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Abstract

The explosive growth of various types of big data and
advances in Al technologies have catalyzed a new type of
workloads called multi-modal DNNs. Multi-modal DNNs are
capable of interpreting and reasoning about information from
multiple modalities, making them more applicable to real-
world Al scenarios. In recent research, multi-modal DNNs
have outperformed the best uni-modal DNN in a wide range of
distributed computing applications from traditional multime-
dia systems to emerging autonomous edge systems. However,
despite their importance and superiority, very limited research
attention has been devoted to understand the characteristics
of multi-modal DNNs and their implications on current
computing software/hardware platforms. Existing benchmarks
either target uni-modal DNNs or only focus on the algorithm
characteristics of multi-modal DNNs. There lacks represen-
tative benchmark suites that provide comprehensive system
and architecture level analysis of multi-modal networks.

To advance the understanding of these multi-modal DNN
workloads and facilitate related research, we present MM-
Bench, an open-source, end-to-end benchmark suite consisting
of a set of real-world multi-modal DNN workloads with
relevant performance metrics for evaluation. We then use
MMBench to conduct an in-depth analysis on the character-
istics of multi-modal DNNs. We demonstrate their unique
characteristics of clear multi-stage execution, frequent syn-
chronization and high heterogeneity, which distinguish them
from conventional uni-modal DNNs. Finally, we conduct a case
study and extend our benchmark to edge devices. We hope that
our work can provide insights for future software/hardware
design and optimization to underpin multi-modal DNNs on
both cloud and edge computing platforms.

1. Introduction

Multi-modal deep neural networks (DNNs) have at-
tracted significant attention [7, 43| 53] in recent years.
By fusing information from a variety of modalities, they
can provide higher prediction accuracy than the best
traditional uni-modal DNNs (19, 24, |53]. In fact, multi-
modal DNNs have been shown to outperform the best
uni-modal DNNs by 5% - 30% accuracy in many important

application fields [32]. Furthermore, the development of
perception technology and Al accelerators has facilitated
the deployment and development of multi-modal DNNs in
a wide range of real-world applications from conventional
multimedia to emerging autonomous systems.

Despite their superiority in performance, multi-modal
DNNss possess several unique characteristics, that have never
been explored before and would pose new challenges to
system and architecture designs previously applied to uni-
modal DNNs. These characteristics include:

e Three-stage Execution Pattern: Most multi-modal
DNN applications follow a common three-stage
execution pattern. In the first stage, known as
encoder, independent neural networks are utilized
to translate input modalities to distinct representa-
tions that are suitable for machine learning. These
representations are then fed to the second stage,
known as fusion where they are federated. Finally,
the task-specific head network produces the final
results in the third stage, known as head. The three
stages are executed in serial, and each stage exhibits
different execution and resource usage patterns.

e Intra-network Heterogeneity: A multi-modal
DNN shows great intra-network heterogeneity due
to the use of different encoder and fusion net-
works. The first stage inherently involves dif-
ferent networks and operators to process differ-
ent modalities e.g. CNNs for image modality and
RNN/Transformers for text modality. Additionally,
in the fusion stage, different fusion methods can
be applied to federate the features of different
modalities for different accuracy targets. As a result,
there are no universal architectural solutions to
optimize all modalities and stages, which are often
dominated by heterogeneous operations.

e Frequent Synchronization: The fusion stage in
multi-modal DNNs incurs substantial synchroniza-
tion operations compared to traditional uni-modal
networks. In this stage, the fusion network waits
for the completion of all modalities, and additional
CPU-GPU synchronization is needed to process in-



termediate data, such as the feature maps generated
from various modalities. These frequent synchro-
nization operations can become a key performance
bottleneck for multi-modal DNN computation, as
they add extra latency and overhead.

As multi-modal DNNs become increasingly popular and
differ significantly from conventional uni-modal DNN, it
is crucial to understand these unique characteristics and
their implications for system and architecture designs. It
is preferable to analyze their features and assign agile
management strategies to maximize overall efficiency [15].
However, there is currently a lack of a well-designed
benchmark suite that provides system- and architecture-
level characterization of multi-modal DNNs. On one hand,
uni-modal DNN benchmarks in previous studies [[13} |14}
36] cannot be directly applied to multi-modal DNNs due to
the differences in their characteristics. On the other hand,
existing multi-modal DNN benchmarks [24]] only focus on
algorithm-level features such as accuracy, model complexity
and robustness without providing any analysis of system
and architecture. Therefore, there is a strong motivation to
develop benchmarks/tools specialized for multi-modal DNN
applications and to explore their implications on today’s
computing architecture and systems.

