAP test. In Table V, results for all
algorithms, graphs, and frameworks are presented as the ratio
of the time for the GAP reference implementation to the time
for a particular case (speedup). A value of 100% indicates that
a particular case matched the time for GAP, a value of 50%
indicates a case took twice as long as GAP, 200% indicates
half as long, and so forth. Color coding as a heat map visually
conveys trends: green indicates results faster than GAP while
red indicates results slower than GAP.

Before discussing the results for each of the graph kernels,
we start with some high level comments. Three of the frame-
works (GAP, GKC, and NWGraph) directly code the graph
kernels case-by-case in low-level programming languages (C
or C++ with parallel programming models such as TBB,
OpenMP). Galois, GraphIt, and GraphBLAS, however, are
high-level abstractions specialized for expressing graph algo-
rithms. There are overheads associated with these additional
layers of abstraction which may cause performance challenges
for the GAP kernels with low runtimes (BFS, SSSP and CC).
Furthermore, all frameworks sort the adjacency list of each
vertex based on the destinations and remove duplicate edges.

General frameworks for graph algorithms must handle prob-
lems well beyond those addressed by GAP. GraphBLAS,
for example, is designed to handle graphs with up to 260

nodes [28] with up to 260 entries, so it uses 64-bit integer
indices throughout. The other frameworks use 32-bit indices
throughout by default (which can be easily changed), and that
size easily accommodates the graphs evaluated. Thus, they can
be tuned to this limited size of problem sets. They can all use
32-bit integers, while GraphBLAS must use 64-bit integers.

When considering such shortcomings in high-level frame-
works, however, it is important to consider their advantages.
With GraphBLAS, for example, algorithms can be developed
quickly [17], often with good performance using productivity
languages such as MATLAB or Python. GraphIt separates the

2https://devcloud.intel.com
3The complete timing data is available at https://tinyurl.com/

eval-graph-frameworks

https://devcloud.intel.com
https://tinyurl.com/eval-graph-frameworks
https://tinyurl.com/eval-graph-frameworks


Baseline (seconds) Optimized (seconds)
Real Graphs Synthetic Graphs Real Graphs Synthetic Graphs

Kernel Web Twitter Road Kron Urand Web Twitter Road Kron Urand
BFS 0.329 0.248 0.130 0.365 0.570 0.300 0.214 0.109 0.308 0.486

SSSP 0.900 2.217 0.269 4.566 6.438 0.603 2.174 0.272 3.810 5.199

CC 0.219 0.246 0.060 0.691 0.670 0.167 0.209 0.045 0.479 0.606

PR 2.554 10.268 0.338 11.050 12.143 2.737 5.405 0.267 6.960 9.499

BC 3.178 8.237 2.431 13.300 16.389 2.978 5.215 1.876 11.240 14.040

TC 9.358 62.356 0.028 207.627 24.716 8.650 42.486 0.021 160.593 15.985

Fastest GAP Reference SuiteSparse Galois GraphIt GKC NWGraph

TABLE IV
FASTEST TIMES FOR BASELINE AND OPTIMIZED DATA SETS. COLOR INDICATES WHICH FRAMEWORK ACHIEVED THE FASTEST RESULT FOR EACH CASE.

Baseline (speedup over GAP reference) Optimized (speedup over GAP reference)
Real Graphs Synthetic Graphs Real Graphs Synthetic Graphs

Web Twitter Road Kron Urand Web Twitter Road Kron Urand

SuiteSparse 
GraphBLAS

BFS 39.98% 60.50% 13.74% 58.14% 51.09% 36.38% 54.04% 8.02% 53.71% 46.48%
SSSP 8.50% 32.23% 0.35% 32.10% 40.51% 5.84% 31.18% 0.43% 23.95% 32.56%
CC 12.66% 18.87% 7.40% 20.13% 43.45% 11.08% 15.65% 6.30% 15.96% 33.05%
PR 92.86% 87.92% 137.50% 91.04% 91.45% 85.02% 91.21% 173.42% 96.53% 97.81%
BC 54.00% 70.93% 3.96% 80.38% 92.40% 42.69% 69.64% 3.46% 85.74% 84.95%
TC 48.76% 31.92% 12.86% 34.01% 61.51% 55.53% 34.49% 12.47% 37.46% 61.04%

