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Abstract

We investigate the question of whether facial metrology
can be exploited for reliable gender prediction. A new
method based solely on metrological information from fa-
cial landmarks is developed. Here, metrological features
are defined in terms of specially normalized angle and dis-
tance measures and computed based on given landmarks on
facial images. The performance of the proposed metrology-
based method is compared with that of a state-of-the-art
appearance-based method for gender classification. Re-
sults are reported on two standard face databases, namely,
MUCT and XM2VTS containing 276 and 295 images, re-
spectively. The performance of the metrology-based ap-
proach was slightly lower than that of the appearance-
based method by only about 3.8% for the MUCT database
and about 5.7% for the XM2VTS database.

1. Introduction

Gender classification is a fundamental task for both hu-
mans and machines, as many social activities depend on
precise gender identification. The problem has attracted
considerable attention, and has been investigated from both
psychological [5, 9] and computational [7] perspectives.
Various studies have attempted to perform gender classifi-
cation using human gait [14] or body information [6]. In-
troduced in the 1990s, SEXNET was among the first auto-
mated systems capable of performing gender identification
using human faces [11]. Since then, a number of studies
have investigated the problem as part of the general face
recognition (FR) problem. Modern FR systems typically
combine textural information from the face with facial ge-
ometry. Popular examples include active appearance mod-
els [13], local feature analysis [12], and elastic bunch graph
matching [28]. In such systems, the information about fa-
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cial geometry is often captured from specific landmarks on
the face. In this work, we investigate whether topological
information extracted from facial landmarks can be used to
efficiently perform gender classification.

Facial landmarks can be divided into three broad cat-
egories [24]: anatomical landmarks, mathematical land-
marks, and pseudo-landmarks. Anatomical landmarks are
biologically meaningful points defined as standard refer-
ence points on the face and head, such as pupil, dacryon,
nasion or pogonion, and they are often used by scientists
and physicians. They tend to be somewhat more abstract
than other features of the skull (such as protuberances or
lines). Anatomical landmarks are considered very impor-
tant because they are useful in various scientific fields in-
cluding computer vision, cosmetic surgery, anthropology,
and forensics. However, because of various types of dis-
tortions, it is quite difficult to accurately extract anatomical
landmarks from 2D face images, either manually or auto-
matically. Furthermore, the number of useful anatomical
landmarks that can be extracted from a single face image is
considered limited. Thus, the exclusive use of anatomical
landmarks in face recognition is not recommended.

Mathematical landmarks are defined according to cer-
tain mathematical or geometric properties of human faces,
such as middle point between two anatomical landmarks,
extreme point with respect to particular face region (for ex-
ample, leftmost point of face contour), or centroid of a cer-
tain group of landmarks. A mathematical landmark may or
may not coincide with an anatomical landmark, and it can
be easily located using automated methods. Facial pseudo-
landmarks are defined based on two or more mathematical
or anatomical landmarks, or around the outline of facial or
hair contours. They are not rigorously defined, and can be
approximately located using prior knowledge of anatomi-
cal or mathematical properties. Pseudo-landmarks are rela-
tively easy to acquire, and are generally accurate enough for
appearance-based face recognition methods. In this work,
pseudo-landmarks are used to extract facial metrology.
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1.1. Benefits of Facial Metrology

In traditional face recognition, facial landmarks can be
either automatically detected or manually annotated. These
landmarks are often used for registration purposes [4] and
they can assist the recognition system mainly as part of the
pre-processing step. There are many advantages to the use
of facial metrology. These include (i) Memory Manage-
ment: compared to texture-based information in face im-
ages, landmarks require much less storage space (each land-
mark consists of two numbers, i.e., the row and column on a
2D face canonical coordinate system); (ii) Information Pri-
vacy: unlike the full face image, landmark information can
be safely stored, transported, and distributed without poten-
tial violation of human privacy and confidentiality; (iii) Pre-
diction of Missing Information: topological features (face
coordinates) can be either global or local to specific facial
regions. Thus, missing information can be approximately
predicted, for example, using statistical approaches [1]; (iv)
Law Enforcement: useful information from facial metrol-
ogy could be used as forensic evidence in a court of law,
where admissibility of quantifiable evidence is a major con-
sideration.

