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Abstract

Automatic gender classification based on face images

is receiving increased attention in the biometrics commu-

nity. Most gender classification systems have been evalu-

ated only on face images captured in the visible spectrum.

In this work, the possibility of deducing gender from face

images obtained in the near-infrared (NIR) and thermal

(THM) spectra is established. It is observed that the use

of local binary pattern histogram (LBPH) features along

with discriminative classifiers results in reasonable gender

classification accuracy in both the NIR and THM spectra.

Further, the performance of human subjects in classifying

thermal face images is studied. Experiments suggest that

machine-learning methods are better suited than humans

for gender classification from face images in the thermal

spectrum.

1. Introduction

A variety of attributes such as gender, age and ethnic-

ity, besides an individual’s identity, can be deduced from

face images [31]. Predicting gender from a face image has

been actively studied in the computer vision and biomet-

rics literature [13, 22]. The problem of gender classification

from face images can be posed as a two-class problem in

which the input face image is analyzed and assigned to one

of two classes: male or female. Automatic gender classi-

fication has applications in surveillance, human-computer-

interaction and image retrieval systems [5]. In the context

of biometrics, gender is viewed as a soft biometric trait that

can be used to index databases or enhance the recognition

accuracy of primary traits such as face [15].

With advancements in sensing technologies, thermal and

near-infrared images are beginning to be used in face-

related applications. For example, face recognition in near-

infrared (NIR) [17, 32] and thermal (THM) [26] spectra has

been motivated by the need to determine human identity in

nighttime environments [7]. Furthermore, changes in ambi-

ent illumination have lesser impact on face images acquired

in these spectra than the visible spectrum. Current gen-

der classification systems discussed in the literature have

been designed for and evaluated on face images acquired

in the visible spectrum. Little attention has been given to

automatic gender classification from faces in the thermal or

near-infrared spectrum (Figure 1). In fact, only one publica-

tion in the vast biometric literature has dealt with the prob-

lem of gender prediction using near-infrared images [25].

(a) Visible images [18]

(b) Thermal images

(c) Near-infrared images [17]

Figure 1. Samples of face images in different spectra. The left two

columns depict male subjects while the right three columns depict

female subjects. The identities in (a), (b), (c) are different. The

problem of gender estimation in (b) and (c) becomes challenging

when the face images are cropped and the surrounding context

information, such as hair, is lost. See Figures 2 and 4.

Makinen et al. [21] evaluated gender classification meth-

ods in the visible spectrum with automatically detected and
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aligned faces. Three different feature sets based on pixel

intensities of low-resolution images (24 × 24, 36 × 36 and

48 × 48), Local Binary Patterns (LBP) and Haar-like fil-

ters were used, along with Neural Network, Support Vector

Machine (SVM) and Adaboost classifiers. They found that

the SVM classifier operating on 36× 36 pixels face images

gave the best gender classification accuracy. Since there are

visual differences between face images in the visible spec-

trum and those acquired in the NIR or THM spectrum, it

is essential to investigate and determine the most effective

features for gender classification in these spectra.

In this work, we provide a systematical evaluation of dif-

ferent gender classification methods on both NIR and THM

images. To the best of our knowledge, this is the first work

that evaluates the possibility of assessing gender from ther-

mal face images.

The paper is organized as follows. Previous literature in

gender classification is briefly reviewed in Section 2. The

various feature extraction and classification methods used

in this work for gender assessment are presented in Sec-

tion 3. Section 4 presents the results of gender classification

on both thermal and near-infrared face images . A discus-

sion of the results is provided in Section 5, and conclusions

are drawn in Section 6.

2. Relevant Work

The study of automatic gender classification from face

images dates back to the early 1990s and has gained in-

creased interest recently due to renewed focus on attributes-

based face recognition [16]. Most techniques for gender

classification approach the problem from the perspective of

machine learning, as it is essentially a two-class classifica-

tion problem.

Golomb et al. [11] trained a back-propagation neural

network (BPNN) to identify gender from human face im-

ages at a resolution of 30×30 pixels. An average classifica-

tion rate of 91.9% on 90 exemplars was obtained compared

to a human performance of 88.4%.