Galois

BFS 54.18% 44.77% 351.04% 57.14% 8.93% 58.55% 41.88% 220.92% 62.16% 77.85%
SSSP 46.13% 55.94% 54.40% 41.76% 49.47% 26.62% 45.11% 67.37% 58.06% 53.53%
CC 64.43% 114.02% 84.11% 85.22% 66.06% 113.94% 75.16% 90.16% 85.53% 49.16%
PR 157.54% 84.36% 331.66% 106.15% 117.35% 154.67% 108.96% 456.72% 110.63% 125.71%
BC 102.90% 68.88% 54.66% 71.36% 30.88% 105.52% 73.18% 43.83% 72.87% 75.12%
TC 113.14% 108.29% 111.57% 98.02% 81.26% 235.19% 140.02% 130.04% 106.39% 90.62%

GraphIt

BFS 64.24% 86.40% 37.14% 84.29% 88.59% 54.11% 83.92% 74.34% 88.59% 95.14%
SSSP 106.50% 110.96% 94.74% 112.40% 107.56% 86.17% 104.35% 93.88% 96.13% 106.48%
CC 19.60% 8.86% 0.17% 7.06% 16.92% 16.10% 19.55% 0.45% 16.45% 27.85%
PR 194.40% 109.23% 307.38% 102.72% 101.64% 149.14% 196.47% 350.03% 211.61% 186.20%
BC 73.23% 100.23% 45.98% 224.15% 272.49% 75.85% 189.21% 34.67% 223.41% 251.01%
TC 99.30% 108.45% 67.67% 113.89% 101.73% 98.72% 107.06% 98.41% 106.97% 104.38%

Graph 
Kernel 

Collection 
(GKC)

BFS 68.68% 67.33% 157.85% 61.20% 67.47% 74.44% 60.29% 83.29% 56.75% 64.35%
SSSP 113.22% 89.68% 18.38% 86.72% 119.25% 115.98% 98.23% 18.53% 77.29% 118.17%
CC 31.87% 26.53% 14.29% 32.95% 295.12% 27.69% 19.76% 10.82% 23.46% 214.27%
PR 191.32% 105.56% 358.54% 136.28% 142.03% 125.03% 104.14% 324.19% 137.15% 150.24%
BC 106.98% 100.30% 101.55% 101.60% 102.33% 106.23% 97.49% 77.15% 101.34% 102.76%
TC 107.36% 157.92% 149.43% 197.51% 123.19% 106.98% 160.46% 176.41% 187.20% 113.98%

NWGraph

BFS 23.78% 65.85% 53.02% 65.34% 42.54% 26.59% 66.57% 33.97% 67.28% 48.74%
SSSP 47.62% 85.35% 4.61% 114.69% 54.25% 46.33% 109.46% 6.58% 102.53% 55.39%
CC 59.89% 69.09% 62.36% 61.50% 99.63% 49.60% 64.33% 60.34% 57.21% 87.41%
PR 230.67% 110.38% 373.94% 108.16% 120.65% 175.33% 119.14% 499.59% 112.20% 124.68%
BC 139.07% 135.88% 41.49% 163.21% 92.44% 117.33% 139.02% 38.15% 151.84% 90.77%
TC 249.06% 132.30% 60.61% 108.27% 124.01% 228.14% 129.97% 51.35% 109.45% 112.77%

TABLE V
SPEEDUPS OVER THE GAP REFERENCE IMPLEMENTATION FOR THE BASELINE AND OPTIMIZED DATA SETS. PERCENTAGES REPRESENT THE RATIO OF
THE TIME RELATIVE TO THE GAP REFERENCE FOR A PARTICULAR TEST. THE COLOR-CODED HEAT MAP INDICATES WHERE PERFORMANCE IS LOWER

THAN (RED), EQUAL TO (WHITE), OR HIGHER THAN (GREEN) THE GAP REFERENCE.



algorithm expression from the schedule which makes it much
easier to adapt to features of different platforms.

It is interesting to consider the changes made for the
different frameworks when moving from the Baseline to the
Optimized cases. Some of the frameworks made only minimal
changes in moving between the two. The improvements in
performance in NWGraph and GKC for the Optimized cases
are almost entirely from taking advantage of hyperthreading
and using all 64 logical cores. The general improvements in the
hyperthreaded performance suggest that hardware resources
remain underutilized, and techniques introduced by the other
frameworks could be leveraged for better performance. The
NWGraph developers consider the low requirement for pa-
rameter tuning to be a feature of their library as users are not
required to tune for optimal performance. Instead, this burden
falls to the implementors of STL and TBB.

GraphIt also benefited from the use of hyperthreading, but
in addition, it used schedules/optimizations specialized for the
size and structure of the graphs for the Optimized case. This
was not allowed for the Baseline data set. These optimizations
resulted in general improvements for PR, BFS, TC, and BC
even though some of the schedules remained the same.

