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Abstract—In contemporary distributed systems, logs are pro-
duced at an astounding rate, generating terabytes of data within
mere seconds. These logs, containing pivotal details like system
metrics, user actions, and diverse events, are foundational to
the system’s consistent and accurate operations. Precise log
ordering becomes indispensable to avert potential ambiguities
and discordances in system functionalities. Apache Kafka, a
prevalent distributed message queue, offers significant solutions
to various distributed log processing challenges. However, it
presents an inherent limitation: while Kafka ensures the in-order
delivery of messages within a single partition to the consumer,
it falls short in guaranteeing a global order for messages
spanning multiple partitions. This research delves into innovative
methodologies to achieve global ordering of messages within
a Kafka topic, aiming to bolster the integrity and consistency
of log processing in distributed systems. Our code is available
on GitHub - https://github.com/aryan-jadon/Distributed-Kafka-
Clusters.

Index Terms—Apache Kafka, Distributed message queues,
Distributed systems, Global ordering, Log inconsistencies, Log
processing, Message ordering, Partitioning

I. INTRODUCTION

Since the inception of Web 2.0 and the ongoing evolution
to Web 3.0, there has been a significant proliferation in the
decentralization of computer systems [1]. Concurrently, the
landscape of data generation has undergone transformative
shifts [2]. Spurred by the surge of IoT(Internet of Things)
devices, the prevalence of social media platforms, the rise
of online services, and the myriad of digital infrastructures
and architectures, there has been a meteoric surge in the
magnitude, pace, and diversity of data generated [3]. Within
a nodal cluster, data emanates from multifarious sources:

1) Events denoting user activities such as logins, content
access, user engagements, and transactions.

2) System-centric metrics encompassing service engage-
ments, network metrics [4], and node-specific resource
utilizations like heap memory, CPU, and disk perfor-
mance.

In traditional systems, data analysis was predominantly
conducted offline, extracting logs from operational servers [5].
In contrast, contemporary systems place significant emphasis
on real-time data analysis, leveraging immediate feedback to
inform subsequent operational decisions [6].

Apache Kafka [7] has evolved as a potent tool to confront
the intricacies introduced by the surge in data volume. It

facilitates the dependable, scalable, and proficient acquisition,
preservation, and analysis of streaming data. The distributed
nature of Kafka supports horizontal expansion, distributing
data over numerous brokers, thus ensuring high-capacity and
fault-resilient data handling [8].

Data can be introduced into Kafka topics via diverse
methods including producers, connectors, or alternative data
integration techniques. Once within Kafka, this data can un-
dergo processing, and transformation, and be accessed by an
array of applications, infrastructures, or analytical workflows.
Kafka’s capacity to manage substantial data loads, ensure fault
resilience, and facilitate real-time operations positions it as a
preferred option for an extensive range of applications such
as data pipeline construction, event-centric architectures, log
consolidation, and stream analytics, among others [9].

A notable challenge in utilizing Kafka is its provision of
ordering guarantees limited to an individual partition and not
across multiple partitions. Each Kafka partition is designated
to a particular broker and functions autonomously, facilitating
parallel computations and enhancing scalability [10]. Yet,
due to this segmented structure, it’s not feasible to ensure a
universal order for data spanning all partitions within a topic.
This absence of comprehensive ordering across partitions
poses constraints in situations necessitating rigorous sequential
processing or specific event sequencing.

In this research paper, we aim to tackle the issue of attaining
a universal data order across partitions within Apache Kafka
using Aggregator and Sorter, Single Consumer within
a consumer group, and Batch Commit and Broadcast
Protocol Algorithms. By overcoming this limitation, our
research strives to make a significant contribution to both
the Kafka community and practitioners dealing with situations
where maintaining a global data order is paramount for their
data processing workflows. We possess assurance that our
findings will not only enhance the capabilities of Kafka
but also unveil novel prospects for applications that require
exact event sequencing and effective dependency management
across multiple partitions.

