
An Evaluation of Edge TPU Accelerators for
Convolutional Neural Networks

Kiran Seshadri1 Berkin Akin∗ James Laudon‡ Ravi Narayanaswami†1 Amir Yazdanbakhsh‡
Enfabrica ∗Google †Cruise ‡Google Research, Brain Team

kiranks@utexas.edu, bakin@google.com, jlaudon@google.com, ravi.narayanaswami@getcruise.com, ayazdan@google.com

Abstract
Edge TPUs are a domain of accelerators for low-power, edge
devices and are widely used in various Google products
such as Coral and Pixel devices. In this paper, we first
discuss the major microarchitectural details of Edge TPUs.
Then, we extensively evaluate three classes of Edge TPUs,
covering different computing ecosystems, across 423K unique
convolutional neural networks. Building upon this extensive
study, we discuss critical and interpretable microarchitectural
insights about the studied classes of Edge TPUs. Mainly, we
discuss how Edge TPU accelerators perform across convolu-
tional neural networks with different structures. Finally, we
present a learned machine learning model with high accuracy
to estimate the major performance metrics of accelerators.
These learned models enable significantly faster (in the order
of milliseconds) evaluations of accelerators as an alternative
to time-consuming cycle-accurate simulators and establish an
exciting opportunity for rapid hardware/software co-design.

1. Introduction
As a result of the diminishing returns in processor perfor-
mance from the end of Moore’s Law, the last decade has
seen a substantial surge in specialized hardware design. This
surge has provoked software-focused companies such as
Google [2, 31], Microsoft Brainwave [16], Amazon [20],
Apple [8], and Facebook [21] to invest heavily in designing
specialized hardware to improve the efficiency of the compute
underlying their core businesses. In addition, the soaring
demand for specialized hardware has also led to a fast-
growing market for hardware startups. Anticipating this trend,
Google deployed Tensor Processing Units (TPUs) in 2015
to accelerate machine learning inference in data centers.
Two years later, in 2017 Google introduced TPUv2 [31] to
accelerate machine learning training. Following the TPUs,
Google debuted Edge TPU accelerators [2], the focus of this
paper, in 2018 for machine learning inference at the edge.
Edge TPUs primarily target delivering high performance
acceleration within tight physical and power budgets. Since
their debut, Edge TPUs have been used in various Google
products such as Coral [1] and Pixel phones [4]. The Edge
TPU ecosystem is built with full parameterization across
the computing stack which enables various design space
exploration of architecture configurations.

1 Work done when the authors were at Google.

Concretely, we outline the contributions of our paper as
follows:

• Evaluating three classes of Edge TPUs across large
numbers of convolutional neural networks. We evaluate
three classes of Edge TPUs using nearly 423K convolu-
tional neural networks [54] with diverse structures and
various convolution operations. The studied Edge TPUs
embody accelerators that are either already deployed in
recent Google products [1, 4] or in the pipeline to be used
in future products.

• Outlining critical architectural insights about Edge
TPUs. Analyzing the evaluation results, we outline critical
insights about the Edge TPU architectures and how they
perform across various convolutional neural networks.
Particularly, we outline how these classes of architectures
work across convolutional neural models with different
sizes and structures. In addition, we explain how the
accelerator tile size impact the performance of the Edge
TPU accelerators. Finally, we show the deltas in the
accelerator performance after replacing an operation with
another operation.

• Developing efficient and robust learned models to
estimate major performance metrics of Edge TPUs. We
also discuss our proposed high-accuracy learned model for
estimating various performance metrics of Edge TPUs. We
use graph neural networks to learn a latent representation of
input graphs and estimate the desired performance metrics.
Our initial results show that the learned model estimates
the critical performance metrics of the workloads with
around 3% estimation error and significantly high (around
0.99) rank-based correlation metric with ground truth
data. This strong correlation signifies that the introduced
learned performance is a strong candidate for replacing the
expensive-to-evaluate cycle-accurate simulators in design
space exploration and hardware/software co-optimization.

2. Edge TPU Microarchitecture
Figure 1 shows the overall architecture of Edge TPU ac-
celerators. The Edge TPU accelerators leverage a template-
based design with highly parameterizable microarchitectural
components. The parameterized design of Edge TPU acceler-
ators enable exploring various architecture configurations
for different target applications. As shown in Figure 1,
the template accelerator is organized in a 2D array of
processing elements (PEs). Each PE performs a set of

ar
X

iv
:2

10
2.

10
42

3v
2

 [
cs

.L
G

]
 1

1
O

ct
 2

02
2

mailto:kiranks@utexas.edu
mailto:bakin@google.com
mailto:jlaudon@google.com
mailto:ravi.narayanaswami@getcruise.com
mailto:ayazdan@google.com

Figure 1: Overview of the template-based machine learning accelerator
used for architecture exploration.

arithmetic computations in a single instruction multiple data
(SIMD) manner. An on-chip controller is used to transfer the
data from off-chip memory and PEs. The controller fetches
activation and parameters into the on-chip staging buffers.
In addition, the controller reads in the low-level instructions
(e.g. convolution, etc.) that will be executed on the PEs.

The main architectural components of each processing engine
are a single or multiple core(s) each with multiple compute
lanes for performing operations in SIMD manner. Following
a top-down approach, each PE has a memory shared across
all the compute cores. This memory, shown as PE memory
in Figure 1, is mainly used to store model activations, partial
results, and outputs. The cores within each PE feature a core
memory that is mainly used for storing model parameters.
Each core has multiple compute lanes where each lane
has multi-way multiply-accumulate (MAC) units. The core
memories are heavily multi-banked to keep up with the
compute throughput of the parallel compute lanes and their
SIMD MAC units. At each cycle, a set of activations are sent
to the compute lanes. Then, the computations between the
activations and model parameters are performed within each
lane using the multi-way MAC units. Once the computations
finish, the results are either stored back in the PE memory for
further computation or are offloaded back into the DRAM.

3. Edge TPU Software Ecosystem
In this work we use TensorFlow Lite [24] based models as
input to the Edge TPU software stack. Note that the software
ecosystem varies based on the particular Edge TPU platform
but [5] provides an overview of running TensorFlow Lite
based inferences for the Coral Edge TPU platforms. The
Edge TPU runtime library is used to communicate with
the accelerator from the TensorFlow Lite (TFLite) API [5]
where the TFLite models are compiled ahead-of-time using
a publicly available Edge TPU compiler [3]. The main goal
of the compiler is to map various neural network operations
supported on the Edge TPU hardware while extracting the
highest level of parallelism. Note that if the input models
have unsupported or non-quantized operations, the compiler
partitions the input graphs where the unsupported portion
runs on a CPU instead of the Edge TPU.

Parameter caching. One critical optimization that the com-
piler performs is parameter caching [3]. As on-chip memory
size is generally scarce on edge accelerators, efficiently

managing this scratch-pad space is essential. For continuous
inference scenarios, reloading the entire neural network
model for every inference results in significant time spent
on the memory transfers. If the parameters (i.e. weights)
of the neural network are fully or partially cached in the
on-chip memory, consecutive inferences on the new inputs
can reuse the cached parameters. This process significantly
reduces external memory transfers which leads to higher
performance and energy efficiency.

Mapping of convolution operation into accelerator. Fig-
ure 2 shows the loop nest of a convolutional layer (without
batching) and its mapping onto an Edge TPU accelerator with
one processing engine and four SIMD lanes. As depicted in
Figure 2, the PE memory is used for both input activations,
partial sums, and outputs. On the other hand, the core memory
is exploited to store the weight parameters. Depending on the
size of PE memory, core memory, input activations, weight
parameters, and outputs, the compiler [3] may choose a
different mapping and tiling for the data.