1.2. Main Contribution

The main challenges related to facial metrology include
(a) precision in localizing the landmark coordinates; (b)
sensitivity of landmark localization to pose, expression, and
aging; and (c) sparsity of information encoded in landmarks
for human identification. In spite of these challenges, we
believe that landmarks from 2D faces can provide impor-
tant cues for problems related to human recognition. Fol-
lowing a recent study on predictability and correlation in
whole-body human metrology [1], in this paper we hy-
pothesize that the information extracted from facial metrol-
ogy exclusively can be used for gender recognition or fa-
cial classification. The main goal of this work is to deter-
mine whether facial metrology can be used to discriminate
between genders. We assume that facial landmarks on a
given face image are already known and our research fo-
cus is to perform gender classification based solely on the
information provided by facial landmarks. If gender clas-
sification can be successfully performed using these land-
mark points, then investment can be made in automating
the landmark detection process. The performance of our
proposed facial metrology-based gender classification al-
gorithm is compared to benchmark appearance-based tech-
nique, viz., the Local Binary Patterns (LBP) method. The
main contribution of our work is a demonstration that the
classification performance of our method is comparable to
that of an appearance-based method. In practice, we illus-
trate that by using only weak features, i.e., facial metrologi-
cal features derived from landmarks, our approach results in
only about 3.8-5.7% lower classification rate (on two differ-

ent face databases) compared to a benchmark appearance-
based method.

2. Related Work
Humans perceive gender not only based on the face, but

also on the surrounding context such as hair, clothing and
skin tone [15, 6], gait [14] and the whole body [6, 1]. Below,
we review relevant work on gender prediction from facial
images only.

The problem of gender classification based on human
faces has been extensively studied in the literature [20, 3].
There are two popular methods. The first one is proposed
by Moghaddam et al. [20] where a Support Vector Machine
(SVM) is utilized for gender classification based on thumb-
nail face images. The second was presented by Baluja et al.
[3] who applied the Adaboost algorithm for gender predic-
tion. Recently, due to the popularity of Local Binary Pat-
terns (LBP) in face recognition applications [2], Yang et al.
[30] used LBP histogram features for gender feature repre-
sentation, and the Adaboost algorithm to learn the best local
features for classification. Experiments were performed to
predict age, gender and ethnicity from face images. A sim-
ilar approach was proposed in [25]. Other local descriptors
have also been adopted for gender classification. Wang et
al. [27] proposed a novel gender recognition method using
Scale Invariant Feature Transform (SIFT) descriptors and
shape contexts. Once again, Adaboost was used to select
features from face images and form a strong classifier.

Gao et al. [10] performed face-based gender classifica-
tion on consumer images acquired from a multi-ethnic face
database. To overcome the non-uniformity of pose, expres-
sion, and illumination changes, they proposed the usage of
Active Shape Models (ASM) to normalize facial texture.
The work concluded that the consideration of ethnic factors
can help improve gender classification accuracy in a mul-
tiethnic environment. A systematic overview on the topic
of gender classification from face images can be found in
[17]. Among all the descriptors that encode gender infor-
mation such as LBP [25], SIFT [26] and HOG [6], the LBP
has shown good discrimination capability while maintain-
ing simplicity [17]. To establish a base-line for appearance-
based methods, we use LBP in combination with SVM to
predict gender from facial images in this work.

Although in previous work [22, 29] geometry features
were used as a priori knowledge to help improve classifica-
tion performance, none of the aforementioned approaches,
unlike our work, focused explicitly and solely on facial
metrology as a means for gender classification. Perhaps our
work is more closely related to earlier research by Shi et al.
[23, 24] on face recognition using geometric features, where
they used ratio features computed from a few anatomical
landmarks. However, we take a more comprehensive look
at the explicit use of facial geometry in solving the problem
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of gender classification. We use solely metrological infor-
mation based on landmarks, which may or may not be bi-
ologically meaningful. In our approach, the local informa-
tion from independent landmarks is used instead of holistic
information from all landmarks.