Later on, Moghaddam et al. [22] utilized SVM for gen-

der classification from low-resolution thumbnail face im-

ages (21× 12). The average five-fold cross-validation clas-

sification rate on 1,755 FERET face images was 96.62%
when the Gaussian Radial Basis Function (RBF) kernel was

used by the SVM. Their work also pointed out that the SVM

classification of low-resolution face images was very effec-

tive, compared to other classifiers.

Baluja et al. [3] used the Adaboost classifier to deter-

mine the gender of a person from a low-resolution face im-

age. The proposed system was extremely fast and yet the

performance was comparable to the SVM-based classifier.

They reported an accuracy of over 93% on a dataset of 2,409

FERET face images each of resolution 20× 20 pixels.

Although the direct use of pixels from low-resolution

face images in [11, 22, 3] resulted in very good gender clas-

sification performance, this represents a rather simple fea-

ture set that may not be robust enough in complex scenarios

involving pose and illumination changes. Therefore, other

types of feature sets have also been proposed. Yang et al.

[31] used the Local Binary Pattern Histogram (LBPH) fea-

tures and the Adaboost classifier to learn the best local fea-

tures for gender classification. Experiments were performed

to predict the age, gender and ethnicity of face images. A

gender classification rate of 93.3% was obtained using five-

fold cross validation on 8,433 snapshot face images.

In principle, a gender classification method can be di-

vided into two components: (a) a feature extractor that ex-

tracts features from the face, and (b) a feature classifier that

assigns the extracted features into one of two classes - male

or female. Feature extraction methods are based on direct

use of pixels from low resolution face images [22, 3], Prin-

ciple Component Analysis (PCA) [2, 12], Linear Discrim-

inant Analysis (LDA) [5, 14] and LBP [31, 10, 29]. Most

gender classifiers are based on Neural Network [11], Ad-

aboost [3, 31], and SVM [22]. A systematic overview of

methods for gender classification from face images in the

visible spectrum can be found in [21]. The choice of feature

extraction and classification methods depends on whether

the faces are aligned manually or automatically [21], and

whether the train and test sets are from the same database

or different databases [5]. The goal of this work is to study

the following two questions:

1. Can a learning-based scheme be used to distinguish

males from females in near-infrared and thermal face

images? Visually, the task appears to be challenging.

But can a machine be trained to make this distinction?

2. Are there specific feature extraction and classification

techniques that result in better gender classification ac-

curacy than others in these spectra?

The first question has implications in the psychology of

gender recognition from faces. We have included experi-

ments in which four human subjects were asked to distin-

guish between males and females in thermal images. These

experimental results are also reported in this paper.

3. Methods

We selected three types of features for gender representa-

tion: LBP, PCA and pixels from low-resolution face images.

These features have been tested before in the gender clas-

sification literature and have proved to be effective in the

visible spectrum. The main discriminant classifiers investi-

gated in this work include SVM, LDA, Adaboost, Random

Forest, Gaussian Mixture Model (GMM) and Multi Layer

Perceptron (MLP).
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The LBP texture descriptor [27, 23] has been success-

fully used in many face-related applications. The features

are calculated based on pixel intensity values within a small

neighborhood. Ahonen et al. [1] first extended the use

of LBP to face recognition and demonstrated that this lo-

cal feature descriptor is very efficient in face representa-

tion. After that, numerous techniques based on LBP fea-

tures have been adopted for gender representation [31, 10].

Earlier work on employing SVM for LBP-based gen-

der classification often used linear or RBF kernels [21, 20].

However, from the results reported in [4] and in subsequent

works, it appears that histogram intersection is an effective

kernel representation scheme making it a good candidate

for building gender classification systems. It has also been

shown that histogram intersection has the required mathe-

matical properties for it to be a suitable kernel function for

SVMs [4] compared to the Gaussian RBF kernel. Besides,

it requires fewer parameters to tune in order to achieve the

optimal performance. Finally, it is much faster to compute

than the Gaussian RBF kernel.