Figure 2 depicts an example showing the computation steps
for performing a convolution operation on an Edge TPU
accelerator. The squares with darker color show the data
elements that are active at each particular computation step,
whereas the squares with light color show the data elements
that are inactive at a computation step. In this example, the
input activation (in PE memory) has four elements. There are
four weight parameters, each mapped onto a different core.
The weight parameters also have four elements. Finally, the
convolutional window size is (Kx = 1, Ky = 4, Zi = 1), and
to compute one output element it requires all four elements
of the input activation to be multiply-and-accumulated with
all four elements of the weight parameters. Hence, in the
loop nest representation, the x and y variables are set to
one. At the first iteration (1), the first element of the input
activation and the first element of each of the (Zo = 4)
kernels are multiplied together. The partial sum value is
stored in the output array. Then (2), the second element of
the input activation and the second element of each kernel are
multiplied together. The multiplication result is accumulated
with the previous partial sum and stored back into the output
array. The computation continues until all the elements of
the input activation are processed (4).

4. Learned Performance Model
In this paper, we use graph neural networks [34] to learn a
generalized model for the performance of Edge TPUs across
different convolutional neural networks. This work explores
generalization across different neural network architectures
and shows the feasibility of employing unique machine
learning models for performance prediction across different
accelerators. We use an in-house detailed cycle-accurate per-
formance model to collect training data for the learned model
(See Section 5 for details). Using graph neural networks, we
learn a latent representation for each convolutional neural
network. This latent representation is later used to estimate
various performance metrics (e.g. latency and energy).

for y := [0:1)
 for x := [0:1)
 for ky := [0:1)
 for kx := [0:4)
 for zi := [0:1)
 for zo := [0:4)
 O[y][x][zo] += I[y+ky][x+kx][zi] *
 W[zo][ky][kx][zi]

Core Memory

MAC MAC MAC MAC

InputOutput

1

Core Memory

MAC MAC MAC MAC

InputOutput

2

Core Memory

MAC MAC MAC MAC

InputOutput

3

Core Memory

MAC MAC MAC MAC

InputOutput

4

PE Memory

PE Memory

PE Memory

PE Memory

Figure 2: Convolutional layer loop nest (without batching) and its mapping on an Edge TPU with one PE and four SIMD lanes (# MACs). Input
and output activations are stored in PE memory. The weight parameters are stored in core memory.

Encoder Core Decoder

C
on

ca
t

h(t) h(t+1)

Figure 3: High-level overview of the graph-based learned perfor-
mance model. The model consists of three main components: encoder,
core, and decoder. The encoder and decoder independently perform
computations on edge, node, and global features, whereas the core
component that performs multiple rounds of message-passing to map
the input graph structural dependencies into a latent representation.
The disconnected tilted square represents the global feature (single
float scalar) of the graph. After update, the global feature is used as
the predicted performance metric (e.g. latency, energy, etc.).

A convolutional neural network can be presented with a
graph g = (V , E), where V is a set of nodes that represent
the valid operations (e.g. 3×3 convolution, 1×1 convolution,
3×3 max-pooling, input, and output), E is a set of edges that
represent the connectivity between the operations, and G that
is a vector serving as a graph global feature. A graph neural
network takes as input the feature description of the nodes,
an adjacency matrix, and a global feature of the graph and
performs multiple iterations of message-passing [34] to learn
a node-level representation. The learned node representations
are aggregated into a graph-level representation using arith-
metic operators such as summation or averaging [10, 25].
This graph-level representation is used as the performance
model predictor. In the next paragraph, we elaborate the
structure of our graph-based performance predictor.

4.1. Learned Performance Model Structure
Recent work has explored employing various machine learn-
ing or analytical models for performance estimation [6, 7, 11,
12, 14, 17, 19, 22, 23, 26, 27, 29, 32, 36–46, 49, 50, 53, 55]
of different applications and/or hardware accelerators. In this
work, to implement the learned performance model, we use
DeepMind’s Graph Nets [10] and Sonnet [18] libraries. We
use a graph-based model because (a) application mapping is
more straightforward and (b) graph neural networks generally
better capture the dependencies between nodes [32, 48].
Figure 3 depicts the overall structure of the graph-based
learned performance model. The model consists of three
main components, namely encoder, core, and decoder, each
serving as a neural network model. The encoder (decoder)

convolution
3x3

maxpooling
3x3

convolution
3x3

convolution
3x3

convolution
3x3

convolution
1x1

Output

Input

(a) Sample NASBench-101 cell.

[2.0]

[3.0]

[2.0]

[2.0]

[2.0]

[4.0]

[5.0]

[1.0]

[1.0]

[1.0]

[1.0]

[1.0]

[1.0][1.0]

[1.0]

[1.0]

[1.0]

Global Feature = [1.0]

(b) Node, edge, and global features.

Figure 4: (a) A sampled cell from NASBench-101 [54] dataset with
six operation nodes and nine edges. (b) The representation of node,
edge, and global features. In this mapping, input and output nodes are
mapped to feature vectors [1.0] and [5.0], respectively. The operation
3×3 convolution, 3×3 max-pooling, and 1×1 convolution are mapped
to feature vectors [2.0], [3.0], and [4.0], respectively. Both edge and
global features are set to feature vector [1.0].

network independently encodes (decodes) the edge, node,
and global attributes. Note that, neither encoder nor decoder
compute the structural relations between the graph compo-
nents. The core component of the model performs multiple
rounds of message-passing steps. After the core component
computations complete, the structural relations between the
graph components are learned and mapped into a node-level
and/or graph-level representation.

Input graph representation. Figure 4 shows a randomly
selected cell from one of the convolutional neural network
models in NASBench-101 [54] and its corresponding node,
edge, and global feature vectors. We employ a simple float-
encoding for the valid operations in the graph. We map input,
3×3 convolution, 3×3 max-pooling, 1×1 convolution, and
output nodes to feature vector [1.0] to [5.0], respectively.
In our current mapping, we do not differentiate between
the edges and set all the edge features to [1.0]. Finally, for
the graph-level representation, we use global feature vector
[1.0].

Encoder/decoder components. The encoder/decoder com-
ponents independently apply neural network models to edge,

TABLE 1: The distribution of NASBench-101 [54] models across
different intervals of trainable parameters.

Trainable Parameters Intervals # of Models
[227,274 — 5,202,474) 210,673
[5,202,474 — 10,177,674) 102,488
[10,177,674 — 15,152,874) 44,272
[15,152,874 — 20,128,074) 3,513
[20,128,074 — 25,103,274) 38,003
[25,103,274 — 30,078,474) 4,413
[30,078,474 — 35,053,674) 15,041
[35,053,674 — 40,028,874) 3,533
[40,028,874 — 45,004,074) 1,209
[45,004,074 — 49,979,274) 479

node, and global attributes. In our learned performance model,
we use two-layered feed-forward neural networks each with
16 neurons, followed by a layer normalization [9] for edge,
node, and global features.

Core component. The core component, as its name indicates,
is the core computation part of the learned performance
model. To better understand the architecture of the core
component, we summarize the Graph Net library [10] block-
structure concept that is used as building block for implement-
ing flexible graph neural networks. Graph Net [10] consists
of three main neural model blocks, namely edge, node, and
global. The edge, node, and global neural model blocks use
edge, node, and global attributes as their output. That is, after
applying each neural model block, the corresponding output
attribute gets updated. Using this methodology, various graph
neural network architectures can be implemented simply by
gluing these neural model blocks together. Generally, the
computation steps in a full graph neural network block (See
Algorithm 1 [10]) is as follows:

• Edge update. Apply the edge neural model block on each
edge and update its attribute based on the previous edge
features, the features of the adjacent nodes, and the global
feature of the graph;

• Node update. Apply the node neural model block on each
node and update its attribute based on the previous node
features, the features of incoming edges, and the global
feature of the graph;

• Global update. Apply the global neural model block on
the global feature and update its attribute based on the
previous global feature, globally aggregated features of
the edges, and globally aggregated features of the nodes.

The inputs to each neural model block and the aggregation
type can be tailored to the demands of the target task. In
our implementation, we use the default configurations for
edge, node, and global blocks. In addition, we use the default
summation operation as the aggregator for edge, node, and
global neural model blocks. We use the final updated global
attribute (a single float scalar) as the predicted performance
metric (e.g. latency, energy, area, etc.).

TABLE 2: The detailed microarchitecture parameters of three studied
configurations of Edge TPU accelerators, covering various computing
ecosystems. The total core memory capacity per accelerator is equal to
core memory × number of PEs × number of cores. Each class covers
different domain: V1 7→ high peak TOPs, V2 7→ low peak TOPs with
small on-chip memory, and V3 7→ low peak TOPs with large on-chip
memory.