The structure of this paper is organized as follows: Section
II delves into the related work, while Section III elaborates
on the Proposed Architecture and Design implementations.
Experimental findings are presented in Section IV, and Section
V concludes the paper and offers insights into future work.
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II. RELATED WORK

The challenge lies in the realm of distributed systems,
spanning thousands of components scattered across the globe.
This complex landscape necessitates a dedicated Middleware
infrastructure. These distributed systems, by their very nature,
are rigid and static, requiring a transformation from point-
to-point synchronous applications to large-scale asynchronous
systems. This transition is pivotal due to the glaring problem:
traditional setups, such as Meta Scribe, employ log aggregators
that funnel data from frontend machines over sockets, eventu-
ally storing it in HDFS for offline processing [11]. However,
this approach leaves the potential of real-time data utilization
untapped, creating a substantial gap.

While other messaging queue systems, like IBM Web-
sphere, offer global message ordering [12], they falter in high
throughput scenarios due to the stringent delivery guarantees
mandating message exchange acknowledgments. Such guar-
antees, while valuable in certain contexts, prove excessive
for noncritical log data. Similarly, messaging services like
RabbitMQ [13] and ActiveMQ [14] maintain global ordering
but stumble when faced with the scale of data, as they lack
the ability to send multiple messages within a single request,
resulting in costly TCP/IP round trips.

Kafka protocol is a game-changer in the real-time data
processing realm. It empowers consumers to access messages
as soon as Brokers publish them [15]. Kafka’s pull mechanism
for data access ensures consumers remain unfazed by high
network traffic, thus delivering unparalleled throughput. The
magic behind Kafka’s success lies in its elegant architecture,
leveraging Zookeeper for essential distributed tasks like data
partition replication, leader consensus, and maintaining con-
sumer and broker registries, including tracking consumer data
offsets for each partition.

Fig. 1. A Standard file system for Zookeeper Namespace

Figure 1 vividly illustrates the Zookeeper’s role in this
architecture, organizing registries in a file directory structure.
Brokers, consumers, and ownership registries are ephemeral,

ensuring seamless load balancing when servers are added
or removed. In addition, Kafka maintains a persistent offset
registry for data recovery in case of consumer failures.

Kafka’s innovative solution hinges on parallel data stream-
ing using partitions, where messages within a partition main-
tain their order, enhancing throughput. However, this approach
poses a challenge for applications requiring global message
ordering when dealing with messages from the same topic
distributed across different partitions.

LinkedIn, for instance, has deployed a Kafka library cluster
within a data center to facilitate offline analysis, leveraging
HDFS for delivering analytical insights [16]. Although this
setup caters to applications relying on message sequencing, it
primarily operates offline. In certain scenarios, data undergoes
preprocessing before reaching the producer application, intro-
ducing an additional layer of complexity in the development
process. Our mission is clear: harness Kafka’s distributed
parallel data processing and high throughput, in tandem with
its streaming queue capabilities, to bridge the gap and ensure
coherent message sequencing across partitions, unlocking the
true potential of real-time data utilization.

III. PROPOSED ARCHITECTURE AND DESIGN
IMPLEMENTATIONS

To address the mentioned use cases, the creation of parti-
tions may necessitate the use of non-intuitive keys. Further-
more, partitions limit consumption to a single consumer node.
Our objective is to maintain a universal order, irrespective of
the number of consumers involved.

Numerous messaging technologies, including AMQP (Ad-
vanced Message Queuing Protocol) [17] and JMS [18], offer
support for Message Prioritization. These technologies enable
messages to be consumed or processed in varying orders,
depending on their significance.

For instance, consider a scenario in applications where
customer queries need attention, and a business may need to
handle the most critical cases first. Kafka, originally designed
as an event streaming platform, lacks essential features such
as message prioritization. To bridge this gap, we intend to in-
troduce an intermediary layer between consumers and brokers
that can facilitate message prioritization.

A. Architecture and Design

A concise overview of Kafka’s architecture includes bro-
kers with topics and partitions, engaging with producers and
consumers. In this section, we will delve into crucial aspects
of these components, laying the foundation for our upcoming
architectural design.

Producer: In Kafka, the producer’s role involves dissem-
inating messages among various partitions. The quantity of
partitions within a topic is established during its creation. By
default, the Partitioner utilizes a hash function of the message
key to determine the appropriate partition for the message.