Galois stood out by making extensive changes between the
Baseline and Optimized cases. For BFS, SSSP, and BC, the
relative performance of different algorithm implementations
can vary significantly for high diameter and low diameter
graphs. Hence, in the Optimized case, the Galois team chose
one algorithm for Road because it is known to have a high
diameter (Table I), and another algorithm for the other inputs
because they are known to have low diameters. It is not
trivial to estimate the diameter of a graph. They used a
vertex sampling scheme (similar to that in GAP for TC) to
determine whether a graph has power-law degree distribution
(Web, Twitter, Kron) or uniform-degree distribution (Road,
Urand). In the Baseline case, they assumed the graph had a
low diameter if it has power-law degree distribution and a
high diameter otherwise4, and then automatically picked the
algorithm based on the assumed diameter.

A. Breadth First Search (BFS)

GraphBLAS - The BFS relies on three internal data
structures in GraphBLAS, which are opaque to the LAGraph
library: a bitmap, a sparse list (CSR), and a full matrix. The
vector q is converted to bitmap for the “pull” step, and con-
verted to a sparse list for the “push” step. This conversion time
is included in the total run time. The parent pi is held as a full
vector, while the adjacency matrix A and its transpose are held
in CSR format. The BFS achieves competitive performance,
except for Road. The same algorithm is used for all graphs.
Road has high diameter, so many iterations in LAGraph are
needed, with smaller and lighter-weight calls to GraphBLAS
kernels. GraphBLAS does include a non-blocking mode that
could in theory allow for kernels to be fused, but this is not

4Real-world graphs that do not have power-law degree distribution typically
have a high diameter because they are planar graphs, but the synthetic Urand
graph is not planar and has a low diameter without having power-law degrees.

fully implemented yet. A truly asynchronous BFS that can
work on multiple levels at a time is likely beyond the scope
of GraphBLAS+LAGraph.

Galois - For power-law graphs, both Galois and GAP use
the same bulk-synchronous direction-optimizing algorithm. As
the runtime is very small, the overheads of a generic library
such as Galois are significant. For Urand, the Optimized case
in Galois uses the same bulk-synchronous algorithm but the
Baseline case uses asynchronous execution, which increases
redundant work significantly because Urand is a low diameter
graph. In contrast, asynchronous execution for Road increases
parallelism with a small increase in redundant work, so Galois
is 3.6× and 2.2× faster than GAP for Road in the Baseline
and Optimized cases, respectively.

GraphIt - GAP has better performance on Road because of
a more efficient way of creating a new frontier/vertexset than
GraphIt. For social networks (e.g., Twitter), the difference can
also be attributed to different frontier creation mechanisms and
a more efficient way of counting the number of active vertices
in GAP. For the Optimized case, GraphIt is faster than GAP
on Road by 40% because it does not use direction optimiza-
tion (always push). This eliminates the runtime overhead of
checking the number of active vertices.

GKC - Because Road is a small, large-diameter graph,
the BFS algorithm will be particularly sensitive to overheads
associated with higher level abstractions. Hence, a hand-
optimized approach as used with GKC has an advantage as
shown by the high performance with BFS for Road.

NWGraph - The BFS algorithm used with NWGraph is a
straightforward, initial implementation with a simple direction
optimized search and no fine tuning of the switching criteria.
Performance is sensitive to the heuristic that controls the
switch between the pull and push portions of the algorithm.
Overheads due to NWGraph’s reliance on STL vectors over
more lightweight vectors was particularly noticeable for Road.

B. Single Source Shortest Paths (SSSP)

GraphBLAS - SSSP uses a delta-stepping method, and has
similar characteristics to that seen with BFS, except that it is
slower because it cannot yet exploit the bitmap data structure.
The bitmap data structure has not yet been fully incorporated
into GraphBLAS so it is currently available only in the BFS.

Galois - Galois uses a delta-stepping algorithm with a
bulk-synchronous variant for power-law graphs and an asyn-
chronous variant for the uniform graphs in the Baseline
case. Although GAP uses a bulk-synchronous delta-stepping
algorithm for all graphs, GAP is faster than Galois due to the
bucket fusion optimization. Asynchronous execution in Galois
for Road reduces this performance gap. For the Optimized
case, the bulk-synchronous variant with Urand ran better and
reduced the performance gap relative to GAP.