In this paper, we propose MMBench, an end-to-end
benchmark suite for multi-modal DNN applications. MM-
Bench covers a wide spectrum of representative multi-modal
applications across multiple major research areas. We also
leverage MMBench to study the characteristics of multi-
modal DNNs and their implications across the execution
stacks. To the best of our knowledge, MMBench is the
first benchmark suite specialized in architecture and system
research in multi-modal computing. We design MMBench
with the following principles:

¢ Representativeness. We construct MMBench using
9 end-to-end multi-modal DNN workloads from
five of the most representative application domains,
which cover traditional applications like multimedia
and emerging domains such as autonomous driving.
This approach ensures that MMBench is represen-
tative of multi-modal applications in use today.

e Thoroughness. We ensure that properties such as
modality types, fusion methods, network structures
in MMBench are diverse and cover a wide range of
multi-modal DNNs in different domains. This level
of thoroughness provides researchers with a detailed
understanding of performance and potential areas
for improvement for multi-modal DNNs.

¢ Comprehensiveness. At MMBench , we have gone
beyond offering just operational workloads and
result scoreboards. We also provide comprehensive
profiling tools and insights at the architecture
and system levels. This level of support enables
researchers to build on our work and advance the
state of the art in multi-modal computing.

The rest of the paper is organized as follows. First,
Section [2] provides the background and related work. Section
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Figure 1: Schematic diagram of multi-modal and uni-modal
network structures.

TABLE 1: Commonly used fusion operators [50} [51].

Fusion type | Formulation of F(x,y)
Zero 0

Sum x+y

Concat ReLU(Concat(x, y)W + b)

Meaning

Discards these features
Sum features

Concat features

Tensor xRy Outer product-based attention
T

Attention Softmax(% y) Use attention mechanism

LinearGLU GLUGW,, yW2) linear layer with the GLU

=xW © Sigmoid(yW5)

details the designs of MMBench. Section [4] shows the
experimental methodologies and highlights the key features
of multi-modal DNNs and their hardware-software impli-
cations. Section [5] gives two case studies that demonstrate
how MMBench guides the system and architecture designs.
Finally, Section [6] concludes this paper.

2. Background and Related Work
2.1. Basics of Multi-modal DNNs

Multi-modal DNN is a kind of neural network that learns
and improves through the experience of data from multiple
modalities. Figure [1| shows the common structure of a multi-
modal DNN compared to a uni-modal DNN. At a higher
level, the multi-modal DNNs fuse the features from multiple
modalities to produce more accurate predictions. Specifically,
it consists of three main stages. In the first stage, input
modalities are transferred to distinct representations suitable
for machine learning by various representation learning
methods such as CNNs. In the second stage, it leverages a
fusion model to generate the multi-modal representation
by federating these processed uni-modal representations.
Finally, the multi-modal representation is fed into the task-
specific network to produce the final prediction.

Multi-modal DNNs have been demonstrated to outper-
form the uni-modal ones in various application fields [[18|
24, [39]. Most of the current studies employ pretrained
DNN backbone models as modality encoders and mainly
focus on finding more effective fusion or representation
methods of different modalities [43} |52} [53]. Commonly
adopted fusion operators are presented in Table [1} Besides,
the fusion technique can further be categorized into two
main classes, namely early fusion methods [57] and late



fusion methods [6} [45] depending on the depth of encoders
to execute before fusion. Among these methods, Zhou
et al [57] used a multiple discriminant analysis scheme
to implement an early fusion approach that concatenates
different modality features. Uperkernel learning [45] is the
representative method of late fusion. Recently, motivated
by the ability of transformers [[41], a branch of works use
multi-modal transformers to model different modalities [49].

With the significant performance advance, mutli-modal
DNNs have been widely adopted in various scenarios.
Thus it is in urgent need of benchmarking multi-modal
DNNs from system and architectural level to facilitate the
optimization in their deployment.

2.2. Benchmarking Conventional DNNs

Previous researches have paid extensive attention to
characterizing features of uni-modal DNN applications [20,
44| |46, 47]. We can broadly classify these works into
three types according to their associated evaluation metrics:
algorithm-oriented DNN benchmarks, architecture-oriented
DNN benchmarks and DNN simulation frameworks. Among
them, algorithm-oriented DNN benchmarks [3} |10} 36} [37]
strive to incorporate and build a collection of representa-
tive DNN models to empower the performance and accu-
racy comparison of different DNN training and inference.
Architecture-oriented DNN benchmarks [55, |54, 55] target on
analyzing the architectural features of DNNs on computing
systems of different sizes. MLPerf [36] is a comprehensive
benchmark for measuring ML inference performance across
a spectrum of use cases. MDLBench [55]], Embench [5]
and AloTBench [26] are representative benchmarks that
characterize the features of different Al models on edge
or mobile devices while NNBench-X [48]], GNNMark [8]]
target on acceleration hardware design for different DNNss.

However, the system and architecture level implications
drawn by uni-modal DNN benchmarks can not be directly
applied to multi-modal DNNs. Compared with uni-modal
DNNs, multi-modal DNNs possess several unique character-
istics such as clear stage divisions, frequent synchronization
and high workload heterogeneity [19]]. There lack of spe-
cialized architecture-oriented multi-modal benchmarks.