V1 V2 V3
Clock Frequency (MHz) 800 1066 1066
of (X, Y)-PEs (4, 4) (4, 4) (4, 1)
PE Memory 2 MB 384 KB 2 MB
of Cores per PE 4 1 8
Core Memory 32 KB 32 KB 8 KB
of Compute Lanes 64 64 32
Instruction Memory 16384 16384 16384
Parameter Memory 16384 8192 8192
Activation Memory 1024 1024 1024
I/O Bandwidth (GB/s) 17 32 32
Peak TOPS 26.2 8.73 8.73

5. Methodology

Workloads. We use NASBench-101 [54] dataset that in-
clude nearly 423K unique convolutional neural network
architectures with diverse structures and various number
of convolutional operations. NASBench dataset are widely
used in AutoML evaluation efforts [13, 15, 28, 47, 51, 52].
The valid operations in these neural network architectures are
3×3 convolution, 1×1 convolution, and 3×3 max-pooling.
The neural networks in the NASBench dataset consist of three
stacks followed by a downsampling layer. Each stack has
a repeated structure of cells. The space of cell architecture
includes all possible directed acyclic graph combinations
of valid operations while complying with input/output di-
mensional constraints. To restrict the search space, the
maximum number of vertices and edges within each cell
are set to seven and nine, respectively. The NASBench
dataset also includes evaluated performance (e.g. training
and validation accuracy) of the neural network architectures
on CIFAR-10 image dataset [35] at different epochs (4, 12,
36, and 108) totalling ∼5M trained models. This enables
studying the trade-offs between the performance of Edge
TPUs and training/validation accuracy of neural network
models. Table 1 illustrates the distribution of models across
different intervals of trainable parameters, which covers a
diverse set of model sizes with different characteristics (e.g.
compute- and memory-intensive).

Accelerator configurations. Table 2 depicts several key
microarchitectural features of the studied classes of Edge
TPU accelerators. The system clock frequency of V1, V2, and
V3 accelerators are 800 MHz, 1066 MHz, and 1066 MHz,
respectively. Comparing the V2 and V3 accelerators, V3 has
larger PE memory (2 MB vs. 384 KB), more cores per PE
(8 vs. 1), while using fewer Y-PEs (1 vs. 4).

Microarchitectural simulations. To provide a uniform sim-
ulation infrastructure across all the the accelerator configura-
tions, we use an in-house fully-parameterized cycle-accurate
performance model. The simulator measures the latency and
energy of running the workloads for different accelerator

0 1 2 3 4 5
Latency (ms)

0.70

0.75

0.80

0.85

0.90

0.95

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(a) V1

0 1 2 3 4 5
Latency (ms)

0.70

0.75

0.80

0.85

0.90

0.95

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(b) V2

0 1 2 3 4 5
Latency (ms)

0.70

0.75

0.80

0.85

0.90

0.95

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(c) V3

Figure 5: The scatter plot of mean validation accuracy at epoch 108 vs. latency for three Edge TPU classes, (a) configuration V1, (b) configuration
V2, and (c) configuration V3.

configurations. To provide highest performance, in all the
simulations, we enable parameter caching [3].

Learned performance model training. We train our graph
network model with the Adam optimizer [33] using default
parameters and learning rate of 1e-3. We randomly split the
dataset (423K data points) into 60% training, 20% validation,
and 20% testing. We use DeepMind Sonnet [18] and Graph
Nets [10] library to implement the neural models. For edge,
node, and global neural model blocks, we use two-layer feed-
forward models with 16 neurons at each layer, followed by
a normalization layer. Because of its simple architecture, the
latency of the learned model to generate a prediction is on the
order of milliseconds. We use the default zero initializer for
the bias. For the weights, we use truncated random normal
values with a standard deviation proportional to the number
of input features [30]. For the normalization layer, we create
variables to hold the scale and offset of the normalization.
For the training loss, we compute the mean square of the
prediction error from every iteration of the message passing
in order to enable the model to converge faster across every
iteration of message passing. In this work, we train separate
GNN models per class of Edge TPU. Since NASBench-101
is constructed by repeated same cell architecture, for each
NASBench-101 model we use the cell architecture as the
input to the learned model1.

6. Evaluation

Inference latency and energy measurements. We perform
inference latency measurements for three different configu-
rations of the Edge TPU accelerator across all NASBench-
101 [54] models (423K models) yielding a total number
of latency measurements of approximately 1.5 Million
(3×423K). The inference latency numbers measure the total
inference time including off-chip accesses. Similarly, we
measure total energy for the V1 and V2 configurations across
all the NASBench models (423K models) yielding a total
number of energy measurements of approximately 900K

1 The source code of our implementations can be found under open-source
license at https://github.com/google-research/google-research/tree/master/l2da.

TABLE 3: The summary of latency and energy measurements of the
convolutional neural networks [54] with at least 70% mean validation
accuracy (417,454 out of 423,624 NASBench models—≈98.5% of total
data points) across three classes of Edge TPUs (See Table 2). The values
in parentheses shows the corresponding mean validation accuracy.

V1 V2 V3

Min. Latency (ms)
0.079111
(81.94%)

0.074647
(82.81%)

0.074647
(82.81%)

Max. Latency (ms)
5.676561
(93.78%)

5.653848
(94.33%)

5.666214
(93.55%)

Avg. Latency (ms)
0.9631
(N/A)

1.03485
(N/A)

1.0655
(N/A)

Min. Energy (mJ)
0.198351
(81.94%)

0.170954
(81.94%) N/A

Max. Energy (mJ)
23.807941
(93.66%)

23.462845
(92.97%) N/A

Avg. Energy (mJ)
4.252673

(N/A)
3.9127185

(N/A) N/A

TABLE 4: The latency and energy measurements of the neural network
with maximum accuracy (95.055%) after 108 epochs of training across
three classes of Edge TPUs (See Table 2). At the time of submission,
the energy model for V3 was not available.

V1 V2 V3
Latency (ms) 4.633768 4.185697 4.535305
Energy (mJ) 19.894033 19.745373 N/A

(2×423K). At the time of submission, the energy model for
V3 was not available.

Table 3 shows the summary of the latency and energy
results for three studied Edge TPU configurations and across
the NASBench models with at least 70% mean validation
accuracy after 108 training epochs. The number of data points
after this filtering is 417,454; more than 98.5% of the total
number of data points (423K). Compared to other accelerator
configurations, V2 performs better in terms of delivering the
highest accuracy (94.33%) with lower latency (5.65 ms). The
high performance of this Edge TPU configuration is mainly
attributed to its larger core memory (32 KB) and higher I/O
bandwidth (32 GB/s). The results also depict an interesting
trend for the average energy consumption between V1 and
V2. Compared to class V1, V2 has less PE memory and more
I/O bandwidth (Table 2), which may indicate more off-chip
memory accesses. We attribute this trend to V1’s lower clock

https://github.com/google-research/google-research/tree/master/l2da

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4
Latency (ms)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

En
er

gy
 (m

j)

V1
V2

Figure 6: Scatter plot of the measured inference latency vs. the
inference energy for the NASBench models with at least 70% mean
validation accuracy on V1 and V2 configurations. At the time of
submission, the energy model for V3 was not available.

frequency and its lower average number of cycles to execute
the models (1,584,211.2 in V1 vs. 2,080,014.9 in V2).

Table 4 shows the latency and energy consumption of the
best model in terms of mean validation accuracy. The mean
validation accuracy (defined in [54]) is calculated across the
three repeats of training after 108 training epochs [54]. The
results corroborate our initial observation that V2 is more
efficient compared to other configurations.

Figure 5 shows the comparison between mean validation
accuracy and accelerator latency across all the convolutional
models with at least 70% mean validation accuracy. As we
can see, the data are clustered into different buckets. The
number of 3×3 convolution operations in each NASBench
cell is a key determinant of latency buckets. For example,
an increase of one 3×3 convolution operation yields a jump
from one latency bucket to the next one. The first three
buckets (latency of < 2.0 ms, 2.0–3.0 ms, and 3.0–4.0 ms,
respectively) contain NASBench cells with respective aver-
ages of 1.48, 2.0, and 3.0 3×3 convolution operations.