GraphIt - GraphIt is comparable to GAP on all the graphs
because GAP incorporated GraphIt’s bucket fusion optimiza-
tion, which significantly reduces synchronization [54]. GAP is
slightly faster by further reducing overhead in the optimization
implementation. Note that GraphIt was more than 7× faster



on Road before the bucket fusion optimization was integrated
into the current GAP benchmark. Relative performance for the
Baseline and Optimized cases were the same.

C. Connected Components (CC)

GraphBLAS - The CC algorithm in LAGraph+GraphBLAS
is based on a high-performance algorithm [52] but the imple-
mentation in GraphBLAS has some issues that need to be
resolved. One issue is that the matrix assignment with the
MIN operator as the accumulator does not take the minimum
of multiple entries assigned into the same location; the Graph-
BLAS C API specifies that the result of this kind of assignment
is undefined. As a result, the CC method in LAGraph uses its
own implementation of this kernel.

Galois - Galois and GAP both use the same Afforest
algorithm. For the Baseline case, GAP is faster than Galois
except for Twitter. For the Optimized case and Web, the edge
blocking variant of the Afforest algorithm used in Galois
performs much better due to better load balancing.

GraphIt - GraphIt is slower than GAP for CC due to dif-
ferences in the algorithms they used. GAP uses the sampling-
based Afforest algorithm which runs in O(V ) where V is the
number of vertices. GraphIt does not yet support sampling
algorithms and uses a label-propagation approach which runs
in O(ED) where D is the diameter of the graph and E is the
number of edges. For the Optimized data set, GraphIt used
label propagation with a short-circuiting approach on Road as
the vertex chains tended to go longer on high-diameter graphs.
This resulted in a 3x speedup but it was still slower than GAP.
The GraphIt CC implementation also used cache optimizations
similar to PR for speedups on the social network graphs.

GKC - CC performance is dependent on the algorithm. The
observation by Sutton et al. [45] that the Afforest algorithm
is less effective on the Urand graph is replicated here. How-
ever, the performance gap between Afforest and the hybrid
algorithm used with GKC is significantly smaller (at most
7x speedup on Road) than the performance reported in the
original paper (up to 100x speedup on Road). The narrowing
of the performance gap is most likely due to the use of SIMD
instructions and local intermediate buffers for GKC.

D. PageRank (PR)

GraphBLAS - GraphBLAS does well fairly well for PR,
taking about as much time as the GAP benchmark. This is
expected, since it is using the same basic algorithm. The main
constraint that PR in LAGraph faces in the future is that an
asynchronous Gauss-Siedel method is likely beyond the scope
of the GraphBLAS API. There is no mechanism in the C API
Specification for partially computing a vector x in x = A ∗ x,
in asynchronous parallelism with other threads.

Galois - Galois is faster than GAP because its Gauss-
Seidel-style algorithm converges faster and performs fewer
operations than the Jacobi algorithm. The benefits increase
with the diameter of the graph, so Galois is 3.6× faster than
GAP for Road. For the Optimized case, Galois uses NUMA
blocked allocation for the graph topology and vertex labels.

When combined with the Gauss-Seidel algorithm, this resulted
in a 4.7× speedup relative to GAP for Road.

GraphIt - GraphIt is comparable to GAP on Kron, Urand,
and Twitter, and faster on Web and Road due to better scaling
for the same amount of work. For the Optimized cases, GraphIt
is faster than GAP due to cache optimization from tiling the
graph [51]. Web had good locality and did not benefit as much
from cache optimization. In general, the preprocessing time to
construct cache efficient subgraphs from CSR format is small
compared to the performance gains, so it is amortized within
2 - 5 iterations. This is helpful for algorithms like PR that
require around 20 iterations to converge.

NWGraph - NWGraph used the Gauss-Seidel algorithm
and saw performance in line with that observed for the other
frameworks using that algorithm.

E. Betweenness Centrality (BC)

GraphBLAS - BC is competitive versus the GAP bench-
mark, except for Road, where it shares the same limitations
as BFS and SSSP. Most of the operations are matrix-matrix,
where one matrix is dense and 4-by-n. LAGraph implements
the batch Brandes algorithm, in a mere 97 lines of very
readable code (47 in the MATLAB interface, including error
checks on the inputs). It cannot yet use the newly-developed
bitmap structure internal to GraphBLAS, as this is only
partially developed.