3.1. Feature Extraction

The LBP operator was first introduced and described as

a texture descriptor that computes micro-patterns in an im-

age by thresholding 3×3 neighborhoods based on the value

of the center pixel, and then converting the resulting binary

pattern into a decimal value. Later, it was extended to in-

clude neighborhoods of different sizes to account for tex-

tures at multiple scales [1]. LBP encodes the sign difference

between the center pixel and neighborhoods, and therefore

it is invariant to monotonic illumination changes.

The local neighborhood is defined as a set of sampling

points evenly spaced on a circle (or rectangle). The LBP

operator is described as LBPu2

P,R, where P refers to the

number of sampling points placed on a circle with radius

R. The symbol u2 represents the uniform pattern which, in

our case, refers to those binary patterns that have at most

two bitwise transitions from 0 to 1 or 1 to 0. For instance,

10011111 is a uniform binary pattern while 10100111 is

not. Uniformity is an important concept as it character-

izes micro-features (structural information) such as lines,

edges and corners in the image. Although only 58 out of

the 256 8-bit binary patterns are reckoned to be uniform,

nearly 90% of all observed local image neighbourhoods are

uniform [27, 23]. We chose to use LBPu2

8,1 in all our exper-

iments based on empirical evidence. The binary pattern for

pixels lying in a circle (fp, p = 0, 1, . . . , P − 1) with the

center pixel fc, is calculated as follows:

S(fp − fc) =

{

1 if fp − fc ≥ 0;
0 if fp − fc < 0.

(1)

Then a binomial weight 2p is assigned to each S(fp−fc)

to compute the LBP code:

LBPP,R =
P−1
∑

p=0

S(fp − fc)2
p. (2)

The original image is first divided into non-overlapping

blocks, and the LBP histogram is computed for each block.

After deriving the histogram sequence for each block, the

final global representation is obtained by concatenating in-

dividual sequences [1]. This is not the only way to extract

local binary pattern histogram (LBPH) features from an im-

age. It is possible to densely sample the blocks and apply

the Adaboost algorithm to select LBPH features [31].

The LBPH features derived from an image can be di-

rectly used to perform gender classification. For an image

size of 126 × 90, which is divided into 18 × 15 pixels per

block, the total number of blocks is 42. Each block can

produce 59 bin features for a specific uniform pattern (u2),

leading to a 42 × 59 = 2478 dimensional feature. These

parameters are fixed for all LBP-based experiments. Such a

high dimensional feature vector can be effectively reduced

by applying PCA or other dimension reduction schemes.

Consider a set of LBPH features derived from an image

database, {(xi, ti)}
N
i=1

, where xi is the LBPH feature de-

rived from the ith facial image and ti is the associated gen-

der class label. Here, ti ∈ {−1, 1}, where -1 (+1) indicates

a female (male). The PCA is performed on the covariance

matrix of vectorized images:

Σg =
1

N

N
∑

i=1

(xi − x̄)(xi − x̄)T , (3)

where xi is the derived LBPH feature vector and x̄ is the

mean vector of the training set features. The eigenvec-

tors can be obtained through the decomposition, ΣgΦg =
ΦgΛg, where Φg are the eigenvectors of Σg and Λg are

the corresponding eigenvalues. The gender features are ex-

tracted by projecting the sample vector onto the subspace

expanded by the eigenvectors: si = ΦT
g (xi− x̄). Here, si is

the final feature vector that encodes the gender information

of sample xi.

3.2. Feature Classification

Once the LBPH feature vector xi is reduced to a lower,

but more compact dimensional vector si, different classi-

fiers can be used to predict the gender label.

SVM: SVM [9] is a machine learning technique used

for pattern classification and regression analysis. It is based

on the concept of searching a linear boundary between two

classes of patterns as follows:

y(s) = wTφ(s) + b, (4)

where φ(s) denotes the transformation of the original

feature-space into a higher dimensional space and b is the
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bias. The training set comprises of a set of N train-

ing samples {s1, · · · , sN}, with corresponding label values

{t1, · · · , tN} where ti ∈ {−1, 1}. The incoming new data

point s is classified based on the sign of y(s). We assume

that the training dataset is linearly separable in the trans-

formed feature space, which indicates that there would be a

linear boundary defined by parameters {w, b} satisfying the

condition:

y(si) =

{

1 if ti = +1;
−1 if ti = −1.