Figure 6 shows the relationship between the measured
inference latency and inference energy for the NASBench
models with at least 70% mean validation accuracy on the V1

and V2 configurations. The relationship between the latency
and energy is linear. The first observation from Figure 6
is that for models with low latency (< 3.0 ms), V2 yields
lower energy compared to V1. However, as latency increases
(models with larger number of parameters), V1 consumes less
energy. This trend can be attributed to the large PE memory
size in V1 that enables running large models more efficiently.
However, since V2 has smaller PE memory (only 384 KB),
it may trigger multiple buffer flush/refills for these models.

Performance comparison of the accelerators. To compare
the performance of the neural models across different config-
urations, we split the NASBench models into three buckets,
one per accelerator configuration. Each bucket contains all the

convolution
3x3

convolution
3x3

convolution
3x3

Output

Input

convolution
3x3

(a) NASBench Cell

Accelerator Latency
V1 4.633768
V2 4.185697
V3 4.535305

(b) Latency

Figure 7: (a) NASBench cell with highest mean validation accuracy af-
ter 108 epochs (95.055%) and (b) the latency of running the NASBench
cell on various Edge TPU accelerators. The total number of parameters
of the convolutional neural network built from this NASBench cell
is 41,557,898. For the highest accuracy model, V2 yields the lowest
latency.

models whose measured latency is the least for that particular
configuration, as shown in Table 5. For example, first row
of the table shows all the models whose measured inference
latency is the least on V1 compared to other accelerator
configurations. First column of the table shows the number of
models out of total NASBench models (423K) that reside in
the corresponding bucket. Overall, V1 performs better (larger
number of models) compared to other configurations in terms
of latency. The next three columns show average latency and
average energy of across the models that belong to the bucket
for all three configurations. On average, for the models with
higher latencies (second row), V2 performs better. Last bucket,
in which V3 performs better compared to other accelerator
configurations, mainly consists of models with a larger
number of 1×1 convolution. On average, for the models
in this bucket V3 yields 10.4× and 1.24× speedup compared
to V1 and V2, respectively. The performance disparity between
Edge TPU classes can be attributed to multiple application
and/or accelerator characteristics. Table 6 highlights some of
the differences between first and last bucket with respect to
the model characteristics. The first bucket contains models
with more parameters (higher memory-boundedness), due
to more 3×3 convolution operations. V1 performs better
because of its higher peak TOPs and larger on-chip memory.
On the other hand, the last bucket contains models with
fewer parameters. The differences between the frequency
of V1 (800 MHz), V2 (1066 MHz), and V3 (1066 MHz) also
contribute to the overall performance of each bucket.

Analysis of models with high accuracy. Figure 7a illus-
trates the architecture of the NASBench cell that forms
a convolutional neural model with the highest accuracy
(95.055%) in the NASBench dataset. Figure 7b annotates
the neural architecture with the latency numbers across the
three studied accelerators. V2 is the winner across all the
accelerator configurations with the latency of 4.18 ms (10%
less than V1 accelerator).

To better understand the trade-off between accuracy and
latency, we also study the NASBench neural model with the
second highest mean validation accuracy, shown in Figure 8a.
The main observation here is that 0.16% trade-off in accuracy

TABLE 5: The average measured inference latency and energy of neural models on every configuration. Latency(X) ≤ contains all the neural
models whose measured inference latency is the least on the Edge TPU configuration X. At the time of submission, the energy model for V3 was
not available.

.

of Models Average Latency (ms), Average Energy (mJ)
V1 V2 V3

Latency(V1) ≤ 392725 0.80, 3.58 0.90, 3.58 0.92, N/A
Latency(V2) ≤ 24325 3.73, 6.96 3.39, 15.67 3.61, N/A
Latency(V3) ≤ 6570 2.59, 0.85 0.31, 0.64 0.25, N/A

TABLE 6: Comparison between first (Latency(V1) ≤) and last (La-
tency(V3) ≤) buckets across various model characteristics.

Latency(V1) ≤ Latency(V3) ≤
Avg. # of Conv 3×3 1.53 0.78
Avg. # of Conv 1×1 1.65 2.17
Avg. # of MaxPool 3×3 1.66 1.77
Avg. Graph Depth 4.96 4.64
Avg. # of Trainable Parameters 7,054,471.34 1,417,485.36

convolution
1x1

convolution
3x3

convolution
3x3

Output

Input

convolution
1x1

(a) NASBench Cell

Accelerator Latency (Speedup)
V1 2.597874 (1.78×)
V2 2.679829 (1.56×)
V3 2.799071 (1.62×)

(b) Latency

Figure 8: (a) NASBench cell with the second highest mean validation
accuracy after 108 epochs (94.895%) and (b) the latency of running the
NASBench cell on various Edge TPU accelerators. The values in the
parentheses represent the speedup over the NASBench cell with highest
mean validation accuracy (Figure 7). The total number of parameters
of the convolutional neural network built from this NASBench cell is
25,042,826 (66% less number of parameters compared to Figure 7).
For the highest accuracy of NASBench models, V1 yields the lowest
latency and maximum speedup.

(95.055 %→ 94.895%) yields up to 1.78× improvement in
latency in V1. Note that, even though the accuracy degradation
between these two neural models (Figure 7 and Figure 8)
are minimal, there are 66% fewer parameters in the model
shown in Figure 8, a key contributing factor to lower latency.
Finally, it is interesting to observe that for the NASBench cell
in Figure 8a V1 yields lower latency, in contrast to Figure 7a
in which V2 performs better. We can attribute this result to
(a) the lower I/O bandwidth in V1 that contributes more to
reducing latency for neural models with fewer number of
parameters and (b) the higher efficiency of V1 in running
1×1 convolution operations.

Analysis of accelerator performance for high-accuracy
convolutional models. Figure 9 illustrates the comparison
between latency and mean validation accuracy for the top
five models with highest accuracy. The dashed lines in the
figure split the curve into four regions showing which Edge
TPU accelerator yields the lowest latency for that region. As
mentioned before, for the highest accuracy model, V2 delivers
the lowest latency. However, for the next two models, V1 is
the winner. One of the main reasons for this trend is the
type of operations that are used in each region. V1 generally

V2V1 V2 V1

Figure 9: Comparing latency vs. mean validation accuracy for the
top five performing models in terms of mean validation accuracy.
Each section demarcated by dashed lines highlights the Edge TPU
configuration yielding the lowest latency.

1 2 3 4 5 6
Graph Depth

0.84

0.86

0.88

0.90

0.92

0.94

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(a) Accuracy vs. Graph Depth

1 2 3 4 5 6
Graph Width

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(b) Accuracy vs. Graph Width

Figure 10: The comparison between mean validation accuracy vs. (a)
graph depth and (b) graph width. Graph depth is measured by the
length of longest path from input node to output node. Graph width is
measured by maximum directed cut on the graph (same terminology
as NASBench-101 [54]).

performs better for the models with a larger number of 1×1
convolutional operators. Furthermore, this trend highlights
the significant headroom for reducing the accelerator latency
by slightly compromising the neural model accuracy.

Neural model architecture impact on accelerator per-
formance. First, we investigate the role of graph depth
(Figure 10a) and graph width (Figure 10b) in terms of mean
validation accuracy2. The whiskers in Figure 10 show that
depth of three and width of five are optimal in terms of
validation accuracy. The results also show that increasing

2 Similar methodology used in NASBench-101 [54].

1 2 3 4 5 6
Graph Depth

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(m
s)

(a) V1 (Latency vs. Graph Depth)

1 2 3 4 5 6
Graph Depth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

La
te

nc
y

(m
s)

(b) V2 (Latency vs. Graph Depth)

1 2 3 4 5 6
Graph Depth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

La
te

nc
y

(m
s)

(c) V3 (Latency vs. Graph Depth)

1 2 3 4 5 6
Graph Width

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y

(m
s)

(d) V1 (Latency vs. Graph Width)

1 2 3 4 5 6
Graph Width

0.0

0.5

1.0

1.5

2.0

2.5

3.0
La

te
nc

y
(m

s)

(e) V2 (Latency vs. Graph Width)

1 2 3 4 5 6
Graph Width

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y

(m
s)

(f) V3 (Latency vs. Graph Width)

Figure 11: The comparison between latency and graph depth (first row) and width (second row) across three Edge TPU configurations. Graph
depth is measured by the length of longest path from input node to output node. Graph width is measured by maximum directed cut on the
graph (same terminology as NASBench-101 [54]).