3. Gender Prediction via Facial Metrology

3.1. Facial Landmarks

Two well-known databases were used in this work,
namely, MUCT [19] and XM2VTS [18]. For each subject
in each database, only one frontal face image and the cor-
responding landmark information were used. Compared to
the XM2VTS database, the MUCT database has more di-
versity with respect to facial expressions, pose, and ethnic-
ity. In particular, MUCT has much more variation in mouth
shapes. Figure 1 shows two sample faces with numbered
landmarks, one from each database. The numbering system
used in XM2VTS is the same as that of MUCT, except for
a set of extra landmarks used in MUCT (i.e., #69 - #76).
Details about the databases can be found in the section on
experiments.

Before extracting measurements from the face, we first
consider the spatial distribution of facial landmarks in the
faces in the databases. Such a distribution could shed some
light on the potential of landmarks in gender prediction. Let
N be the number of landmarks for each face. A face, F k,
can be represented as a vector

F k = (xk1 , y
k
1 ), (xk1 , y

k
1 ), . . . , (xki , y

k
i ), . . . , (xkN , y

k
N ) (1)

where (xki , y
k
i ) is the Cartesian coordinate of the i-th land-

mark of F k, k = 1, 2, . . . ,m, and m is the number of faces
in the training set. To compute the landmark distribution,
each landmark Lk

i = (xki , y
k
i ) is normalized as follows:

x̂ki = µ(xi) + α

(
xki − µ(xi)

σ(xi)

)
(2)

ŷki = µ(yi) + α

(
yki − µ(yi)

σ(yi)

)
(3)

where α is a constant, and µ() and σ() are the mean and
standard deviation of each landmark location, respectively.

Figure 2 shows the landmark distribution for male and
female subjects in the two databases. The landmark coordi-
nates are aligned by the nose tip position, which is land-
mark #67 in both databases. As the figure shows, some
landmarks show a significant separation between male and
female subjects, while others are difficult to separate. Nor-
malized landmark positions with more separation between
the male and female subjects are likely to result in better
gender classification performance.

(a)

(b)

Figure 1. Sample faces with numbered landmarks from (a)
XM2VTS and (b) MUCT.

Figure 2. Landmark distribution for the XM2VTS database using
α = 5. The red cross and red circle indicate average landmark
positions across male and female subjects, respectively. The blue
and green scatter points are normalized landmark coordinates for
each individual (blue for males, green for females).
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3.2. Metrological Features

There are different ways to utilize the landmark infor-
mation. We cannot directly use the landmark coordinates,
since they will be sensitive to translation, scaling, and 2D
rotation of face images. One could consider all distance
ratios defined by sets of four landmarks, or triangular fea-
tures defined by any three non-collinear landmarks [24].
The problem here is computational complexity. The dimen-
sionality of the feature space will be Θ(N4) for complete
distance ratios, and Θ(N3) for landmark triplets. An alter-
native is to consider simple Minkowski distances between
two arbitrary landmarks Lk

i = (xki , y
k
i ) and Lk

j = (xkj , y
k
j ),

given by:

Dk
ij =

(
(xki − xkj )p + (yki − ykj )p

) 1
p , (4)

where p is the distance parameter. For a given p, the num-
ber of distances is thus Θ(N2 ). In this work we have con-
sidered the Euclidean distance (p = 2). The distances can
be easily normalized to be scale-invariant by a reliable mea-
sure, such as inter-eye distance. The resulting ratios are also
invariant to translation and 2D rotation. However, using
only distance measures may not be reliable, since the ori-
entation of the distance vectors may be significant as well.
For example, two individuals may have the same distance
from the tip of the nose to the pupil, although one may have
a longer face and the other may have more widely separated
eyes. To improve the reliability of the features, we also use
the horizontal angle subtended by each distance vector. The
horizontal angle Ak

ij is computed from the pair-wise land-
mark coordinates:

Ak
ij = arctan

(
yki − ykj
xki − xkj

)
(5)

3.3. Feature Ranking and Selection

Using all pair-wise distances will lead to a very high di-
mensional feature space. For example, there are 5,700 fea-
tures (distances and angles) for the MUCT database. An-
other problem is that the distance and angle measures may
not always be robust. Some features may not be useful
for gender discrimination and some others may be sensitive
to errors caused by inconsistent landmark positions. Per-
formance will be compromised if such features are not re-
moved or their impact minimized.