Consumer: A consumer group subscribes to the topics
it intends to receive messages from. Within each consumer
group, partitions are allocated to different consumers to ensure
that each partition is processed by a single consumer. The
logic responsible for assigning partitions to consumers is
implemented by the Assignors.

Broker: In Kafka, each broker is referred to as a bootstrap
server, and a Kafka cluster comprises multiple such brokers
(servers). Every broker is uniquely identified by an integer
ID and houses specific topic partitions. What makes Kafka
intriguing is that, at any moment, a client needs to establish a
connection with just one broker, and that connection provides
access to the entire cluster.

Each broker possesses knowledge of all other brokers,
topics, and partitions through the maintenance of metadata
across the server ensemble. The orchestration of all brokers
is a key function carried out by Zookeepers. They maintain a
comprehensive list of all brokers and are also responsible for
orchestrating leader elections for partitions.

We are presenting three distinct designs to attain message
ordering and subsequently assessing their impact on perfor-
mance in comparison to the existing Kafka implementation.

B. Aggregator and Sorter Algorithm
In this approach, we propose a method to ensure message

ordering by buffering and sorting the messages. We can use
the message key field found in the ProducerHeader.java file,
which assigns a unique identifier to each message, for this
purpose. When multiple partitions are in use, consumers must
maintain a buffer that contains messages from all partitions.
If only one consumer were used, a local cache could suffice.

However, in high-load scenarios where multiple consumers
are needed, each reading from a single partition, this buffer
must be positioned outside the consumer layer. The mid-
dleware layer will then sequentially poll messages from the
consumers and arrange them in the correct order.

For instance, if messages arrive out of order, the middleware
will only deliver those that are in sequence, while retaining
out-of-order messages in the buffer until the missing sequences
arrive. Another approach to maintaining sequential delivery is
to poll messages in sequence. Although this eliminates the
need for buffering messages, it can be extremely slow.

While the Aggregator and Sorter approach effectively ad-
dresses the global message ordering issue, it compromises
parallelism in a distributed system. Additionally, there is
no predefined limit on buffer size. If a consumer processes
messages slowly, it must either continue buffering messages
or wait until the missing messages arrive. Figure 3 explains the
Proposed Design using the Aggregator and Sorter Mechanism.

The Aggregator and Sorter Algorithm III-B plays a crucial
role in managing the flow of messages, optimizing the order of
processing, and improving the overall system’s performance.

C. Single Consumer within a Consumer Group Algorithm
One straightforward approach to preserve message order

is to streamline message delivery. This can be accomplished

Fig. 2. Proposed Design using Aggregator and Sorter Mechanism

Algorithm 1 Aggregator and Sorter
Input: Consumers(All the consumers),
buffer: PriorityQueue, writeSize: Integer
while Messages in Consumers do

for each consumer in Consumers do
message = consumer.GetMessage()
buffer.put(message)
if buffer.size() ≥ writeSize then

Deliver messages from the buffer till continuous
messages are available.

end if
end for

end while

either by creating a single partition for each topic or by
assigning a single consumer within a consumer group to all
partitions of a topic. However, opting for a single partition
per topic lacks scalability because the broker handling leader
partitions can become easily overwhelmed with increased
network traffic. Consequently, we propose the adoption of a
single consumer as a more viable alternative.

In the case of a single consumer, we employ a round-
robin polling strategy across partitions, ensuring the delivery
of messages in the order they arrive. The message key field
plays a crucial role in determining message sequence. Out-
of-order messages are temporarily stored within the consumer
and subsequently delivered in the correct order upon receiving
the missing sequentially numbered messages.

Single Consumer within a Consumer Group Algorithm III-C
addresses the challenges associated with message handling in
distributed systems.

D. Batch Commit and Broadcast Protocol Algorithm
This approach suggests preserving order by employing

a consensus algorithm independently among producers and
consumer groups. To accomplish this, we introduce a global
batch size at the producer level for ordered messages. During
a single poll operation, the consumer receives messages in
multiples of this batch size.