TABLE 7: Average number of model parameters vs. graph depth.

Graph Depth Avg. # of Parameters
3 7,442,469.77
4 6,144,266.36
5 6,399,201.72
6 8,428,092.52

depth beyond three has a negative impact on the accuracy
of the model.

We also study the impact of graph structure on the accelerator
latency across three Edge TPU configurations (Figure 11).
The overall trend across all the accelerators shows that
increasing graph depth increases latency, as the length of
dependencies between operations increases. However, this
trend breaks (latency decreases) for graph depth of four and
five. On of the reason for such behavior is that the average
number of model parameters for these graphs are lower (See
Table 7) than other graph depths. However, increasing graph
width generally results in lower latency, as it improves the
parallelism between operations. Taking all of these results
(graph structure, accuracy, and latency) into account, there is
an interesting trade-off between model accuracy, accelerator
performance, and graph structure. The results show that
increasing the graph depth beyond a limit (three in our
dataset) does not improve the model accuracy. However,
increasing the graph width not only improves the model
accuracy, but also tends to be more favorable in reducing
the accelerator latency, mainly due to the higher parallelism
between neural network operations.

Correlation between latency and number of neural
operations. To better understand the correlation between
model complexity and accelerator performance, we further
investigate the impact of operation types and number of
trainable parameters on the accelerator latency. Figure 12
shows the impact of number of 3×3 convolution (first row),
1×1 convolution (second row), and 3×3 max pooling (third
row) operations in each NASBench cell on inference latency
across the studied accelerators. We also annotate each figure
with the maximum (green star marker) and minimum (red
star marker) achievable model accuracy for each category
of operations. The highlighted values in parenthesis are
(mean validation accuracy, the number of operations in the
corresponding operation category). For example, Figure 12a
shows that for the category of 3×3 convolution operations
the maximum achievable model accuracy is 95.055% with
four 3×3 convolution operation in the NASBench cell.

Due to the strict limit on the number of operations in each
NASBench cell (seven), the latency increases as we increase
the number of 3×3 convolution operations. This is because
convolution 3×3 has higher number of parameters compared
to other operations (e.g. convolution 1×1 and MaxPool 3×3).
Hence, convolution 3×3 impacts latency more. In NASBench
dataset, fewer convolution 1×1 / MaxPool 3×3 operations
generally leads to more convolution 3×3 (more parameters).
However, for the same number of 3×3 convolution operations
in a NASBench cell, the latency numbers range from 0.2
ms to 5 ms. Figure 13 shows an example of two NASBench

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4
Latency (ms)

1

2

3

4

5

Nu
m

be
r o

f C
on

vo
lu

tio
n

3x
3

0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72
0.80
0.88
0.96

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(95.055%, 4)

(9.475%, 2)

(a) V1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Latency (ms)

1

2

3

4

5

Nu
m

be
r o

f C
on

vo
lu

tio
n

3x
3

0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72
0.80
0.88
0.96

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(95.055%, 4)

(9.475%, 2)

(b) V2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Latency (ms)

1

2

3

4

5

Nu
m

be
r o

f C
on

vo
lu

tio
n

3x
3

0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72
0.80
0.88
0.96

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(95.055%, 4)

(9.475%, 2)

(c) V3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Latency (ms)

1

2

3

4

5

Nu
m

be
r o

f C
on

vo
lu

tio
n

1x
1

0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72
0.80
0.88
0.96

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(94.895%, 2)

(9.492%, 1)

(d) V1

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
Latency (ms)

1

2

3

4

5

Nu
m

be
r o

f C
on

vo
lu

tio
n

1x
1

0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72
0.80
0.88
0.96

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(94.895%, 2)

(9.492%, 1)

(e) V2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Latency (ms)

1

2

3

4

5

Nu
m

be
r o

f C
on

vo
lu

tio
n

1x
1

0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72
0.80
0.88
0.96

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(94.895%, 2)

(9.492%, 1)

(f) V3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Latency (ms)

1

2

3

4

5

Nu
m

be
r o

f M
ax

 P
oo

lin
g

3x
3

0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72
0.80
0.88
0.96

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(94.758%, 1)

(9.475%, 3)

(g) V1

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
Latency (ms)

1

2

3

4

5

Nu
m

be
r o

f M
ax

 P
oo

lin
g

3x
3

0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72
0.80
0.88
0.96

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(94.758%, 1)

(9.475%, 3)

(h) V2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Latency (ms)

1

2

3

4

5

Nu
m

be
r o

f M
ax

 P
oo

lin
g

3x
3

0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72
0.80
0.88
0.96

M
ea

n
Va

lid
at

io
n

Ac
cu

ra
cy

(94.758%, 1)

(9.475%, 3)

(i) V3

Figure 12: The scatter plot showing the number of valid operations, namely convolution 3×3 (first row; a-c), (b) convolution 1×1 (second row;
d-f), and max-pooling 3×3 (third row; g-i)) for all the convolutional models in NASBench-101 [54] vs. the measured inference latency on three
difference configurations of the Google Edge TPU accelerators. The green and red stars in each operation category indicate the maximum and
minimum mean validation accuracy vs. latency, respectively. The highlighted values in parenthesis are (mean validation accuracy, the number
of operations in the corresponding operation category). This figure is best viewed in color.

convolution
3x3

convolution
3x3

Output

Input

convolution
3x3

convolution
3x3

convolution
3x3

Depth = 3
Latency = 0.36 ms
Mean Validation Accuracy = 0.919

convolution
3x3

Output

Input

Depth = 6
Latency = 4.936 ms
Mean Validation Accuracy = 0.938

convolution
3x3

convolution
3x3

convolution
3x3

convolution
3x3

Figure 13: Scatter plot showing the number of convolution 3x3
operations in a NASBench cell vs. the measured inference latency
including the NASBench cells that have 5 3×3 convolutions each, and
have the lowest and highest inference latency on the V2 configuration.

cell, one for each case. For the cases where the number
of 3×3 convolution operations is high but the model depth
is low, the inference latency will be low. If the number of
3×3 convolution operations and depth increase, the inference
latency increases significantly.

Correlation between latency and trainable parameters.
Figure 14 shows the relationship between the number of
trainable parameters in the NASBench models and their
respective inference latency on three different configurations
of the Edge TPU accelerator. As increased number of
trainable parameters comes with more MAC operations,
for all three configurations the latency is mostly directly
proportional to the number of trainable parameters. However,
we observe that the ranking of the three configurations
change at different model sizes. This is mainly explained by
the interplay between parameter caching optimization (see
Section 3) and the available memory bandwidth.

For very small models, all three configurations can cache
the entire model which makes the overall latency very small.
For this region, overall the inference latencies are very close
to each other for all configurations. For the medium size

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4
Latency (ms)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Nu
m

be
r o

f T
ra

in
ab

le
 P

ar
am

et
er

s

1e7

V1
V2
V3

Figure 14: Scatter plot showing the number of trainable parameters
in a NASBench model vs. the measured inference latency on three
different configurations of the Google Edge TPU accelerators.

models (5-30 million parameters), we observe that the V1

configuration provides the best performance. This is mainly
attributed to its larger on-chip SRAM which can cache larger
portions of the model whereas the other two configurations
mostly end up streaming the parameters from off-chip.

Interestingly, there is a cross-over point for larger models
where the parameter caching has diminishing returns and
parameters streamed from off-chip dominates the latency. For
these large models we observe that V2 and V3 provide better
performance as they have larger memory bandwidth com-
pared to V1. The difference between V2 and V3 configurations
is mainly attributed to their architecture style. Although their
peak TOPS and bandwidth are the same, V2 achieves that with
using more PEs whereas V3 uses less PEs but more cores per
PE. Having more PEs leads to fewer shared resources, less
contention as well as more on-chip interconnect bandwidth,
which enables V2 to sustain higher bandwidth.