To handle these issues, we apply a simple, yet efficient
and robust, d-prime-like scheme to rank the distances by
their discrimination capabilities. For each pair-wise dis-
tance, and across all the faces in our training set (see defi-
nition in experiments section), we compute the d-prime as
follows:

d
′

ij =
µ(DM

ij )− µ(DF
ij)√

([σ(DM
ij )]2 + [σ(DF

ij)]
2)/2

(6)

where
(
µ(DM

ij ), µ(DF
ij)
)

and
(
σ(DM

ij ), σ(DF
ij)
)

are the
mean values and variances of the distance distributions be-
tween landmark i and j, respectively, and M and F denote
male and female, respectively. Similarly, we compute the
d-prime-like value for each angle. If the two distributions
are well separated, the d-prime value should be relatively
high. Otherwise, the measure results in a high intra-class
error and should not be considered as a reliable feature. The
measures are then ranked in decreasing order based on their
d-prime values, which corresponds to a decreasing order in
their gender discrimination ability. Figure 3 shows a sam-
ple face annotated with the top-20 ranked landmarks. Our
results show that only a few top-ranked features are neces-
sary for gender discrimination purposes. Note that the spe-
cific d-prime ranking for a given measurement could vary
from database to database. However, the general trend is
similar when both datasets were used (see also Table 1 in
Section 5.3).

Figure 3. The top 20 pairwise distances ranked by their discrim-
ination ability (Eq. 6). The sample face is from the XM2VTS
database. Numbers on the edges indicate the d-prime ranking.

3.4. SVM Classifier

We tested and compared results using three classifiers:
support vector machine (SVM), k-nearest neighbor (KNN)
and logistic models. We chose SVM for its superior per-
formance and speed. For the SVM, we used the Gaussian
radial basis function as the kernel:

K(u, v) = exp(−||u− v||
2

2σ2
) (7)

where u and v are the feature vectors, and σ is the width
of the basis function. We set σ=2. The SVM soft margin
parameter C [8]is set to be 10.

The experimental results suggest that among the thou-
sands of metrology-based features, only a few top-ranked
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features are significant in gender prediction. However, the
optimal number of features depends on the database used.
More measures may not necessarily improve the perfor-
mance. Instead, too many measures may introduce more
noise thereby compromising the performance (see Figure 6
under experimental results).

4. Gender Prediction via Appearance
To compare our results with state-of-the-art approaches,

the use of appearance-based models for gender recognition
was considered. In particular, we considered the use of the
LBP operator on the same datasets as we used for the study
of metrological features. The basic LBP descriptor encodes
micro-patterns of an image by thresholding 3 × 3 neigh-
borhoods based on the value of the center pixel and then
transforming the converted binary pattern sequence into a
decimal value. It can be extended to accommodate neigh-
borhoods of different sizes to capture textures at multiple
scales [21].

To utilize LBP method for the extraction of gender fea-
tures from facial images, the input image is first divided
into non-overlapping blocks. Then, the spatial histogram
features from each block is calculated and concatenated to
form a global descriptor. Here, the LBP operator is denoted
asLBPu2

P,R, where P refers to the number of equally spaced
points placed on a circle with radius R and u2 represents
the uniform concept, which accounts for most of the pat-
terns observed in the experiment. For instance, 11001111 is
considered to be a uniform pattern since it contains no more
than 2-bitwise transition (1 to 0 and 0 to 1). When comput-
ing LBP histograms, every uniform pattern has a separate
bin (58 bins in total) and all the other non-uniform patterns
together have a single bin. In our experiments, the LBPu2

8,2

descriptor is used. The image is resized to 126 × 90, with
each block consisting of 18 × 15 pixels. The total num-
ber of blocks is, therefore, 7 × 6 = 42. For each block,
we use LBP to extract 59 bin features, leading to a 2478-
dimensional feature vector (see Figure 4).

Figure 4. LBP gender feature representation. The face image is
acquired from MUCT database [19].

In order to design the gender classifier (i.e., predictor),
SVM is used. The SVM classifier is trained using a train-

ing set of labeled face images. The test sample is classified
according to the sign of y(s),

y(s) = wTφ(s) + b, (8)

where φ(s) denotes the transformation of the original
feature-space and b is the bias. w is the normal vector and
determines the orientation of the hyper plane which is gen-
erated during SVM training. For classification, we use the
histogram intersection kernel:

k(x, y) =
n∑

i=1

min(xi, yi), (9)

where xi and yi are the ith histogram bin for the feature
vectors of x and y. The histogram intersection kernel was
observed to be much more effective for classification than
the linear or the RBF kernel when the LBP histogram se-
quence features were used as input. Therefore, it is adopted
in our appearance-based gender classification scheme.