Galois - For power-law graphs, both Galois and GAP use
the bulk-synchronous Brandes algorithm, but GAP is faster
because it saves the list of successors for each vertex using
a bitmap. Because of this optimization, GAP is faster than
Galois for uniform graphs, even though Galois uses the asyn-
chronous Brandes algorithm. Asynchronous execution hurts
performance for Urand in the Baseline case because Urand
is a low diameter graph. For the Optimized case, results on
Urand are better because the bulk-synchronous algorithm is
used.

GraphIt - Unlike GAP’s implementation, GraphIt trans-
poses the graph for the backward pass gaining speed for larger
graphs but running slower for the smaller graphs. GraphIt uses
a bitvector to represent the frontier, which is advantageous
when there are many active elements in the frontier. For the
Optimized case, the GraphIt algorithm reduces overhead by
not using a bitvector for the frontier on Road, resulting in a
modest speedup.

NWGraph - The BC kernel did not use direction optimized
breadth-first search. Performance, however, is still competitive,
with the exception of Road. Results on Road are often worse
for NWGraph. As Road is a smaller graph, overheads due
to NWGraph’s reliance on STL vectors are more significant
compared to frameworks that use more lightweight vectors.

F. Triangle Counting (TC)

GraphBLAS - TC is very simple in LA-
Graph+GraphBLAS: except for the optional presort, it
is a single masked matrix-matrix multiply, followed by a
reduction to a single scalar. To accomplish this, the entire



matrix is first formed, then summed to a single scalar and
discarded. It would be much faster to skip construction of the
matrix and simply sum up its entries as they are computed. If
this kernel were fused (which could be done in non-blocking
mode), this would improve TC performance by a factor of
two or more. Also yet to be implemented is a fast SIMD set
intersection method for the dot product-based matrix-matrix
multiply.

Galois - Galois uses the same TC algorithm as GAP.
For Web, which has power-law degrees, Galois performance
benefits from better work stealing and load balancing. For
Urand, which has uniform degrees, Galois is slower due to
the overheads of work stealing when the load is already well
balanced. For the Optimized case, we excluded the time to
preprocess and relabel the graph so Galois is much faster than
GAP.

GraphIt - GraphIt is slightly faster than GAP on Kron and
Twitter. The GraphIt algorithm is observed to have less branch
misprediction [24], which is important for the larger graphs.
For the Optimized data set, GraphIt was originally slower than
GAP on Road because it used a set intersection method that
was inefficient for smaller graphs. Changing back to the naive
intersection method used in GAP improved performance.

GKC - GKC sorts vertices depending on degree skewness,
then uses SIMD instructions depending on average degree
and available hardware features. It performs set intersections
with vectors that were previously visited, thereby increasing
data reuse in caches. The combination of algorithm-enabled
cache reuse, heuristic-driven relabeling, and appropriate use
of hardware capability such as SIMD set intersection results
in GKC outperforming GAP for both cases on all graphs.

NWGraph - The TC numbers were quite competitive,
especially for Web, whose skewed degree distribution makes
load balancing difficult. NWGraph’s cyclic distribution of rows
across threads led to near optimal load balancing. TC also
benefits from sorting and relabeling the edge list (which is
included in the timing results) before compressing to a sparse
adjacency format (which is not timed per benchmark timing
rules). This is a much more efficient strategy than sorting and
relabeling on the compressed graph.

VI. DISCUSSION

This paper was born from frustration. We tried repeatedly to
produce high quality, reproducible performance numbers for
key graph algorithm frameworks. There were so many ways
to use each framework that we could never be sure we were
using any given system to its full advantage. The result was
little hard data to gauge relative performance.

The solution was to bring the groups behind each of the
frameworks together to run their software with a common
benchmark on the same hardware. We negotiated rules for two
cases. The Baseline case tried to replicate the performance
an unsophisticated user might see (the “out of the box”
experience). The Optimized case urged each group to carry
out optimizations for each algorithm to understand the best
performance available from their framework.

The heat maps shown in Table V suggest that no framework
is best for all graphs or algorithms. This is apparent in
that none of the rows or columns are fully green, and is
well supported by anecdotal evidence from graph algorithm
researchers; no single graph framework can equally handle
the full diversity of graph problems.

Road in particular was difficult for many of the frameworks
because of its small size and high diameter. Many graph
algorithms are iterative with synchronization required at each
iteration. With the small size of Road, there was little useful
work to amortize synchronization overhead. For the Optimized
data set, the GAP reference implementations often did better
on Road with fewer cores precisely because it would reduce
the synchronization burden. Finally, timings for algorithms on
Road were more unstable compared to other cases. This was
most likely due the short runtimes making the results more
sensitive to sequential startup overheads.