(5)

The final criteria is to make sure that ti · y(si) > 1 for all

the training points (i = 1, . . . , N ). If there exists no hyper-

plane that can partition the male and female examples, a soft

margin method is used to solve the following optimization

problem [9]:

min
w,ε

{

1

2
||w||2 + C

N
∑

i=1

εi

}

, (6)

subject to the constraint:

yi(w
T · φ(si) + b) ≥ 1− εi, εi ≥ 0. (7)

Here, εi is a variable introduced to control the trade off

between a large margin and a small error penalty. C is

a constant. SVM seeks a linear separating hyperplane

with the maximal margin in the higher dimensional space

φ(si). The Gaussian RBF kernel is defined as: k(xi, yi) =
exp(−γ||xi−yi||

2). The optimum values for C and the ker-

nel parameter γ are often obtained by a grid-search of the

parameter space. In some cases, where the features are de-

rived from a histogram, as in the case of LBP, the histogram

intersection kernel might be more effective:

k(xi, yi) =
n
∑

i=1

min(xi, yi), (8)

where xi and yi are the ith histogram bin of the feature

vectors x and y. The kernel is related to the transform φ by

the equation k(xi, xj) = φ(xi)
T · φ(xj).

LDA: In the work of [5], the authors argued that the use

of linear classification techniques is preferred in the context

of limited computational resources. LDA classifier tries to

maximize the separation of male and female classes based

on the Fisher’s criterion:

J(w) =
wTSBw

wTSWw
, (9)

where SB is the between-class scatter matrix and SW is the

within-class scatter matrix. J(w) is the objective function

that we are trying to maximize with respect to w. The max-

imum value (projection matrix) is obtained by solving the

generalized eigenvalue problem of S−1

W SB .

Adaboost: Adaboost [3] is a method for constructing a

strong classifier as a cascaded linear combination of simple

weak classifiers. In the cascaded arrangement, the subse-

quent classifiers are tweaked in favor of those training pat-

terns that are misclassified by previous classifiers. The Ad-

aboost classifier can be denoted as:

f(x) =
T
∑

t=1

αtht(x), (10)

where ht(x) refers to the weak classifier operating on the

input feature set x and T is the number of weak classifiers.

The sign of f(x) is the output of the final strong classi-

fier. αt is the corresponding weight for each weak classi-

fier. Adaboost has been observed to result in good clas-

sification even if the base weak classifiers perform poorly.

We apply the Adaboost classifier to both the LBP and low-

resolution feature sets. It is implemented based on decision

stump weaklearners (decision tree with a single node). The

default number of weak classifiers used is 100.

Random Forest: Random Forest (RF) [8] is an ensem-

ble classifier that consists of many decision trees. Each de-

cision tree is trained independently and successively based

on a boot-strapped sampling of the training dataset. The

individual learners are combined through bootstrap aggre-

gation [8]. Given an input feature vector, it successively

moves through the individual trees in the forest. The fi-

nal classification (prediction) is based on a majority voting

scheme over all the trees. Recent work [30] on the task of

gender classification from infants to seniors has also shown

the superiority of using Random Forest for feature selection.

3.3. Other Gender Classifiers

Apart from the aforementioned classifiers, other types of

classifiers such as GMM [19], MLP [21] and Bayesian [28]

have been used in the gender classification literature work.

In the GMM or Bayesian classifier, the probability density

function for each class (i.e., male and female) is modeled as

a multivariate Gaussian distribution:

p(x) =
1

(2π)D/2

1

|Σ|1/2
exp{−

1

2
(x− µ)TΣ−1(x− µ)}.

(11)

Here, D is the dimension of the feature vector that encodes

gender information and µ is the D-dimensional mean vector.

Σ is the D × D covariance matrix and its determinant is

denoted by |Σ|. The classification is done by maximizing

the posterior function: p(Ci|xt) = p(xt|Ci · p(Ci)), i ∈
{1, 2}.