5. Experiments

5.1. Datasets and Setup

The MUCT land-marked face database [19] was created
by researchers to generate data exhibiting diversity in pose,
illumination, age, and ethnicity. We use 276 subjects from
Category-A, consisting of 131 males and 145 females. The
first sample of each subject (usually the frontal face) is se-
lected and used in our experiments. Therefore, a total of 276
samples are used. The size of the original image is 480×640
pixels. Since the landmark positions for the eyes are pro-
vided, for the appearance-based LBP method, the images
are normalized and aligned based on eye coordinates. Fur-
ther, for the LBP method, all samples are preprocessed with
histogram equalization to reduce the effect of illumination.
The final cropped image size is set to be 130 × 150. For
the LBP method, it would be resized to 126 × 90. Sample
images are shown in Figure 5.

The XM2VTS database [18] has 295 subjects. Each sub-
ject has one sample selected. There are 160 males and 135
females. Similar to the MUCT samples, the size of the
cropped sample images is also 130× 150.

To perform gender classification on the MUCT database,
we randomly select 50 males and 50 females for training.
The remaining 176 samples are reserved for testing. This
partitioning exercise is repeated 50 times. For XM2VTS,
the same experimental design was applied, except the total
number of test samples in this case was 195.

For the metrology-based approach, the d-prime-like fea-
ture ranking is applied separately on both the distance mea-
sures and the angle measures. Thus, we use both top-ranked
distances and top-ranked angles for the analysis.
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Figure 5. Sample images from the MUCT database. Face images
in the bottom row correspond to the cropped and geometrically
normalized images, after face detection on the top row images.

5.2. Results

Figure 6 shows the performance of the metrology-
based method for gender classification, using the proposed
metrology-based features from the facial landmarks. The
performance using distances and angles separately varied
somewhat with the database. In most cases, the perfor-
mance on MUCT database is slightly better than that on
XM2VTS. Further, the distance measures performed gener-
ally better than the angle measures. However, fusing the dis-
tance and angle measures at the feature level generally im-
proved classification performance, especially when the fea-
ture space is small (less than 80 features). We observe that
the metrology-based system can provide good results with
only a few landmarks (around 10), implying that there is a
possibility of using a lower-dimensional space, and hence
lower computational cost. However, the experimental re-
sults do not indicate whether there exists an optimal number
or combination of features. Since a large feature space will
not necessarily lead to superior performance, we selected
only the top-10 ranked distances and the top-10 ranked an-
gles for subsequent experiments 1.

5.3. Landmark Discrimination Ability

The discussion so far has focused on the distance be-
tween pairs of landmarks, or the angles formed by such
distance vectors. We also evaluated the discrimination ca-
pability of the individual landmarks. While we expect a
landmark with high discrimination ability to be involved in
distance or angle measures with an equally high discrimi-
nation ability, this may not always be the case. An evalua-
tion of the discrimination ability of individual landmarks is
important in identifying landmarks that are major determi-
nants of performance in a metrology-based method. Such

1Due to the large number of features present in this work, we did not
apply any standard feature selection schemes for determining the optimal
set of features. Such an experiment will be conducted in the future.
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Figure 6. Performance comparison using the Top 1-100 angles,
Top 1-100 distances and their fusion (2-200 features) in gender
classification.

landmarks can then become the focus of a more concerted
effort at automated landmark detection. Consider the dis-
tances between landmark pairs as a matrix. To determine
the discrimination ability of a single landmark, we simply
compute the average d-prime value between that landmark
and all the other landmarks. For the i-th landmark Li, we
have:

d
′

i =
1

N − 1

∑
j 6=i

d
′

ij . (10)

d
′

i is called the marginal d-prime. We calculate the marginal
d-prime values for distances and for angles separately.