Three frameworks stood out in their performance on Road:
Galois for BFS, GraphIt for SSSP, and GKC for TC.

• Galois makes heavy use of asynchronous execution.
This helps algorithms converge sooner because they can
update information faster without waiting at the bulk
synchronous (frontier-based) iteration boundaries. This
effect would be particularly notable for large diameter
graphs such as Road. Galois preforms better for PR due to
the Gauss-Seidel approach with in-place updates, which
is more efficient due to a reduced number of operations.

• GraphIt used a new bucket fusion optimization for SSSP
with delta stepping. It is based on the bucketing-based
priority queue. The gist of the optimization is if a thread
sees that the next bucket has the same priority as the
current bucket, it can process the next bucket without
synchronizing with other threads. This way, GraphIt is
able to reduce the number of rounds/synchronizations by
a factor of ten while maintaining a strict priority order.
It sets a threshold on the next bucket size to avoid load
imbalance [54]. The bucket fusion optimization has been
incorporated into the GAP reference implementation.

• GKC heuristically applies SIMD kernels and graph rela-
beling, based on hardware capability (e.g., SIMD length
and ops per second), graph skewness, and size. In Road,
this is relevant because the overheads of sorting and using
SIMD are avoided due to the heuristics. Further, Road
benefits from GKC’s algorithm because of its small size,
resulting in higher cache-reuse.

This study revealed several potential improvements to the
GAP Benchmark Suite.

• We identified and fixed a bug in the implementation of
BC’s path counting algorithm.

• The GAP reference implementations try to establish a
reasonable performance target for graph frameworks.
However, the reference PR implementation is no longer
performance competitive with leading frameworks. It can
be accelerated with blocking, but the resulting code might
be too platform-specific [5]. Alternatively, switching to



a Gauss-Seidel approach for PR is far more practical,
and the results of this study demonstrate the performance
advantages of that approach.

• We found considerable ambiguity in the procedures to
validate results and validation is important to assure that
all frameworks are converging on consistently meaningful
results. We recommend more formally specified verifica-
tion and validation procedures for GAP. This needs to
include both correctness and timing guidelines.

We see two productive avenues for future work. First, the
most difficult part of this project was to work out procedures
required to generate consistent results. Those same procedures
can be used with other graph frameworks, allowing us to
expand these data sets. Second, we did not analyze the
complexity of the algorithms from one framework to the next.
This is the ever-challenging “programmability problem” all too
often overlooked due to the ambiguities inherent in measuring
programmability. This is still, however, a critical issue to
explore as we work to improve the quality of frameworks used
to create graph algorithms.

VII. ACKNOWLEDGEMENTS

This work was supported by the National Science Foun-
dation (grants: 1835499, 1618425, 1705092, and 1725322), a
DARPA ERI contract (26-3511-51), a DARPA SDH Award
(HR0011-18-3-0007), and grants from Intel, NVIDIA, IBM,
and Redis Labs. It was also supported by the Department of
Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development cen-
ter [DM20-0760]. M.B. is supported by the National Science
Foundation Graduate Research Fellowship Program (grant
DGE 1745016) and by the Carnegie Mellon University Jack
and Mildred Bowers Scholarship in Engineering. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] Galois. http://iss.oden.utexas.edu/?p=projects/galois, 2019.
[2] Graph Kernel Collection. https://github.com/CMU-SPEED/GKC, 2019.
[3] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-

Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
OpenTuner: An extensible framework for program autotuning. In
International Conference on Parallel Architectures and Compilation
Techniques. PACT, 2014.

[4] Arvind Arasu, Jasmine Novak, Andrew Tomkins, and John Tomlin.
PageRank computation and the structure of the web: Experiments and
algorithms. In WWW, pages 107–117, 2002.

[5] S. Beamer, K. Asanović, and D. Patterson. Reducing pagerank commu-
nication via propagation blocking. In IPDPS, pages 820–831, 2017.

[6] Scott Beamer. Understanding and Improving Graph Algorithm Perfor-
mance. PhD thesis, University of California, Berkeley, 2016.

[7] Scott Beamer, Krste Asanović, and David Patterson. The GAP Bench-
mark Suite. arXiv preprint arXiv:1508.03919, 2015.

[8] Scott Beamer, Krste Asanović, and David A. Patterson. Direction-
optimizing breadth-first search. Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis (SC), 2012.

[9] Scott Beamer, Krste Asanović, and David A. Patterson. Locality exists
in graph processing: Workload characterization on an Ivy Bridge server.
International Symposium on Workload Characterization (IISWC), 2015.