Batch Commit and Broadcast Protocol Algorithm III-D
gives highly efficient Kafka streams that can provide global



Algorithm 2 Single Consumer within a consumer group
Initialize message order preservation strategy
if Using a single partition per topic then

Create a single partition for each topic
else if Assigning a single consumer within a consumer
group to all partitions then

Assign a single consumer to handle all partitions of the
topic

else
Choose an alternative approach

end if
if Opting for a single consumer then

Initialize a round-robin polling strategy
for Each message in partitions do

Poll messages in a round-robin sequence
Use the message key field to determine the message
sequence
if Message is out-of-order then

Buffer the out-of-order message
end if
if Received missing sequentially numbered messages
then

Deliver out-of-order messages in the correct order
end if

end for
else

Choose an alternative approach
end if

Algorithm 3 Batch Commit and Broadcast Protocol Algorithm
Producers’ Role: Producers employ Raft consensus algo-
rithms to assign a batch number to a group of messages
and then write them into the broker sequentially, following a
round-robin approach. This batch number ensures a uniform
sequence identifier across all system components.
Partitioning Strategy: Instead of employing key-based par-
tition allocation, we will utilize the Round Robin Partitioner
(available in Kafka) to distribute messages across partitions.
Consumers’ Role: Consumers will adopt the atomic broad-
cast protocol to ensure the sequential delivery of messages,
guided by batch numbers. While consumers can continue
to poll multiple batches of messages, during delivery to
the application, they will prioritize delivering them in ac-
cordance with the batch number sequence. Subsequently,
they will broadcast the information about the next batch to
be delivered or the last batch number that was dispatched.
When a consumer possesses messages from the next batch,
it will deliver them to the client and inform all other
consumers accordingly.

ordering of the messages without any new layer or bottleneck
at any layer. Figure 3 explains the Architecture Design using
Batch Commit and Broadcast Protocol.

Fig. 3. Architecture Design using Batch Commit and Broadcast Protocol

IV. EXPERIMENTS AND RESULTS

In this research, we undertook a systematic experimental
comparison of the framework, which was constructed follow-
ing the designs delineated in earlier sections. We aimed to
contrast the latency and throughput of our developed system
with the inherent attributes of the native Kafka framework.
Given that our approach functions as an overlay atop Kafka,
it is anticipated that message delivery might exhibit augmented
latency. Efforts were made to maintain consistent parameters
across different design configurations wherever feasible.

We utilized a Macintosh system equipped with an 8-core
CPU, segmented into 4 performance cores and 4 efficiency
cores, complemented by an 8-core GPU and a 16-core Neural
Engine for our experiments. To simulate a multi-producer and
multi-consumer setup, we initiated several threads sharing a
common group ID.

Within the context of the Aggregator and Sorter design
paradigm, multi-threading was employed to simulate the
simultaneous operations of multiple producers and consumers.
When a client request is received, the producer engages a
lock via a distributed lock service, subsequently generating a
sequential token. This locking mechanism is critical, guaran-
teeing the uniqueness and orderly sequence of tokens, thereby
preventing any duplication or misordering.

Following this, the producers relay their respective messages
to the broker, where these messages are stored with their keys
designated by the sequence token ID. Upon retrieval from the
broker, the consumer places the message in a distributed queue
structured to uphold the message sequence and facilitate the
delivery of organized messages. It is imperative to note that
message delivery is initiated only after reaching a predefined
buffer size, ensuring a globally sequenced batch dispatch.

In order to assess the efficacy of the Multi Consumer Ag-
gregator and Sorter Design implementation, we conducted
an experimental study involving the transmission of a burst of
700 messages. Our analysis revealed that the average latency
per request when employing the native Kafka system was



Fig. 4. Multi Consumer Aggregator and Sorter Design Performance

approximately 6.9 milliseconds, whereas the utilization of the
modified Kafka wrapper resulted in an average latency of 60
milliseconds.

Fig. 4 displays a graphical representation of the relationship
between Request ID and their corresponding latency, measured
in hundredths of a second 1

100

th of a second). Notably, as
depicted in Fig. 4, an observation can be made regarding the
latency disparity between the native Kafka system and the
modified Kafka implementation, amounting to approximately
20 milliseconds.