Performance and accuracy impact of operations. In Fig-
ure 15, we investigate the effect of swapping each pair
of the cell operations (3×3 convolution, 1×1 convolution,
and 3×3 max-pooling) on the performance of each class of
accelerators. For this swap, for every NASBench cell, we
replace each cell operation with another operation to obtain
a new set of cell operations. Then, we search the NASBench
dataset for a cell whose operations match the newly created
cell operations and whose adjacency matrix matches the
original cell’s adjacency matrix. The latency difference
between these two cells are computed and averaged to obtain
the latency impact of replacing cell operations. In a limited
number of cases, the newly created cell operations does not
match any existing cell in the the NASBench dataset, due to
a mismatch between the number of input/output operations.
In such cases, the performance and mean validation accuracy
difference measurement is skipped.

Figure 15 shows the latency change when operations are
replaced with the aforementioned methodology. Replacing

TABLE 8: Average accuracy, Spearman and Pearson correlations of
the configuration specific learned performance estimation model

.
V1 V2 V3

Learning Rate 0.001 0.001 0.001
Batch Size 16 16 16
Training Set Size 254160 254160 254160
Test Set Size 84680 84680 84680
Avg. Accuracy 0.968 0.979 0.964
Spearman Correlation 0.99977 0.99981 0.99925
Pearson Correlation 0.99959 0.99974 0.99975

a 1×1 convolution with a 3×3 increases the latency on all
configurations but it increases the least (173.63%) for the
V2 architecture. Changes in latency are not symmetric with
respect to the swapping of cell operations. For example, the
latency reduction caused by changing a 1×1 convolution to a
3×3 convolution is not equal to the latency increase caused
by changing a 3×3 convolution to 1×1 convolution. This is
because the changes in latency are measured by simulating
and training the entire graph. The entire graph includes other
operations and these other operations also contribute towards
the graph’s overall performance.

Accuracy of learned performance models. As mentioned
in Section 4, we develop a learned model to estimate
the various performance metrics of the accelerators. In
this section, we investigate the learned model accuracy in
estimating the latency of NASBench model across three
studied Edge TPU configurations. Table 8 summarizes
the training hyperparameters for the graph-based learned
performance model. In addition, it shows the performance
of the learned model in predicting the inference latency
of the NASBench models across the studied accelerator
configurations. The average accuracy of the learned model
in estimating the inference latency is around 96%. We
also report both the Spearman rank-order correlation and
Pearson linear correlation metrics of the learned performance
model with the ground truth latency numbers for each
accelerator configurations. The results show that the learned
model yields high correlation with the ground truth values
(> 0.99). This strong correlation, especially the Spearman
rank-order correlation, signifies that the learned performance
model is a strong candidate for replacing the expensive-to-
evaluate cycle-accurate simulators in design space exploration
and hardware/software co-optimization approaches. This is
because design space exploration and hardware/software
co-optimization approaches only need to rank different
configurations instead of measuring the absolute values.

6.1. Architectural Insights for Edge TPUs

High-performing accelerator for large models. For models
with larger graph depth and/or with more 3×3 convolution op-
erations (larger number of trainable parameters), accelerator
configuration V2 yields lower latency as a result of its higher
I/O bandwidth. For these large models, in general, parameter
caching does not help. That is, when the number of trainable
parameters are large, parameter caching leads to diminishing
returns. However, when the models have a smaller number of

-1.5320.0 -1.608

0.01.683 -0.089

0.0851.78 0.0

Average
Change in Latency (ms)

-110.10.0 -113.4

0.0210.7 -7.6

7.5229.9 0.0

Average %
Change in Latency

-1.4590.0 -1.504

0.01.463 -0.010

0.0361.5 0.0

-102.70.0 -102.4

0.0173.6 -0.06

-0.72174.31 0.0

-1.680.0 -1.75

0.01.65 -0.016

0.0711.715 0.0

-113.10.0 -115.4

0.0202.39 -4.82

5.34214.32 0.0

Conv 3x3

Conv 1x1

MaxPool
3x3

C
on

v
3x

3

C
on

v
1x

1

M
ax

Po
ol

3x
3

Average
Change in Latency (ms)

Average %
Change in Latency

Average
Change in Latency (ms)

Average %
Change in Latency

(a) Configuration V1 (b) Configuration V2 (c) Configuration V2
C

on
v

3x
3

C
on

v
1x

1

M
ax

Po
ol

3x
3

C
on

v
3x

3

C
on

v
1x

1

M
ax

Po
ol

3x
3

C
on

v
3x

3

C
on

v
1x

1

M
ax

Po
ol

3x
3

C
on

v
3x

3

C
on

v
1x

1

M
ax

Po
ol

3x
3

C
on

v
3x

3

C
on

v
1x

1

M
ax

Po
ol

3x
3

Figure 15: Measuring the aggregated impact of swapping cell operations on the performance of each class of accelerators. The rows show the
original operation and the columns indicate the replacing operation in the NASBench cells. The first and second tables in each accelerator
configuration present the average absolute and percentage change in latency, respectively.

trainable parameters, parameter caching helps. This results
in better performance by accelerator configuration V1.

Impact of accelerator tile size on performance. For convo-
lutional neural networks in the NASBench dataset, the latency
is directly proportional to the number of trainable parameters.
Even though the inference latency of these neural models
are dependent on the neural architecture or graph structure,
the number of trainable parameters has higher impact on
inference latency. Therefore, it seems that I/O bandwidth is
the deciding factor and other microarchitecture features (e.g.
the number of PEs and compute cores) have lower impact
on the overall accelerator latency. To summarize, for the
neural models in the NASBench dataset, we can reduce the
accelerator tile size and still achieve a similar performance.

7. Conclusion

This paper evaluates three different classes of Edge TPU
accelerators, covering various computing ecosystems, across
more than 423K unique convolutional neural networks.
Analyzing these results, we draw critical and interpretable mi-
croarchitectural insights that help understand the architectural
trade-offs in Edge TPUs. Finally, we discuss our proposed
robust learned models to estimate the major performance
metrics of Edge TPU accelerators. We show that the graph-
based learned performance model estimates the latency and
energy consumption of three studied classes of Edge TPUs
with around 97% accuracy and high correlations (>99%)
with the ground truth data. This high-accuracy learned
model paves the way for rapid architecture exploration and
hardware/software co-design, which we leave as future work.

Acknowledgment

We would like to extend our gratitude towards Suyog
Gupta, Samy Bengio, Cliff Young, Chandu Thekkath, Stella
Aslibekyan, the “Learn to Design Accelerators” team, and the
extended Google Research Brain Team for their invaluable
feedback and comments.

References
[1] “Coral,” https://coral.ai/, accessed: 2022-09-30.

[2] “Edge TPU,” https://cloud.google.com/edge-tpu, accessed: 2021-01-
09.

[3] “Edge TPU Compiler,” https://coral.ai/docs/edgetpu/compiler/
#system-requirements, accessed: 2021-01-09.

[4] “Introducing the Next Generation of On-Device Vision Models:
MobileNetV3 and MobileNetEdgeTPU,” https://ai.googleblog.com/
2019/11/introducing-next-generation-on-device.html, accessed: 2021-
01-09.

[5] “Run Inference on the Edge TPU with Python,” https://coral.ai/docs/
edgetpu/tflite-python/#overview, accessed: 2021-01-09.

[6] A. Adams, K. Ma, L. Anderson, R. Baghdadi, T.-M. Li, M. Gharbi,
B. Steiner, S. Johnson, K. Fatahalian, F. Durand, and J. Ragan-Kelley,
“Learning to Optimize Halide with Tree Search and Random Programs,”
TOG, 2019.

[7] V. S. Adve and M. K. Vernon, “Parallel Program Performance
Prediction using Deterministic Task Graph Analysis,” TOCS, 2004.

[8] Apple, “M1 Processor,” https://www.apple.com/mac/m1/, 2021.

[9] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[10] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. Dahl,
A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess,
D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu,
“Relational Inductive Biases, Deep Learning, and Graph Networks,”
arXiv preprint arXiv:1806.01261, 2018.