2.3. Benchmarking Multi-modal DNNs

Some efforts have also been made in benchmarking the
emerging workload of multi-modal DNNs. MultiBench [24]
is a well-known benchmark suite in multi-modal algorithm
research. MultiBench implements a wide spectrum of multi-
modal applications and provides a reliable way to evaluate
the performance across domains and modalities, the com-
plexity during training/inference and the robustness to
noisy and missing modalities. However, it only evaluates
multi-modal DNNs from the algorithm aspect and does
not provide system and architecture-level insights. Besides,
MultiBench does not provide end-to-end implementation,
which makes it insufficient to support architecture research
especially for edge devices where raw data are collected
from sensors and processed locally.

TABLE 2: Comparison of MMBench and other bench-
marks [[10, 24, 36 40]]. H refers to hardware, Ar refers
to architecture, S refers to system, Al refers to algorithm.

Benchmarks Uni-modal DNN Multi-modal DNN
MLPerf | DAWNBench | AIBench | MultiBench Ours

Applications 5 3 10 15 9
Objectives H H/Ar H Al IS-I//AAlr

Cloud v v v v v

Edge v X X X v

End-to-End X v v X v

Easy-to-Use X X X X v

Architecture benchmarks such as MLPerf [36], DAWN-
Bench [10]], and AI-Benchmark [40] can be applied to
benchmarking multi-modal DNNs but requires significant
modifications. MLPerf provides a comprehensive analysis
of how fast systems can train and inference to a target
quality metric while covering a wide range of models and
areas. It measures a wide range of metrics such as training
time, training cost, inference latency, and inference cost.
However, as general-purpose full-system benchmarks, they
lack specialized algorithm awareness and corresponding
analysis in this emerging area. Specialized multi-modal
benchmarks can better help design and deploy efficient
multi-modal DNN systems.

2.4. The Missing Piece of Multi-modal Research

Multi-modal DNNs are applied in a wide range of
applications in different fields. Generally, multi-modal DNNs
are more computing-intensive compared with traditional
uni-modal DNNs, which may possibly lead to the problem
of QoS and power budget violation [16} |17]). In data centers,
we need to analyze complex multi-modal data for the
highest algorithm performance (e.g., image- and text-based
intelligence applications); in edge devices, we need to
process raw data collected by multiple sensors locally
with limited computational resources within QoS (e.g.,
autonomous driving). Supporting the inference of such
diverse and heterogeneous workloads with high energy
efficiency and low latency is becoming a great challenge.

In order to support efficient reasoning on multi-modal
networks in data centers and edge devices, there is an
urgent need for benchmarks that can accurately model the
system and architecture level characteristics of multi-modal
networks. However, there have been no such well-designed
benchmark suites as presented in table [2 On one hand, the
architecture-oriented DNN benchmarks have not covered
this emerging research area yet. The implications of uni-
modal DNNs can not be directly applied to multi-modal
DNNs. On the other hand, existing multi-modal benchmarks
all focus on analyzing algorithm-level characteristics. Thus,
we present MMBench in this paper to bridge this gap and
benefit further research in this area.

3. The MMBench Suite

In this section, we introduce the unique features of MM-
Bench and the specific benchmark setup, i.e. the workloads
and the profiling pipeline.



TABLE 3: Characteristics of each applications in MMBench

Application Multimedia Affective Intelligent Smart Automatic
domain Application Computing Medicine Robotics Driving
Workload AV-mnist MM-imdb CMU-mosei MUStARD Medical VQA | Medical Seg. Mujoco Push Vision & Touch TransFuser

Model size Small Large Large Large Large Medium Medium Medium Medium
] Limage, Limage, 1.lanfg1fage, 1.langyage, Limage, MRI scans 1.position, 1Almagt‘2, Z.force, Limage
Modalties 2 audio 9 text 2.vision, 2.vision, 9 text (T1, Tlc, 2.sensor, 3.proprioception, 2LiDAR
’ ’ 3.audio 3.audio ’ 12, Flair) 3.image, 4.control 4.depth ’
1: BERT 1: BERT
1: VGG 1: DenseNet 1,2,4: MLP 1,2,4: CNN :
Encoders 1,2: LeNet 2 Albert 2: Op?nFace 2: Opfanace 2: Roberta All: U-Net 3 CNN 3 MLP 1,2: ResNet
3: Librosa 3: Librosa
Fusion Concate, Concate, Concate, Concate, Concate, Concate,
tensor, tensor, Transformer Transformer tensor, transformer
methods tensor tensor tensor
transformer transformer transformer
Task Class. Class. Reg. Class. Gen. Seg. Class. Class. Class.