A MLP neutral network is composed of an input layer,

a hidden layer and an output layer. It utilizes a supervised

learning technique (backpropagation) to train the network.

The number of input nodes is equal to the dimension of the

feature vector. We select 20 hidden nodes, and the number

Proc. of International Joint Conference on Biometrics (IJCB), (Washington DC, USA), October 2011



of training cycles is set to be 40. The output value is based

on the classification threshold, for instance, 0.5. An output

value above the threshold is classified as male and a value

below is classified as female. Some of the classifiers used

in this work are adapted from [24].

4. Experiments

In order to establish the possibility of assessing gender

from images obtained in non-visible spectra, we use a ther-

mal face database and a near-infrared face database. The

eye coordinates of the face images are manually located.

Sometimes, a mask was necessary to exclude any useless

background information.

4.1. Thermal Dataset

The thermal database contains one thermal face image

each of 1003 subjects. In addition, this database contains

two visible-light (VIS) images for each of these subjects.

The image size is 480× 640 pixels. The size of each image

after alignment and cropping is 130 × 150 pixels. For the

LBP methods, the image is resized to 126 × 90. There are

229 female subjects and 774 male subjects. The subjects

have variations in age and ethnicity. Most of the samples

are captured in the near-frontal pose (Figure 2).

Figure 2. Samples images from the thermal database. Top row

shows male subjects and the bottom row shows female subjects.

To test gender classification algorithms on thermal im-

ages, the first 100 male and 100 female subjects are selected

for training and the remaining are used for testing. This en-

sures that there is no overlapping of subjects between the

training and test sets. Thus, there are 674 male subjects

and 129 female subjects in the test set. The male (female)

classification rate is defined as the percentage of males (fe-

males) that are correctly recognized within the male (fe-

male) group. These classification rates are used to deter-

mine if there is any bias of individual groups towards over-

all classification performance due to imbalanced test data

sets. The ratio of males and females in the test set is close

to 5:1.

As shown in Table 1, the use of histogram intersec-

tion (HI) kernel in SVM results in better performance than

the linear kernel (LI) in terms of the female classification

rate. The LBP+SVM (HI) method achieves 84.50% accu-

racy for female classification, compared to 79.07% using

the LBP+SVM (LI) method. The RBF kernel (C = 8, γ =
0.002) achieves better results than both HI and LI kernels,

except for female classification. However, it is much slower

during the training stage as it searches a large parameter

space to seek the optimum values. The performance is fur-

ther enhanced with the use of PCA to derive a more com-

pact feature descriptor, compared to LBP+SVM (LI). The

reduced dimension feature vector is 60 in this experiment

based on singular value decomposition (SVD). Among all

tested classifiers, SVM (LBP+PCA+SVM) results in the

most balanced accuracy in terms of overall male and fe-

male classification rates. Here, the linear SVM kernel is

preferred, since the derived feature is no longer directly ob-

tained from histogram bin features.

In order to show that LBPH descriptor is much more

effective than PCA or low-resolution features extracted

from thermal images, we perform experiments on the same

dataset with the latter set of features (Figure 3). The

best overall performance of 81.32% is achieved using the

PCA+LDA methods. The individual performances for male

and female groups are 80.71% and 84.50%, respectively.

KNN SVM LDA MLP GMM Raw+SVMRaw+Boost
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Figure 3. Performance evaluation of different gender classifiers

based on PCA and low resolution features on the thermal dataset

(First five methods use the PCA features).

Since the thermal database includes visible-light (RGB)

images for each subject, gender classification is conducted

on the visible spectra as well. It must be noted that the

pairs of visible and thermal images are not co-registered.

From the results in Table 2, the LBP+PCA+SVM method

has the best overall performance of 90.66%. The RBF ker-

nel (C = 2, γ = 0.002) is slightly better than the HI ker-

nel. Meanwhile, the HI kernel is much better than the LI

kernel. Compared to the LBP+SVM (LI) method, the en-

hanced feature reduction and classification methods such as
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Table 1. Gender classification accuracy on thermal images.

