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Abstract

In light of the rising demand for biometric-
authentication systems, preventing face spoofing attacks is
a critical issue for the safe deployment of face recognition
systems. Here, we propose an efficient face presentation
attack detection (PAD) algorithm that requires minimal
hardware and only a small database, making it suitable
for resource-constrained devices such as mobile phones.
Utilizing one monocular visible light camera, the proposed
algorithm takes two facial photos, one taken with a flash,
the other without a flash. The proposed SpecDiff descrip-
tor is constructed by leveraging two types of reflection: (i)
specular reflections from the iris region that have a specific
intensity distribution depending on liveness, and (ii) diffuse
reflections from the entire face region that represents the
3D structure of a subject’s face. Classifiers trained with
SpecDiff descriptor outperforms other flash-based PAD
algorithms on both an in-house database and on publicly
available NUAA, Replay-Attack, and SiW databases.
Moreover, the proposed algorithm achieves statistically
significantly better accuracy to that of an end-to-end, deep
neural network classifier, while being approximately six-
times faster execution speed. The code is publicly available
at https://github.com/Akinori-F-Ebihara/
SpecDiff-spoofing-detector.

1. Introduction

A biometric authentication system has an advantage over
a traditional password-based authentication system: it uses
intrinsic features such as a face or fingerprint, so the user
does not have to remember anything to be authenticated.
Among the various biometric authentication systems, face-
recognition-based ones take advantage of the huge variety
of facial features across individuals, and thus have the po-
tential to offer convenience and high security. Face authen-
tication, however, has a major drawback common to other
forms of biometric authentication: a nonzero probability of
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Figure 1. Construction of the proposed SpecDiff descriptor. (a)
Two photos, one taken with a flash (top), the other without a flash
(bottom), are shot within ≈ 200 milliseconds. (b) Face and eye
regions are extracted from the two photos and resized, and the
Speculum Descriptor (Dspec ∈ R3200 for each eye) and the Dif-
fusion Descriptor (Ddiff ∈ R10000) are calculated from these re-
gions. Two example results obtained with live (left) and spoof
(right) faces are shown. Note that the actual region used to calcu-
late DSpec is 40 × 40 pixels square region inside the iris cen-
tered on the pupil. (c) The two descriptors are vectorized and
concatenated to build the SpecDiff descriptor, which is then
classified by standard classifiers such as a support vector machine
(SVM, [27]) or a neural network.

false rejection and false acceptance. While false rejection is
less problematic, because a genuine user can usually make
a second attempt to be authorized, false acceptance entails
a higher security risk. When a false acceptance occurs, the
system may actually be under an attack by a malicious im-
poster attempting to break into it. Acquiring facial images
via social networks is now easier than ever, allowing attack-
ers to execute a variety of attacks using printed photos or
recorded video. The demand for technologies for detecting
face presentation attack detection (PAD) is thus rising in an
effort to ensure the security of sites deploying face recog-
nition systems. Face recognition systems are being used
at, for example, airports and office entrances and as login
systems of edge devices. Each site has its own hardware
availability; i.e., it may have access to a server that can per-
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Figure 2. The proposed Dspec and Ddiff , calculated and averaged
across the live face class (N = 1176, blue) and the spoof face
class (N = 1660, red). The ordinates have arbitrary units (A.U.).
(a) Vectorized Speculum Descriptor, Dspec ∈ R3200, calculated
from iris regions. (b) Vectorized Diffusion Descriptor, Ddiff ∈
R10000, calculated from face regions.

form computationally expensive calculations, or it may be
equipped with infrared imaging devices. On the other hand,
it may only have access to a low-performance CPU. It is
thus natural that the suitable face PAD algorithm will dif-
fer according to the hardware availability. The advent of
deep-learning technologies has allowed high-precision im-
age processing that competes with human abilities at the ex-
pense of high computational cost. On the other hand, there
is still a need for an efficient PAD algorithm that works with
minimal computational resources. In this study, we focus
on this case: PAD on a mobile phone equipped only with a
CPU, without access to external servers.