3.1. Key Features of MMBench

Besides the general design principles, MMBench possess
the following unique features closely related with the
characteristics of multi-modal DNNs, which distinguishes
it from general-purpose benchmarks in this specific area:

e Fine-grained Network Characterization. From
network structure level, multi-modal DNNs can
be viewed as the assembly of multiple encoder
networks, fusion network and head network, which
require more fine-grained workload characteriza-
tion [24, |51]. It is inaccurate to use the average or
max value of the entire application to characterize
multi-modal DNNs since these sub-nets may greatly
differ in execution pattern and resource usage.
MMBench provides options to split the multi-modal
DNN into different stages and characterize the sub-
nets respectively.

¢ End-to-End Application Execution. From appli-
cation level, the processing of raw data for multi-
modal DNNs is time-consuming and often require
end-to-end execution in real-world scenarios [_25}
35]. Many networks take processed data as input [9,
42]. Existing algorithm-oriented benchmarks tend to
ignore these preprocessing and provide links to the
processed data [24]). Ignoring the preprocessing part
results in bias on the computing process. MMBench
provides an end-to-end multi-modal processing
benchmark that can help us understand the full
computational process of multi-modal networks.

e User-friendly Profiler Integration. From the
architecture profiler level, it is often unnecessary
and time-consuming to utilize the entire dataset.
A dataset-free computation abstraction can signif-
icantly ease the profiler usage. Many datasets in
multi-modal neural network research are not open-
sourced and require a lengthy application process.
Besides, some datasets can take up to hundreds of
Gigabyte [35]. MMBench still provides models and
links to the datasets to prove that all applications
are of high performance. However, MMBench also
provides the option to abstract the computation
when network accuracy is not needed. It can ran-
domly generate the input with the same shape as

the datasets, which allows computer architecture
researchers to skip the tedious work of downloading
and storing data and more easily analyze the sys-
tem and architecture characteristics of multi-modal
applications. Besides, popular accelerator simulation
frameworks such as timeloop [33] simply take the
data shape and network shape as input and outputs
the latency and energy consumption. MMBench is
able to directly provide this abstraction and free
users of manual conversion in the simulation.

3.2. Applications in MMBench

MMBench includes nine applications from the five
most important multi-modal research domains [24]. For
the majority the applications, MMBench provides multiple
fusion options covering popular fusion operators [50} 51].
MMBench implements all the applications in SOTA methods
to ensure the practical value. The detail of these applications
are presented in Table

Multimedia Application: With the development of
the internet, multimedia data (language, image, video,
and audio) is becoming the largest source of the big
data. MMBench rebuilds two of the most representative
multimedia applications: (1) AV-mnist [34]] is assembled
from images of handwritten digits and audio samples of
spoken digits. (2) MM-imdb [32] uses movie titles, metadata,
and movie posters to perform multi-label classification of
movie genres. We rebuild these applications based on the
implementation of MultiBench. To make these applications
end-to-end and represent the state-of-the-art performance,
we replace the fragmented image processing pipeline with
an end-to-end VGG network [38]], and use the pre-trained
ALBERT model [21] to extract text features.

Affective Computing: Affect computing is the field
that studies the perception of human affective states (emo-
tions, sentiment, and personalities) from our natural display
of multi-modal signals [24] including spanning language
(spoken words), visual (facial expressions, gestures), and
acoustic (prosody, speech tone) [24]. MMBench selects two
of the most representative affective computing dataset that
involving language, video and audio. (1) MUStARD is a
video corpus used in sarcasm discovery [9]]. (2) CMU-mosei
is the largest dataset of sentence-level sentiment analysis
and emotion recognition in real-world online videos [42].



1 if args.model_name=="avmnist_simple_late_fusion":

2 channels = 6

3 encoders = [LeNet(1l, channels, 3).cuda(), LeNet(1l, channels, 5).cuda()]
4 head = MLP(channels*40, 100, 10).cuda()

H fusion = Concat().cuda()

6 filename="./models_save/best_avmnist_simple_late_fusion_-1.pth"

7 model = MMDL(encoders, fusion, head, has_padding-False).to(device)

8 model.load_state_dict(torch.load(filename))

9 train(encoders, fusion, head, traindata, validdata, 30,

10 optimtype=torch.optim.SGD, 1r=0.05, weight_decay=0.0002, save=filename)
11 test(model, testdata, no_robust=True)

Figure 2: The code snippet of a standard multi-modal
application implementation in MMBench.

We rebuild these applications from the original data to
make it an end-to-end application. We use MMSA-FET [27]
to extract features, and including all the modules in the
forward pass of the data.

Intelligent Medicine: Modern medical decision-
making often involves integrating complementary informa-
tion from several sources such as lab tests, imaging reports,
and patient-doctor conversations. Multi-modal DNNs can
help doctors make sense of high-dimensional data and assist
them in the diagnosis process. We build this workload based
on ViLMedic [11], a vision-and-language medical library.
We also consider a multi-modal segmentation task that can
accurately segment brain tumor from Magnetic Resonance
Imaging (MRI) [56]. We rebuild these applications to make
them easy to profile with the standard profiling tools.