Algorithm Overall Male Female

LBP+SVM (HI) 0.8792 0.8858 0.8450

LBP+SVM (LI) 0.8705 0.8858 0.7907

LBP+SVM (RBF) 0.9041 0.9184 0.8295

LBP+RandomForest 0.8655 0.8665 0.8605

LBP+PCA+SVM 0.9016 0.9110 0.8527

LBP+PCA+LDA 0.8667 0.8650 0.8760

LBP+PCA+MLP 0.8804 0.8828 0.8682

LBP+PCA+GMM 0.8742 0.8783 0.8527

Table 2. Gender classification accuracy on visible images in the

thermal database.

Algorithm Overall Male Female

LBP+SVM (HI) 0.8842 0.8739 0.9380

LBP+SVM (LI) 0.8493 0.8398 0.8992

LBP+SVM (RBF) 0.8941 0.8828 0.9535

LBP+RandomForest 0.8667 0.8546 0.9302

LBP+PCA+SVM 0.9066 0.9036 0.9225

LBP+PCA+LDA 0.8804 0.8724 0.9225

LBP+PCA+MLP 0.8643 0.8501 0.9380

LBP+PCA+GMM 0.8269 0.8205 0.8605

LBP+PCA+SVM, LBP+PCA+LDA and LBP+PCA+MLP

achieve better results. The average overall performance of

all the seven algorithms on the thermal dataset is 88.03%,

compared to 87.16% on the visible dataset. This suggests

the feasibility of assessing gender from thermal images as

well. This is the first work in the literature that establishes

this possibility.

4.2. NIR Dataset

In this section, the gender classification methods are

evaluated on NIR images. There is limited work conducted

on gender classification exclusively in the NIR dataset. Un-

like images in the thermal spectrum, facial features from

NIR face images are much more visually perceptible.

The CBSR NIR Face Dataset 1 [17] contains 3,940 NIR

face images of 197 persons. The original image size is

480 × 640 pixels. After alignment and normalization, the

image size is 130 × 150. Each subject has 20 samples. We

manually label the gender information and exclude those

subjects that are not easily recognizable. In the end, 135

male subjects and 55 female subjects are used. Samples of

one subject are shown in Figure 4(a) and the corresponding

normalized versions are shown in Figure 4(b). The normal-

ization approach is based on manually located eye coordi-

nates and is described in the work of Bolme et al. [6].

1CBSR database: http://www.cse.ohio-state.edu/otcbvs-bench/

(a)

(b)

Figure 4. (a) Original NIR face samples of one subject from CBSR

dataset; (b) Normalized NIR face samples.

To test gender classification algorithms in the NIR

dataset, 15 male subjects and 15 female subjects are used

for training. The total number of training samples is 15 ×
20+15×20 = 600. The remaining 120 male and 40 female

subjects are used for testing, resulting in a total of 3200 im-

ages. The subjects in the training and test sets are mutually

exclusive in this experiment also.
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Figure 5. Comparison of different gender classification algorithms

on CBSR NIR dataset based on overall accuracy.

From the results shown in Figure 5 and Table 3, the

LBPH descriptor of facial features gives the best classifi-

cation accuracy, with LBP+SVM (HI) resulting in 93.59%,

LBP+SVM (LI) resulting in 91.91% and LBP+SVM (RBF,

C = 32, γ = 0.001) resulting in 91.97%. The results indi-
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Table 3. Gender classification accuracy on near-infrared images

using different feature sets and classifiers.

Algorithm Overall Male Female

LBP+SVM (HI) 0.9359 0.9417 0.9187

LBP+SVM (LI) 0.9191 0.9208 0.9137

LBP+SVM (RBF) 0.9197 0.9375 0.8662

LBP+Adaboost 0.8556 0.8458 0.8850

LBP+RandomForest 0.9100 0.9208 0.8775

PCA+KNN 0.6634 0.6358 0.7462

PCA+SVM (LI) 0.8531 0.8721 0.7963

PCA+GMM 0.7659 0.8013 0.6600

PCA+LDA 0.8516 0.8533 0.8462

RawPixels+SVM [22] 0.8897 0.9083 0.8337

RawPixels+Adaboost [3] 0.8819 0.9033 0.8175

cate that the HI kernel is superior to both the LI and RBF

kernels in this case. The combination of LBP and Adaboost

resulted in a classification rate of 84.58% for males and

88.5% for females. For the Random Forest classifier with

LBP features (LBP+RandomForest), an overall accuracy of

91% is obtained. The individual accuracy of this method for

male and female classes were 92.08% and 87.75%, respec-

tively.