Table 1 shows the top-20 landmarks, ranked by their dis-
crimination capability, as determined by their marginal d-
prime values. Figure 7 shows an annotated view of the dis-
crimination capability of the landmarks and their approxi-
mate regions on the face. Our results indicate that from a
distance-based perspective, the landmarks on the face con-
tour are crucial for gender classification. This is not entirely
surprising, especially given the original distribution of the
landmarks on the face, as was shown in Figure 2. The land-
marks in the eye region tend to have a low discrimination
capability, perhaps due to the effect of the eyelids. The
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Table 1. Top 20 landmarks ranked with respect to their discrimi-
nation ability using distance (D) and angle (A) measures.

MUCT XM2VTS MUCT XM2VTS
Rank D A D A Rank D A D A

1 9 21 9 21 11 2 38 11 19
2 7 6 7 27 12 12 71 12 40
3 6 27 8 11 13 30 3 35 16
4 5 16 1 9 14 55 72 30 3
5 8 55 4 26 15 49 28 15 56
6 10 22 3 10 16 71 9 38 38
7 4 20 5 25 17 45 25 46 35
8 11 7 6 20 18 31 46 13 55
9 1 26 2 2 19 32 30 39 28

10 3 31 10 1 20 38 35 45 30

discrimination capability of landmarks in the nose region
varied with different databases, probably due to the incon-
sistency in the annotation process. The landmarks in the
mouth region also showed a low discrimination capability,
because their positions are sensitive to the significant vari-
ability due to mouth expression. The angle-based marginal
d-prime values are generally low, but they can still help
in improving the gender recognition performance, as was
shown in Figure 6. For the angular measurements, the land-
marks on the face contour and in the eye region seem to be
more significant than landmarks in other facial regions for
the problem of facial metrology-based gender prediction.

5.4. Comparative Performance

The experimental results show that facial metrology do
have the potential to discriminate between genders. To
place the results of the facial metrology-based approach in
context, we compared it with the results obtained using an
appearance-based method for gender identification.

As shown in Figure 8 and Table 2, the current perfor-
mance of the metrology-based approach is slightly lower
than the appearance-based method. The major cause might
be due to the limited nature of the information encoded
in the landmarks, and the nontrivial human errors in the
annotation process. Unlike in the classification of facial
expression [16], we do not have prior knowledge about
what local facial regions are most critical in determining
gender. Yet, the performance of the metrology-based ap-
proach (86.83%, 82.83%) was only slightly inferior than
that of the appearance-based method (90.63%, 88.56%) by
about 3.8% for the MUCT database, and about 5.7% for the
XM2VTS database. Also, compared to a 2478-dimensional
feature space in LBP, the metrology-based method has a 20-
dimensional feature space. Thus the execution time in the
test stage of our metrology-based method is lower than that
of the LBP method: 0.02 ms vs 1.8 ms per image for MUCT
database, and 0.03 ms vs 1.7 ms for XM2VTS database.
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Figure 7. Discrimination ability of individual landmarks (based
on marginal d-prime values), along with the approximate facial
regions for the landmarks. (a) distance-based; (b) angle-based.
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Figure 8. Comparative Performance: A–Appearance-based; M–
Metrology-based.

6. Discussion and Conclusion
The results show that facial metrology can indeed be

used for gender classification. There are still several inter-
esting open questions that need to be further studied. A
key question would be how to improve the performance of
the metrology-based method. How can the metrology-based
method maintain its performance when confronted with in-
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Table 2. Summary of the comparative performance results when
using facial metrology(top 10 landmarks) and appearance-based
models in gender classification. The summary statistics in this
table are associated with the results in Figure 8.

Metrology-Based Appearance-Based
Classification Rate MUCT XM2VTS MUCT XM2VTS

Mean 0.8683 0.8283 0.9063 0.8856
Max 0.9091 0.8718 0.9489 0.9282
Min 0.8295 0.7692 0.8750 0.8462
Std 0.0217 0.0251 0.0168 0.0191

creasing database sizes, and more variabilities in the face,
say due to pose, expression, race, aging, etc? The above
two questions might be properly addressed by introducing
a robust landmark detection technique, which can consis-
tently localize the position of the landmarks. Another ques-
tion has to do with the determination of the true capacity of
facial metrology. The advantage of our proposed approach
is that, due to its simplicity and independence, it could be
combined with other more accurate (yet more computation-
ally expensive) methods to improve the overall recognition
performance. This paper is a good starting point in address-
ing these questions, especially for gender classification, and
perhaps for the more general problem of face recognition.
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