Smart Robotics: Robotics is also a very important
example of multi-modal computing. In order to achieve
accurate control of robots, we add many sensors to them
and collect multi-modal information (e.g., visual, force etc.).
The decision making based on this multi-modal information
requires the use of multi-modal networks. MMBench in-
cludes two representative robotic tasks: (1) Mujoco Push [22]],
the goal of which is to predict the pose of the object being
pushed by the robot end-effector using the collected multi-
modal information, i.e., visual (RGB and depth), force, and
proprioception sensors. (2) Vision & Touch [23]], which aims
to predict action-conditional learning objectives that capture
forward dynamics of the different modalities. We rebuild
these workloads to add hooks to profile the different part
of the neural network.

Automatic Driving: Automatic Driving normally refers
to self-driving vehicles that move without the intervention
of a human driver. An autonomous driving systems typically
come equipped with both cameras and LiDAR sensors. In
MMBench , we modify TransFuser [35] which is an architec-
ture for end-to-end driving with two main components: (1) a
Multi-Modal Fusion Transformer for integrating information
from multiple modalities (single-view image and LiDAR),
and (2) an auto-regressive waypoint prediction network. To
ease the usage, we extract the TransFuser network and free
its dependency on the CARLA simulator [12]].

3.3. Implementation Details

The entire MMBench is implemented in PyTorch, while
different applications may possess their own dependencies.
MMBench provide rich interfaces to enable users to control
the workloads. Figure [3| presents a standard MMBench
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implementation. For a multi-modal application in MMBench,
it applies specific encoder networks as the only options.
However, it generally includes several different implementa-
tions of fusion and head networks. Users can simply include
the model name as a command line parameter to choose
target multi-modal implementation. Besides, MMBench
abstracts the training and inference process and integrates
them with profiling tools. Users only need to choose proper
options to generate desired metrics.

MMBench targets both servers and edge devices. For
servers, the training process and inference process can be
done within a single python file. For edge devices, only
inference is supported due to limited energy and resources.
Models must first be trained on servers. Besides, edge
devices such as NVIDIA Jetson series [28] generally adopts
a unified memory architecture where GPUs and CPUs share
the same physical memory. In this case, adjusting batch
size will not affect the memory usage. For large datasets,
MMBench will manually split the datasets and inference
on partial datasets to ensure the performability.

3.4. Profiling Pipeline

In addition to the representative workloads, MMBench
also provides a series of profiling tools based on the most
commonly used hardware available today (CPU and NVIDIA
GPU) to help locate the system drawbacks and make corre-
sponding improvements. The overall profiling architecture
is shown in Figure 3] MMBench provides different command
line flags to support different measurements options. To
ensure the authority of the measured results, MMBench
measures the performance of the network based on standard
tools such as, Python Memory Profiler (1], Pytorch Profiler [2],
NVIDIA Nsight Compute [30] and NVIDIA Nsight System [31].



To ease the usage, MMBench also automates the profiling
process using python and shell scripts.

The evaluation metrics can be categorized into three
main classes based on the profiling tools and granularity.
The first category includes the inference logs directly gen-
erated from the applications. Taking advantage of python
modules, MMBench is able to provide basic algorithm level
information such as model accuracy, parameter number
and FLOPs. The second category includes the entire system
information such as GPU information, CPU information
and the data transfer between host and device. The third
category includes more fine-grained GPU information such
as kernel information and GPU execution stall reasons since
GPU is in charge of nearly all the computation.

4. Evaluation

In this section, we present a detailed evaluation of the
proposed MMBench to conduct an in-depth analysis of
multi-modal DNNs. We first introduce the experimental
platforms and prove the effectiveness of our selected
applications. We then investigate the characteristics of multi-
modal DNNs from three main aspects: multi-stage execution,
workload heterogeneity and execution synchronization.

4.1. Experimental Setups

While MMBench supports various platforms with CPU
and NVIDIA GPU, we conduct the following experiments
on a GPU server and two edge devices to demonstrate the
utility of our benchmark. The GPU server is equipped with
two 2.4 GHz Intel 20-core, Xeon 6148 CPUs and four Nvidia
RTX 2080Ti GPUs connected via PCI-e x16 interface with
11 GB of GDDR6 memory. We use a Jetson Nano with
128-core Maxwell, 4GB LPDDR4 and a Jetson Orin with
2048-core Ampere, 32GB LPDDR5 as our edge devices.

4.2. Network-level Characterization

In this section, we characterize the algorithm charac-
teristics of multi-modal DNNs. We analyze their overall
performance, and the effect of different fusion schemes and
modalities in different applications.

4.2.1. Performance analysis. We first validate that multi-
modal DNNs are able to outperform uni-mdoal DNNs. The
performance results are presented in different metrics such
as accuracy, F-score and MSE. To ensure the practical
value of MMBench, we first need to guarantee that all the
applications are representative and with high performance.
Figure [4] presents the performance of all the applications
included in MMBench. For applications with multiple
fusion implementations, we only present several results. For
Transfuser, multiple metrics such as driving score and route
completion are used to evaluate its performance. And the
lidar modality is seldom executed without image modality.
With specific adjustment and optimization, some of the
performance can be further improved.