[11] A. D. Biagio and M. Davis, “LLVM Machine Code Analyzer,” https:
//llvm.org/docs/CommandGuide/llvm-mca.html, 2019, accessed: 2020-
09-10.

[12] V. Blanco, J. A. González, C. León, C. Rodrıguez, G. Rodrıguez,
and M. Printista, “Predicting the Performance of Parallel Programs,”
Parallel Computing, 2004.

[13] J. Chang, X. Zhang, Y. Guo, G. Meng, S. XIiang, and C. Pan, “DATA:
Differentiable ArchiTecture Approximation,” in NeurIPS, 2019.

https://coral.ai/
https://cloud.google.com/edge-tpu
https://coral.ai/docs/edgetpu/compiler/#system-requirements
https://coral.ai/docs/edgetpu/compiler/#system-requirements
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
https://coral.ai/docs/edgetpu/tflite-python/#overview
https://coral.ai/docs/edgetpu/tflite-python/#overview
https://dl.acm.org/doi/abs/10.1145/3306346.3322967?casa_token=XpP_1os7-ugAAAAA:eYr7U3BLZ85V5Z4c_ebQH0iK71RNo7oIEzE7uEE9vOEYybEJDRq1g3g3ulMVzbzLYhkrw0veI5G0qKI
https://dl.acm.org/doi/abs/10.1145/966785.966788?casa_token=UFPcfFrx4V4AAAAA:MMbYcQiKmwxiAVRDxuTMjlt-nDbXo2RgDpnWWonWDJhBxQuGbYgsopjS9eUjVo9xmvvKv9v2XnInArk
https://dl.acm.org/doi/abs/10.1145/966785.966788?casa_token=UFPcfFrx4V4AAAAA:MMbYcQiKmwxiAVRDxuTMjlt-nDbXo2RgDpnWWonWDJhBxQuGbYgsopjS9eUjVo9xmvvKv9v2XnInArk
https://www.apple.com/mac/m1/
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1806.01261
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://www.sciencedirect.com/science/article/abs/pii/S0167819104000079
https://papers.nips.cc/paper/2019/hash/74071a673307ca7459bcf75fbd024e09-Abstract.html
https://papers.nips.cc/paper/2019/hash/74071a673307ca7459bcf75fbd024e09-Abstract.html

[14] X. E. Chen and T. M. Aamodt, “A First-order Fine-grained Multi-
threaded Throughput Model,” in HPCA, 2009.

[15] H.-P. Cheng, T. Zhang, S. Li, F. Yan, M. Li, V. Chandra, H. Li,
and Y. Chen, “NASGEM: Neural Architecture Search via Graph
Embedding Method,” arXiv preprint arXiv:2007.04452, 2020.

[16] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera,
L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin,
K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Husseini, T. Juhasz,
K. Kagi, R. K. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov,
P. Patel, B. Perez, A. Rapsang, S. Reinhardt, B. Rouhani, A. Sapek,
R. Seera, S. Shekar, B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao,
D. Zhang, R. Zhao, and D. Burger, “Serving DNNs in Real Time at
Datacenter Scale with Project Brainwave,” IEEE Micro, 2018.

[17] I. Corporation, “Intel Architecture Code Analyzer,”
https://software.intel.com/content/www/us/en/develop/articles/
intel-architecture-code-analyzer.html, 2019, accessed: 2020-09-10.

[18] DeepMind, “Sonnet,” https://github.com/deepmind/sonnet, 2021.

[19] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle, and
O. Temam, “Fast Compiler Optimisation Evaluation using Code-feature
based Performance Prediction,” in CF, 2007.

[20] EETimes, “AWS Rolls Out AI Inference Chip,” https://www.eetimes.
com/aws-rolls-out-ai-inference-chip/, 2021.

[21] Facebook, “Accelerating Facebook’s Infrastructure with Application-
specific Hardware,” https://engineering.fb.com/2019/03/14/
data-center-engineering/accelerating-infrastructure/, 2021.

[22] T. Fahringer and H. P. Zima, “A Static Parameter based Performance
Prediction Tool for Parallel Programs,” in ICS, 1993.

[23] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
H. Theiling, S. Thesing, and R. Wilhelm, “Reliable and Precise WCET
Determination for a Real-life Processor,” in International Workshop
on Embedded Software, 2001.

[24] Google, “ML for Mobile and Edge Devices - TensorFlow Lite,” https:
//www.tensorflow.org/lite, 2021.

[25] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” in NeurIPS, 2017.

[26] F. Hartleb and V. Mertsiotakis, “Bounds for the Mean Runtime of
Parallel Programs,” in Proceedings of the Sixth International Confer-
ence on Modelling Techniques and Tools for Computer Performance
Evaluation, 1992.

[27] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W.
Fletcher, “Mind Mappings: Enabling Efficient Algorithm-Accelerator
Mapping Space Search,” in ASPLOS, 2021.

[28] H. Hu, J. Langford, R. Caruana, S. Mukherjee, E. J. Horvitz, and
D. Dey, “Efficient Forward Architecture Search,” in NeurIPS, 2019.

[29] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik,
“Predicting Execution Time of Computer Programs using Sparse
Polynomial Regression,” in NeurIPS, 2010.

[30] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” arXiv preprint
arXiv:1502.03167, 2015.

[31] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-data Center
Performance Analysis of a Tensor Processing Unit,” in ISCA, 2017.

[32] S. Kaufman, P. Phothilimthana, Y. Zhou, C. Mendis, S. Roy, A. Sabne,
and M. Burrows, “A Learned Performance Model for Tensor Process-
ing Units,” MLSys, 2021.

[33] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[34] T. N. Kipf and M. Welling, “Semi-supervised Classification with
Graph Convolutional Networks,” arXiv preprint arXiv:1609.02907,
2016.

[35] A. Krizhevsky and G. Hinton, “Learning Multiple Layers of Features
from Tiny Images,” 2009.

[36] A. Kumar, A. Yazdanbakhsh, M. Hashemi, K. Swersky, and S. Levine,
“Data-Driven Offline Optimization For Architecting Hardware Accel-
erators,” ICLR, 2022.

[37] J. Laukemann, J. Hammer, G. Hager, and G. Wellein, “Automatic
Throughput and Critical Path Analysis of x86 and ARM Assembly
Kernels,” in PMBS, 2019.

[38] J. Laukemann, J. Hammer, J. Hofmann, G. Hager, and G. Wellein,
“Automated Instruction Stream Throughput Prediction for Intel and
AMD Microarchitectures,” in PMBS, 2018.

[39] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A Timing
Analyzer for Embedded Software,” Science of Computer Programming,
2007.

[40] C. Mendis, A. Renda, S. P. Amarasinghe, and M. Carbin, “Ithemal:
Accurate, Portable and Fast Basic Block Throughput Estimation using
Deep Neural Networks,” in ICML, 2019.

[41] C. Y. Park, “Predicting Program Execution Times by Analyzing Static
and Dynamic Program Paths,” Real-Time Systems, 1993.

[42] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: A Full System
Simulator for Multicore x86 CPUs,” in DAC, 2011.

[43] R. Rugina and K. E. Schauser, “Predicting the Running Times of
Parallel Programs by Simulation,” in IPDPS, 1998.

[44] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microar-
chitectural Simulation of Thousand-core Systems,” ACM SIGARCH
Computer architecture news, 2013.

[45] S. A. Seshia and J. Kotker, “GameTime: A Toolkit for Timing Analysis
of Software,” in TACAS, 2011.

[46] S. A. Seshia and A. Rakhlin, “Quantitative Analysis of Systems using
Game-theoretic Learning,” TECS, 2012.