We also tested other type of facial features such as PCA

and low-resolution image pixels (See Table 3). For the PCA

method, SVD is used to reduce the feature dimensionality

to 60. The image was also resized to 32×32 pixels. Among

all the PCA-based methods, the SVM (PCA+SVM(LI))

and LDA (PCA+LDA) classifiers result in the best perfor-

mance, although this is still lower than the LBP-based meth-

ods. The rest of the classifiers, such as GMM classifier

(PCA+GMM) and KNN do not result in good performance.

The low-resolution feature representation has been ob-

served to perform well in the visible spectrum [22, 3]. We

apply the same methods used in the work of [22] and [3]

on the NIR dataset. Each image was resized to 20 × 20.

The number of weak classifiers used by the Adaboost clas-

sifier was 625 (Table 3). The SVM classifier used a Gaus-

sian RBF kernel with γ = 0.001 and C = 1, based on a

grid-search of the parameter space. Individual classifica-

tion rates of 88.97% and 88.19% were obtained for SVM

and Adaboost, respectively.

The above experiments show the effectiveness of em-

ploying LBP features for gender classification in NIR spec-

trum, compared to PCA or low resolution (RawPixels) fea-

tures [22, 3].

5. Discussion

In Section 4.1, various gender classification methods

have been evaluated on thermal face images. The visual

Table 4. Gender classification accuracy reported on thermal im-

ages based on human perception. Subject A and B are male ob-

servers and subject C and D are female observers (Four subjects in

total). Note that the subjects were not very good at classifying fe-

male face images. The subjects possibly classified all ambiguous

images as male.

Observers Overall Male Female

Subject A 0.9141 0.9585 0.6822

Subject B 0.8966 0.9748 0.4884

Subject C 0.8917 0.9496 0.5891

Subject D 0.9078 0.9896 0.4806

Machine 0.9016 0.9110 0.8527

appearance of facial thermal images is remarkably differ-

ent from that of visible-light and near-infrared face images.

This poses a big challenge for humans to recognize gender

information from thermal face images (cropped) if the en-

tire upper-body image is not available (See Figure 2). How-

ever, machine learning approaches treat a face image as a

bunch of pixels and automatically select the most relevant

features from an image to perform gender classification.

In order to compare the performance of the proposed

approach against that of humans, we asked several human

subjects (observers) to perform gender prediction indepen-

dently. Only the cropped version of thermal images were

provided to human subjects and they were asked to assign

one of two labels to each image: male or female. Hu-

man observers tend to classify males or females based on

presence or absence of mustache, beard and eyelids, which

are still observable in the thermal spectrum. Ambiguities

arise when such distinctive features are not available in the

face images. As seen in Table 4, more females are mis-

classified as males while fewer males are misclassified as

females. This is expected since females are usually much

more difficult to classify than males when important facial

features are missing. On the other hand, the machine learn-

ing approach automatically selects relevant facial features

from thermal images to make this distinction. This exper-

iment demonstrates the advantage of using machine learn-

ing approaches for gender classification in complex scenar-

ios involving non-traditional spectrum. The machine al-

gorithm performance reported in Table 4 is based on the

LBP+PCA+SVM method in Table 1.

6. Conclusion

In this paper, we evaluated different gender classification

methods in both thermal and near-infrared face databases.

Our work demonstrates the importance of SVM, Adaboost

and LDA classifiers for gender recognition. It was shown

that SVM for histogram-based gender classification results

in much better performance than PCA features or low-
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resolution pixel intensity values in both the thermal and

near-infrared spectra. Further, machine-learning based gen-

der classification achieves better results compared to that

of humans in the thermal spectrum. This is the first work

that evaluates various gender classifiers on near-infrared

and thermal images.
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