Observations: Multi-modal DNNs are proved to outper-
form uni-modal DNNs in different scenarios. However, multi-
modal DNN s generally have various implementations yielding
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Figure 4: Performance of the applications in MMBench.
Lowercase in yellow such as image and audio indicates
uni-modal implementations, upper case in blue such as EF
and LF indicates multi-modal implementations.

different results. They should be well studied to fully grasp their
performance advantage.

4.2.2. Fusion analysis. Most of the current multi-modal
researches employ pretrained DNN backbone models as
modality encoders and focus on finding more effective
fusion or representation methods of different modalities.
We examine the influence of different fusion methods on
the application performance with same encoders.

Figure [4] also presents different fusion implementations
for the datasets. Take Mujoco Push as example, the MSE of its
implementation in late fusion utilizing LSTM is less than 0.3
while the MSE of its implementation in tensor fusion reaches
0.58. Similarly, in MM-imdb, the maximum performance
difference between different fusion schemes can be as large
as 1.1 in Micro F1. Some ineffective fusion schemes even
lead to lower performance compared with only leveraging
single modality. The choice of fusion schemes can lead to
significant performance variance.

Observations: While not significantly influencing the
amount of computation for most of the scenarios, different
fusion schemes can lead to several percents of absolute perfor-
mance variance. It’s of great importance to design or search for
the most effective fusion method.

4.2.3. Modality analysis. In many real-world scenarios,
the importance of different modalities differs depending on
the tasks and it is feasible to skip or discard some modality
features. Typically, some modalities provide higher accuracy
with less computational effort than others in different
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Figure 6: Execution time of a batch of data of the three
stages for different MMBench applications.

applications. For example, it has been proven that text-based
features perform better than visual or auditory modalities
in multi-modal language-emotion analysis tasks [4].

We present the distribution of mutually exclusive data
sample sets correctly processed by different modalities
in Figure [5| For the four selected datasets, more than
75% of the correct samples can be processed using only
a major modality while the major modality differs on
different tasks. Only less than 5% of all the correct samples
are required to be processed by the multi-modal fusion
methods. Therefore, one can only rely on some of the
encoders given certain tasks to reduce model complexity.
Under such circumstances, intuitively we can simply throttle
sensors for less crucial modalities to save energy. However,
applying this conventional wisdom is ineffective since it
can lead to avoidable task failures resulting from the loss
of situation awareness. There exists no retrieval for the
extreme conditions where failures occur.

Observations: Different modalities possess different level of
importance in multi-modal DNNs. Smartly activating one of the
encoders can fulfill the requirements in most of the cases. There
exists room for adaptive execution strategies to achieve a better
performance-complexity tradeoff according to the application-
specific characteristics.

4.3. System-/Architecture-level Analysis

In this section, we analyze the system and architecture
characteristics of multi-modal DNNs. We analyze them
according to their three-stage execution pattern, intra-
network heterogeneity and frequent synchronization.

4.3.1. Stage Analysis. As introduced in Section |2, most
multi-modal DNNs can be divided into encoder, fusion
and head stages. In this section, we analyze the three-
stage execution pattern of multi-modal DNNs. We perform

the stage analysis by modifying the forward function. We
first record the time consumption of the three stages of
the datasets, and investigate the resource usage pattern of
different stages. Figure [6] presents the execution time of the
applications. The execution time distribution depends on
specific encoder, fusion and head DNN structures. Generally,
encoder stage takes much longer time compared with fusion
and head stages. This is because the fusion network takes
the learned feature as input, thus having much smaller data
size to deal with. However, for complex fusion schemes
such as transformer fusion in the case of Mujoco Push and
Vision & Touch, it can take even longer time compared with
the encoder stage.

We then analyze the resource usage pattern of the
MMBench applications in different stages. We trace 5 micro-
architectural metrics with nsight compute [29]], including
DRAM utilization (1), achieved occupancy (2), ipc (3), gld
efficiency (4) and gst efficiency (5). The detailed results
are presented in Figure [7] Generally, the encoder stages
present higher DRAM utilization, IPC and GPU occupancy
compared with fusion and head stages since they include
more computation. For gld efficiency and gst efficiency, all
the stages presents nearly the same resource usage pattern.
For complex fusion schemes such as transformer fusion in
Mujoco Push, although it takes nearly 3x more execution
time compared with the encoder stage, it does not consume
much more resources. While it shows slight increase in IPC
and GPU occupancy, the DRAM utilization of the encoder
stage is still higher.

Observations: There exists significant time and resource
imbalance in different stages, which leads to possible resource
under-utilization. If we assign fixed resources to a multi-DNN
application according to its encoder stage, more than half of
the resources, especially memory, may actually stay idle when
the application enters the fusion and head stages.