[47] A. Shaw, W. Wei, W. Liu, L. Song, and B. Dai, “Meta Architecture
Search,” in NeurIPS, 2019.

https://ieeexplore.ieee.org/abstract/document/4798270/?casa_token=QyGnyzAlreEAAAAA:qIDYYZV_NCcMRisb3IBGSiEsVai7yrkunWg-c5SNt07bSW0kcwP_0I5bgyyTVGPQ57ASilPtbq3B
https://ieeexplore.ieee.org/abstract/document/4798270/?casa_token=QyGnyzAlreEAAAAA:qIDYYZV_NCcMRisb3IBGSiEsVai7yrkunWg-c5SNt07bSW0kcwP_0I5bgyyTVGPQ57ASilPtbq3B
https://arxiv.org/abs/2007.04452
https://arxiv.org/abs/2007.04452
https://ieeexplore.ieee.org/document/8344479
https://ieeexplore.ieee.org/document/8344479
https://software.intel.com/content/www/us/en/develop/articles/intel-architecture-code-analyzer.html
https://software.intel.com/content/www/us/en/develop/articles/intel-architecture-code-analyzer.html
https://github.com/deepmind/sonnet
https://dl.acm.org/doi/abs/10.1145/1242531.1242553?casa_token=C6W5AHzQ4Q4AAAAA:ZXWCgENRZj8MOZcMRJgG3jKGbrJmTLj2ZlFhtwxmjQr_OCuiQXpbyrs_RgLc0OZPSpkIC-FgL0juA5g
https://dl.acm.org/doi/abs/10.1145/1242531.1242553?casa_token=C6W5AHzQ4Q4AAAAA:ZXWCgENRZj8MOZcMRJgG3jKGbrJmTLj2ZlFhtwxmjQr_OCuiQXpbyrs_RgLc0OZPSpkIC-FgL0juA5g
https://www.eetimes.com/aws-rolls-out-ai-inference-chip/
https://www.eetimes.com/aws-rolls-out-ai-inference-chip/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://dl.acm.org/doi/abs/10.1145/165939.165971
https://dl.acm.org/doi/abs/10.1145/165939.165971
https://link.springer.com/chapter/10.1007/3-540-45449-7_32
https://link.springer.com/chapter/10.1007/3-540-45449-7_32
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://dl.acm.org/doi/abs/10.1145/3445814.3446762
https://dl.acm.org/doi/abs/10.1145/3445814.3446762
https://proceedings.neurips.cc/paper/2019/hash/6c468ec5a41d65815de23ec1d08d7951-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/995665640dc319973d3173a74a03860c-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/995665640dc319973d3173a74a03860c-Abstract.html
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://dl.acm.org/doi/abs/10.1145/3079856.3080246
https://dl.acm.org/doi/abs/10.1145/3079856.3080246
https://proceedings.mlsys.org/paper/2021/hash/85d8ce590ad8981ca2c8286f79f59954-Abstract.html
https://proceedings.mlsys.org/paper/2021/hash/85d8ce590ad8981ca2c8286f79f59954-Abstract.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
https://arxiv.org/abs/2110.11346
https://arxiv.org/abs/2110.11346
https://arxiv.org/abs/1910.00214
https://arxiv.org/abs/1910.00214
https://arxiv.org/abs/1910.00214
https://ieeexplore.ieee.org/abstract/document/8641578/
https://ieeexplore.ieee.org/abstract/document/8641578/
https://www.sciencedirect.com/science/article/pii/S0167642307001633
https://www.sciencedirect.com/science/article/pii/S0167642307001633
https://proceedings.mlr.press/v97/mendis19a.html
https://proceedings.mlr.press/v97/mendis19a.html
https://proceedings.mlr.press/v97/mendis19a.html
https://link.springer.com/article/10.1007/BF01088696
https://link.springer.com/article/10.1007/BF01088696
https://ieeexplore.ieee.org/document/5982026
https://ieeexplore.ieee.org/document/5982026
https://ieeexplore.ieee.org/abstract/document/669996/?casa_token=z9gBc830E-wAAAAA:CVghWUk-MBgb-QYI8vtfko1OuIwW7AS2LNsmgzpXDPlDBxqQPSy2T8gDMk2pVipH0hDsLUuCUqYk
https://ieeexplore.ieee.org/abstract/document/669996/?casa_token=z9gBc830E-wAAAAA:CVghWUk-MBgb-QYI8vtfko1OuIwW7AS2LNsmgzpXDPlDBxqQPSy2T8gDMk2pVipH0hDsLUuCUqYk
https://dl.acm.org/doi/10.1145/2508148.2485963
https://dl.acm.org/doi/10.1145/2508148.2485963
https://link.springer.com/chapter/10.1007/978-3-642-19835-9_34
https://link.springer.com/chapter/10.1007/978-3-642-19835-9_34
https://dl.acm.org/doi/abs/10.1145/2331147.2331165?casa_token=Xt6nK7zPDjoAAAAA:efDGbCrZp2xKC1FLgSJjUhp_DGRuvGiLrGEzVrGABWmnjaEJQ8kRsq1jWEBEZotUQMyKNkDHavUuIf0
https://dl.acm.org/doi/abs/10.1145/2331147.2331165?casa_token=Xt6nK7zPDjoAAAAA:efDGbCrZp2xKC1FLgSJjUhp_DGRuvGiLrGEzVrGABWmnjaEJQ8kRsq1jWEBEZotUQMyKNkDHavUuIf0
https://proceedings.neurips.cc/paper/2019/hash/ea1818cbe59c23b20f1a10a8aa083a82-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ea1818cbe59c23b20f1a10a8aa083a82-Abstract.html

[48] Z. Shi, K. Swersky, D. Tarlow, P. Ranganathan, and M. Hashemi,
“Learning Execution Through Neural Code Fusion,” arXiv preprint
arXiv:1906.07181, 2019.

[49] O. Sýkora, P. M. Phothilimthana, C. Mendis, and A. Yazdanbakhsh,
“GRANITE: A Graph Neural Network Model for Basic Block Through-
put Estimation,” in IISWC, 2022.

[50] T. M. Taha and S. Wills, “An Instruction Throughput Model of
Superscalar Processors,” IEEE Transactions on Computers, 2008.

[51] W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, and P.-J. Kindermans,
“Neural Predictor for Neural Architecture Search,” in ECCV, 2020.

[52] C. White, W. Neiswanger, and Y. Savani, “BANANAS: Bayesian
Optimization with Neural Architectures for Neural Architecture
Search,” arXiv preprint arXiv:1910.11858, 2019.

[53] A. Yazdanbakhsh, C. Angermueller, B. Akin, Y. Zhou, A. Jones,
M. Hashemi, K. Swersky, S. Chatterjee, R. Narayanaswami, and
J. Laudon, “Apollo: Transferable Architecture Exploration,” arXiv
preprint arXiv:2102.01723, 2021.

[54] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
“NAS-Bench-101: Towards Reproducible Neural Architecture Search,”
in ICML, 2019.

[55] Y. Zhou, X. Dong, T. Meng, M. Tan, B. Akin, D. Peng, A. Yazdan-
bakhsh, D. Huang, R. Narayanaswami, and J. Laudon, “Towards the
Co-design of Neural Networks and Accelerators,” MLSys, 2022.

https://arxiv.org/abs/1906.07181
https://ieeexplore.ieee.org/abstract/document/4358262/?casa_token=hWCk9D9ShNAAAAAA:5K216xBu8aH-rnKk-mLJ36NslVQ96LsTA1UPoeQ0_mwSu5TRi_Smempijlmk28xTsTwhEjSYT2lw
https://ieeexplore.ieee.org/abstract/document/4358262/?casa_token=hWCk9D9ShNAAAAAA:5K216xBu8aH-rnKk-mLJ36NslVQ96LsTA1UPoeQ0_mwSu5TRi_Smempijlmk28xTsTwhEjSYT2lw
https://link.springer.com/chapter/10.1007/978-3-030-58526-6_39
https://arxiv.org/abs/1910.11858
https://arxiv.org/abs/1910.11858
https://arxiv.org/abs/1910.11858
https://arxiv.org/abs/2102.01723
https://arxiv.org/abs/1902.09635
https://proceedings.mlsys.org/paper/2022/hash/31fefc0e570cb3860f2a6d4b38c6490d-Abstract.html
https://proceedings.mlsys.org/paper/2022/hash/31fefc0e570cb3860f2a6d4b38c6490d-Abstract.html

	1 Introduction
	2 Edge TPU Microarchitecture
	3 Edge TPU Software Ecosystem
	4 Learned Performance Model
	4.1 Learned Performance Model Structure

	5 Methodology
	6 Evaluation
	6.1 Architectural Insights for Edge TPUs

	7 Conclusion
	References