[10] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I:
Compression techniques. WWW, pages 595–601, 2004.

[11] Ulrik Brandes. A faster algorithm for betweenness centrality. The
Journal of Mathematical Sociology, 25(2):163–177, 2001.

[12] Aydın Buluç, Timothy Mattson, Scott McMillan, José Moreira, and Carl
Yang. The GraphBLAS C API specification. GraphBLAS. org, Tech.
Rep., version 1.3.0, 2019.

[13] V. G. Castellana, M. Drocco, J. Feo, J. Firoz, T. Kanewala, A. Lums-
daine, J. Manzano, A. Marquez, M. Minutoli, J. Suetterlein, A. Tumeo,
and M. Zalewski. A parallel graph environment for real-world data
analytics workflows. In Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1313–1318, 2019.

[14] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali.
Pangolin: An efficient and flexible graph pattern mining system on CPU
and GPU. PVLDB, 13(8), 2020.

[15] R. Dathathri, G. Gill, L. Hoang, V. Jatala, K. Pingali, V. K. Nandivada,
H. Dang, and M. Snir. Gluon-async: A bulk-asynchronous system for
distributed and heterogeneous graph analytics. In International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
pages 15–28, 2019.

[16] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex
Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali. Gluon: A
communication-optimizing substrate for distributed heterogeneous graph
analytics. In PLDI, pages 752–768. ACM, 2018.

[17] T. A. Davis, M. Aznaveh, and S. Kolodziej. Write quick, run fast:
Sparse deep neural network in 20 minutes of development time via
suitesparse:graphblas. In 2019 IEEE High Performance Extreme Com-
puting Conference (HPEC), pages 1–6, 2019.

[18] Timothy A. Davis. Algorithm 1000: SuiteSparse:GraphBLAS: Graph
algorithms in the language of sparse linear algebra. ACM Trans. Math.
Softw., 45(4), December 2019.

[19] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software, 38:1:1 – 1:25,
2011.

[20] 9th DIMACS implementation challenge - Shortest paths.
http://www.dis.uniroma1.it/challenge9/, 2006.

[21] Paul Erdős and Alfréd Rényi. On random graphs. I. Publicationes
Mathematicae, 6:290–297, 1959.

[22] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav
Pingali. Single machine graph analytics on massive datasets using Intel
Optane DC persistent memory. PVLDB, 13(8):1304–1318, 2020.

[23] Douglas Gregor and Andrew Lumsdaine. The Parallel BGL: A generic
library for distributed graph computations. Parallel Object-Oriented
Scientific Computing (POOSC), 2005.

[24] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. Faster set intersec-
tion with SIMD instructions by reducing branch mispredictions. PVLDB,
8(3):293–304, November 2014.

[25] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau
Prat-Pérez, Thomas Manhardt, Hassan Chafi, Mihai Capotă, Narayanan
Sundaram, Michael Anderson, Ilie Gabriel Tănase, Yinglong Xia, Lifeng
Nai, and Peter Boncz. LDBC Graphalytics: A benchmark for large-
scale graph analysis on parallel and distributed platforms. In PVLDB,
volume 9, pages 1317–1328, 2016.

[26] George Karypis and Vipin Kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM J. Sci. Comput.,
20(1):359–392, December 1998.

[27] Jeremy Kepner, Peter Aaltonen, David Bader, Aydın Buluç, Franz
Franchetti, John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, Scott McMillan, José Moreira, John
Owens, Carl Yang, Marcin Zalewski, and Timothy Mattson. Mathemat-
ical foundations of the GraphBLAS. In HPEC. IEEE, 2016.

[28] Jeremy Kepner, Tim Davis, Chansup Byun, William Arcand, David
Bestor, William Bergeron, Vijay Gadepally, Matthew Hubbell, Michael
Houle, Michael Jones, Anna Klein, Peter Michaleas, Lauren Milechin,
Julie Mullen, Andrew Prout, Antonio Rosa, Siddharth Samsi, Charles
Yee, and Albert Reuther. 75,000,000,000 streaming inserts/second using
hierarchical hypersparse GraphBLAS matrices. 2020.

[29] Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali.
Lonestar: A suite of parallel irregular programs. In ISPASS. IEEE, 2009.

[30] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan,
Kavita Bala, and L. Paul Chew. Optimistic parallelism requires abstrac-
tions. In PLDI, pages 211–222. ACM, 2007.