4.3.2. Heterogeneity Analysis. Each of the multi-modal
encoder sub-network and the fusion network of a multi-
modal DNN approximates an independent uni-modal net-
work. Therefore, there is a high degree of heterogeneity
within the multi-modal DNNs. In this section, we first
analyze the GPU kernel type breakdown of multi-modal
DNNs. We then delve further to analyze the kernel-level
information of some hotspot kernels. We only select one
of the implementations for all the applications.

Figure [8| presents the GPU kernel type breakdown for
the applications in MMBench. We classify all the GPU
operations into 8 categories including convolutions (Conv),
batch normalization (BNorm), element-wise operation (Ele-
wise), pooling (Pooling), relu activation (Relu), general matrix
multiply (Gemm), reduce (Reduce) and else (Other). In this
regard, each kernel type contains a subset of function calls
that execute similar tasks. We observe that different stages
within a same application are dominated by different type of
operations, not to mention the difference between different
applications. Besides, the encoder networks for different
modalities are highly diverse. Some applications, such as
AV-mnist, apply same encoder network (Lenet) for both
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Figure 8: Kernel operation breakdown of the three stages for different MMBench applications.
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Figure 9: Dedicated kernel comparison different stages and
fusion methods on AV-mnist. The result is normalized.

modalities. However, MM-imdb apply VGG and Albert to
encoder the different modalities. While VGG is dominated
by Gemm (72%), Albert is dominated by relu (66%). Different
acceleration strategies are required for these two encoders.

We further choose two hotspot kernels in the case of
AV-mnist and analyze their fine-grained performance in
Figure [9} We study the computation, cache and memory
patterns of two specific GPU kernels in different stages
and different fusion implementations. The resource usage
of the same kernel in different fusion methods is basically
at the same level despite a significant increase in DRAM
read bytes. However, when it comes to the same kernel
in different stages, its average resource usage can vary
from 15X in the total number of fp32 operations to 80X

in read TPS. The large difference in memory and compute
resources possibly results from the input data size, since
fusion and head only handle the learned representations
from the encoder stage.

Observations: There exists different dominant operations
in different subnets, and the same operations may perform
differently in different stages. In this regard, it is hard to find a
universal optimization for the whole multi-modal application.
Multi-modal applications must be analyzed first to identify the
bottlenecks. It is hard to design specialized hardware accelera-
tors for multi-modal DNN applications.

4.3.3. Synchronization Analysis. In this section, we
analyze the synchronization problem of multi-modal DNNs.
From application level, there exists the problem of modality
synchronization. The fusion stage must wait until the
completion of all modalities. From network level, multi-
modal DNNs suffer from data synchronization. There exists
additional intermediate data and data preparation operations
which can even overweight GPU computation. We first
record the execution time of different modalities and then
investigate the proportion of CPU+Runtime/ GPU execution.

Modality synchronization. We record the execution
time for different modalities. In Figure it’s obvious that
the execution time of different modalities are different. This
problem is especially usual for multi-modal tasks involving
image modality since image modality generally produces
larger amounts of data and require more computation. For
example, the straggler (uni2: image) modality in Mujoco
Push takes up to 4.09x of inference time compared to
other modalities. If executed concurrently, nearly 75% of
the resources assigned to the application will stay idle for
more 77% of the entire encoder execution.
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putation for MMBench applications.

Data synchronization. Most of the network computa-
tion are executed on GPUs, and CPUs are mainly in charge
of data processing operations, such as to and copy. Thus
we consider that a higher CPU+Runtime ratio indicates
more data synchronization operations as GPU are more
frequently kept stalled for lack of data. We choose several
applications in different research domains to investigate
their inference time breakdown. The detailed results are
shown in Figure [11] We can observe that for all applications,
the multi-modal implementation possess larger proportion
of CPU+Runtime operations compared with the uni-modal
implementations. Complex fusion such as Mujoco push can
lead to a significant increase in CPU+Runtime of 66%.

Observations: Multi-modal DNNs suffer from two-level of
synchronization. From application level, its encoder subnets
requires modality synchronization before the fusion stage.
The fusion network must always wait for the straggler. From
operator level, lengthy intermediate data operations lead to
frequent data synchronization. These altogether leads to the
resource under-utilization problem, as GPUs may stay idle for
most of the application time.

5. Two Case Studies Using MMBench

5.1. Effect of Batch Size

Beyond simply executing the multi-modal DNN appli-
cations, MMBench also provides multiple tuning knobs to
study the effect of different parameters and help adjust
the system. Here we provide a case study, demonstrating
how MMbench help explore the effect of batch size on
multi-modal DNNs compared with uni-modal DNNs.