For a single consumer design paradigm, a single thread
was used to read from all the partitions. A local buffer
is maintained that is responsible for sorting the messages
received based on the message key and delivering them to
the downstream process in a globally sorted order.

Fig. 5. Single Consumer Design Performance

The average latency per request for a single consumer
design with 3 partitions was observed around 16ms. The
difference in the latency between native Kafka and modified
Kafka is around 9 ms. The average request latency for a
single consumer design utilizing three partitions measured
approximately 16ms. Notably, there is a discernible latency

disparity of roughly 9ms between the unaltered Kafka setup
and the customized Kafka setup.

For the implementation of the batch commit and broad-
cast protocol, we’ve incorporated the Raft algorithm on the
producer side to generate sequential token IDs. Instead of
assigning a token ID to each individual message, we allocate
it to a batch, which can be configured to a specific size in
the native Kafka environment. Correspondingly, the consumer
reads from a broker with an identical batch size to that of
the producer. To facilitate message delivery to downstream
applications, we’ve employed an atomic broadcast protocol
with a built-in timeout mechanism.

Upon reading messages from the broker, the consumer
patiently awaits a broadcast message that conveys the sequence
ID of the next batch to be committed. In the event of a
timer expiration, the consumer broadcasts the lowest batch
sequence number available in its buffer. Upon receiving this
broadcast message, other consumers also respond with their
lowest batch sequence numbers. Each consumer independently
computes the lowest batch sequence number, which determines
the order of commitment. The consumer bearing the lowest
batch sequence number proceeds to deliver the message and
initiates the broadcast of the subsequent batch sequence num-
ber scheduled for commitment.

Fig. 6. Batch commit and Broadcast Protocol Performance

We conducted a thorough examination of the average la-
tency per request within the batch commit and broadcast
protocol design. Our observations revealed that the average
latency per request consistently registered at approximately
9.0 ms. In the context of performance comparison between
native Kafka and the modified Kafka version, a discernible
difference of approximately 2 ms became apparent.

While the batch commit and broadcast protocol design
within the modified Kafka version offers certain advantages,
it does introduce an incremental latency of 2 ms when con-
trasted with native Kafka. This information holds significant
relevance for system architects and developers who prioritize
real-time data processing and are actively assessing the trade-
offs between system performance and necessary modifications.
Refer to Table 1 for Performance Analysis of all three designs.

V. CONCLUSION AND FUTURE WORK

From our tests, it became evident that a single consumer
outperforms the Aggregator and Sorter for the given message
burst size. Hence, for applications with a lower frequency of
messages and partitions, the single consumer emerges as the
superior choice.



TABLE I
EXPERIMENTAL RESULTS

Design Paradigm Native Kafka
Latency (ms)

Modified Kafka
Latency (ms)

Aggregator and Sorter 6.9 60
Single Consumer (3 parti-
tions)

16 25

Batch Commit and Broad-
cast Protocol

9 11

However, as the message frequency and number of partitions
rise, the performance of the Aggregator and Sorter improves.
Notably, the batch commit and broadcast protocol demon-
strated reduced latency in generating sequence IDs compared
to distributed locks. The inclusion of a buffer in the initial two
designs creates a consistent latency, as we have to wait for
the sorter and aggregator layers to attain a specific buffer size.
Interestingly, we noted enhanced performance using the atomic
broadcast protocol with re-transmission, possibly due to real-
time message delivery as opposed to buffering with a batch
size greater than one. While the atomic broadcast protocol
offers speed, it introduces the challenge of overseeing group
membership, a task managed by Kafka’s zookeeper.

We evaluated our current models within a multi-threaded
environment. To conduct a more comprehensive performance
analysis, we are contemplating replicating these designs within
a distributed framework spanning diverse geographical loca-
tions. While our present testing centers around the latency per
request for a single batch size, our future efforts are geared
towards exploring additional metrics, including the throughput
measured in requests processed per second, and investigating
the impact of varying batch sizes.

Our designs function as wrappers around Kafka, but our
aspiration is to transform them into libraries suitable for ap-
plications that require global message ordering. Furthermore,
our designs possess the capability to prioritize messages,
contingent on the availability of a token-generating algorithm
that adheres to specific priority guidelines.
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