[31] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What
is Twitter, a social network or a news media? WWW, 2010.

http://iss.oden.utexas.edu/?p=projects/galois
https://github.com/CMU-SPEED/GKC


[32] Matthew Lee and Tze Meng Low. A family of provably correct
algorithms for exact triangle counting. In CORRECTNESS, page 14–20.
ACM, 2017.

[33] Jurij Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos
Faloutsos. Realistic, mathematically tractable graph generation and
evolution, using Kronecker multiplication. PKDD, 2005.

[34] Tim Mattson, Timothy A. Davis, Manoj Kumar, Aydin Buluc, Scott
McMillan, José Moreira, and Carl Yang. LAGraph: A community effort
to collect graph algorithms built on top of the GraphBLAS. In GrAPL
at IPDPS, pages 276–284. IEEE, 2019.

[35] U. Meyer and P. Sanders. ∆-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms, 49(1):114 – 152, 2003. 1998 European
Symposium on Algorithms.

[36] Richard C. Murphy, Jonathan Berry, William McLendon, Bruce Hen-
drickson, Douglas Gregor, and Andrew Lumsdaine. DFS: A simple
to write yet difficult to execute benchmark. In IEEE International
Symposium on Workload Characterizations (IISWC). IEEE, 2006.

[37] Richard C. Murphy, Kyle B. Wheeler, Brian W Barrett, and James A.
Ang. Introducing the Graph 500. In Cray User’s Group. CUG, 2010.

[38] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight
infrastructure for graph analytics. In SOSP, pages 456–471. ACM, 2013.

[39] Sreepathi Pai and Keshav Pingali. A compiler for throughput optimiza-
tion of graph algorithms on GPUs. SIGPLAN Not., 51(10):1–19, October
2016.

[40] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos,
and Xin Sui. The TAO of parallelism in algorithms. In PLDI, pages
12–25, 2011.

[41] Siddharth Samsi et al. GraphChallenge.org: Raising the bar on graph
analytic performance. In HPEC. IEEE, 2018.

[42] Yossi Shiloach and Uzi Vishkin. An O(logn) parallel connectivity
algorithm. Journal of Algorithms, 3(1):57 – 67, 1982.

[43] Jeremy Siek, Andrew Lumsdaine, and Lie-Quan Lee. The boost graph
library: user guide and reference manual. Addison-Wesley, 2002.

[44] U. Sridhar, M. Blanco, R. Mayuranath, D. G. Spampinato, T. M. Low,
and S. McMillan. Delta-stepping SSSP: From vertices and edges to
GraphBLAS implementations. In GrAPL at IPDPS, pages 241–250,
2019.

[45] Michael Sutton, Tal Ben-Nun, and Amnon Barak. Optimizing parallel
graph connectivity computation via subgraph sampling. In IPDPS, pages
12–21. IEEE, 2018.

[46] Richard Veras, Thom Popovici, Tze-Meng Low, and Franz Franchetti.
Compilers, hands-off my hands-on optimizations. In Workshop on Pro-
gramming Models for SIMD/Vector Programming (WPMVP) at PPoPP,
2016.

[47] Jatala Vishwesh, Dathathri Roshan, Gill Gurbinder, Hoang Loc, Nandi-
vada V. Krishna, and Pingali Keshav. A study of graph analytics for
massive datasets on distributed GPUs. In IPDPS, 2020.

[48] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. Gunrock: A high-performance graph
processing library on the GPU. In PPoPP, 2016.

[49] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Raja-
manickam. Fast linear algebra-based triangle counting with KokkosKer-
nels. In 2017 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–7, 2017.

[50] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica.
GraphX: A resilient distributed graph system on Spark. In Graph Data-
management Experiences & Systems (GRADES) at SIGMOD, 2013.

[51] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia.
Making caches work for graph analytics. In Big Data, pages 293–302,
2017.

[52] Yongzhe Zhang, Ariful Azad, and Zhenjiang Hu. FastSV: A Distributed-
Memory Connected Component Algorithm with Fast Convergence, pages
46–57.

[53] Yongzhe Zhang, Ariful Azad, and Zhenjiang Hu. Fastsv: a distributed-
memory connected component algorithm with fast convergence. In PP,
pages 46–57. SIAM, 2020.

[54] Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala,
Shoaib Kamil, Saman Amarasinghe, and Julian Shun. Optimizing
ordered graph algorithms with GraphIt. In CGO, page 158–170. ACM,
2020.

[55] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,
Julian Shun, and Saman Amarasinghe. GraphIt: A high-performance
graph DSL. PACMPL/OOPSLA, 2:121:1–121:30, October 2018.