Generally, when a batch of tasks arrive, the operating
system schedules the appropriate kernels to handle those
tasks. If we ignore the computational differences among
various kernels of different sizes, a batch size of 400 tasks
will be executed in 10x less time than a batch of 40
tasks. However, this is impossible during real execution
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Figure 12: Larger batch size can accelerate the execution
of multi-modal DNNs on AV-mnist. Slfs is a multi-modal
implementation, and image is the uni-modal counterpart. b
refers to batch size.
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Figure 13: Peak memory for processing models, datasets,
and intermediate results on AV-mnist.

due to resource contention and constraints. The current OS
often leverages larger kernels which yield better tradeoff
between GPU time and non-GPU time (e.g., data transfer
time, synchronization time etc.) to process a large batch
of tasks. In this regard, it is more beneficial to process
multi-modal DNN tasks in large batch size. Figure 12| shows
our analysis. We consider 10000 inference tasks which are
scheduled with batch size of 40 and 400 respectively.

We first analyze the distribution of kernels of different
sizes. Based on the GPU execution time of each kernel, we
divide the kernels into four different kernel sizes. Figure
illustrates the comparison results of uni-modal and
multi-modal DNNs. 0-10 indicates a small kernel, where
the kernel executes in less than 10 microseconds. >100
indicates a large kernel, where the kernel executes in more
than 100 microseconds. The leftmost result shows that
existing operating system (OS) uses more large kernels
whose execution time exceed 50 microseconds to process a
larger batch size with 400 tasks. Meanwhile, the OS calls
more large kernels to process the multi-modal DNN tasks.
The results on the right show that a 10x increase in batch
task size does not reduce the processing latency by 10x.

Besides, as shown in Figure larger batch size leads
to higher peak memory usage for model, dataset and
intermediate features. The model sizes remain generally the
same, while the dataset and intermediate features present
a linear order relative to batch size. Multi-modal DNNs
also tend to produce higher proportion of intermediate
data. When changing batch size, multi-modal DNNs are
easier to achieve GPU memory capacity since they involve
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Figure 14: Inference time of AV-mnist on GPU server and
edge devices with the change of batch size. slfs refers to
an implementation of multi-modal with 31x parameters.

more intermediate features with multiple modalities and
additional fusion networks.

Observations: Our analysis shows that different compo-
nents of multi-modal DNNs benefits differently from batch
size. The GPU time of multi-modal DNNs decrease in a smaller
scope, which possibly results from the kernel composition of the
networks. Besides, batch size increase leads to higher growth
rate in peak memory usage for multi-modal DNNG.

5.2. Migration to Edge Computing

In recent years, there has been an increasing trend to
deploy DNN models at the edge due to the connectivity,
latency and privacy concerns of transferring data to the
cloud. Therefore, we also characterize the features of multi-
modal DNNs at the edge. We run AV-mnist on one of the
most representative AloT boards, i.e., Jetson Nano.

Figure [14] presents the inference time of AV-mnist on
both GPU servers and edge devices. On Jetson nano where
resources are limited, 6.48x more time is needed compared
with GPU servers. With the increase of batch size, while
the latency of GPU server is constantly decreasing, the
latency of Jetson nano is even higher when batch size
reaches 320. It is because certain resources are used up.
On Jetson orin with abundant resources, the multi-modal
DNNs perform similarly as on GPU servers. The ratio of
multi-modal execution time compared with uni-modal is
higher on Jetson nano and orin, since GPU servers possess
more idle resources.

In Figure [15}(a) and (b), we illustrate the execution stall
breakdown and resource usage patterns of multi-modal
DNN both on edge devices and on GPU servers. We divide
the stall reasons into 7 main categories: cache dependency
(Cache), memory dependency (Mem), execution dependency
(Exec), busy pipeline (Pipe), synchronization blocked (Sysn),
instruction not fetched (Inst.), other stalls (Else). The stall
caused by execution dependency and instruction not fetch
increases dramatically on edge devices, while memory
dependency and cache miss are the main causes of stall on
GPU servers. It possibly results from the lack of computing
power so that requisite operations cannot be finished in
time. As shown in Figure [15}(c), on edge devices with
limited resources, DRAM utilization is almost always kept
at the highest level. Unlike GPU servers in Figure |7} fusion
stage now possesses higher GPU occupancy on edge devices.

Observations: Migration to edge devices leads to higher
latency and new bottlenecks. Due to limited power and resources,
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Figure 15: Execution stall breakdown and resource usage
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the inference time grows dramatically when we switch from
uni-modal DNN to multi-modal DNNs even on small datasets. It
would be a huge challenge to enable multi-modal DNNs on edge
devices. Some of the modalities may be skipped to guarantee the
QoS on edge devices as long as the result meets the requirement.

6. Conclusion

We present MMBench, an open-source benchmark suite
for end-to-end cloud and IoT multi-modal neural networks.
The suite includes multiple representative multi-modal com-
puting applications, such as multimedia analysis, affective
computing, medical analysis, etc. We use MMBench to
study the system and architectural implications of multi-
modal neural networks across different computing stacks
and conclude three unique characteristics. We also provide
two case studies to demonstrate how MMBench guides
the system and architecture designs. We expect that our
work could pave the way for better system and architecture
research for multi-modal computing.
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