In line the goal of developing PAD technology inde-
pendent of hardware requirements, we decided to use one
visible-light camera mounted on the front of the mobile de-
vice, and have devised an efficient, novel flash reflection-
based face PAD algorithm. The algorithm leverages spec-
ular and diffuse reflections from the iris regions and the
facial surface, respectively. An all-white, bright screen is
used as a flash simulator, and two facial photos, taken with
and without a flash, are used to calculate the Speculum

Descriptor, Dspec ∈ R3200 and the Diffusion Descriptor,
Ddiff ∈ R10000. Both descriptors are based on the dif-
ference between the two facial photos and are normalized
by the luminance intensities such that the descriptor mag-
nitude is bounded in the range [−1, 1], thereby facilitating
the training of classifiers and improvement of their classifi-
cation accuracy (Fig.2).

Testing on a small in-house database containing ≈ 1K
image pairs per binary class (live or spoof face), the
proposed descriptor classified with a support vector ma-
chine (SVM) achieved the highest classification perfor-
mance among other flash-based face PAD algorithms. Gen-
eralizability across different domains is verified by cross-
database evaluation on NUAA, Replay-Attack, and SiW
databases; all classifiers are trained on the in-house database
and tested on the three public databases. The results con-
firmed that the proposed algorithm not only outperforms
other flash-based algorithms on the public databases but
also achieves statistically significantly better classification
performance than that of a computationally expensive, end-
to-end deep neural network that is six-times slower.

The proposed algorithm enables efficient, user-friendly,
and accurate PAD. Its contributions are summarized below:

1. Minimal hardware requirements: a single visible-light
camera and a flash light-emitting device.

2. Minimal computational requirements: implementable
on mobile devices.

3. Minimal database requirements: trainable with merely
≈ 1K image pairs for both live and spoof face classes.

4. Minimal data label requirements: no auxiliary super-
vision such as depth or segmentation is needed.

5. High detection accuracy, better than an end-to-end,
deep neural network model, but with six-times faster
execution.

2. Related Work
The current PAD technologies aimed against spoofing

attacks are summarized below. Face spoofing attacks can
be subdivided into two major categories: 2D attacks and
3D attacks. The former includes print-attacks and video-
replay attacks, while the latter includes 3D spoofing mask
attacks. Several publicly available databases simulate these
attacks. To name a few, the NUAA [25] and Print-Attack [1]
databases simulate photo attacks. The Replay-Attack [5],
CASIA Face Anti-Spoofing [32], The MSU Mobile Face
Spoofing Database [29], and Spoofing in the Wild (SiW,
[15]) databases contain replay attacks in addition to photo
attacks. The 3D Mask Attack Database [7] and HKBU-
Mask Attack with Real World Variations [12] simulate 3D
mask attacks. Example countermeasures to each attack type
are summarized below.



2.1. Countermeasures to 2D attacks

Because of the reflectance of printed media and the use
of photo compression, printed photos have surface textures
or patterns that differ from those of a live human face, and
these textures can be used to detect print attacks. Replay
attacks are conducted by playing video on displays such as
monitors or screens, which also have surface properties dif-
ferent from those of a live face. Here, local binary pattern
(LBP, [5, 6, 17]), Gaussian filtering [11, 21], and their vari-
ants can be used to detect 2D attacks.

Infrared imaging can be used to counter replay attacks,
because the display emits light only at visible wavelengths
(i.e., a face does not appear in an infrared picture taken of
a display whereas it appears in an image of an actual per-
son [23]). Another replay-attack-specific surface property
is moiré pattern [8].

A prominent feature of these 2D attacks is the flat, 2D
structure of the spoofing media. Here, stereo vision [22],
depth measurement from defocusing [10], and flash-based
3D measurements [3, 16, 18, 26] are effective countermea-
sures that detect flatness as a surrogate of 2D spoofing at-
tacks. In this paper, we focus on using flash-based PAD to
counter 2D attacks.

Some algorithms, including ours, construct descriptors
from pictures taken with or without a flash. The following
four are mono-colored-flash-based algorithms: (i) LBP FI
(LBP on the flash image), in which the LBP of a picture
taken with a flash is used as a descriptor [3]; (ii) SD FIC
(the standard deviation of face intensity change), in which
the standard deviation of the difference between photos of
the same subject taken with and without a flash is used as
a descriptor [3]; (iii) Face flashing, in which the descriptor
is made from the relative reflectance between two different
pixels in one photo taken with a flash, i.e., the reflectance
of each facial pixel divided by that of a reflectance pixel
(hereafter abbreviated as RelativeRef [26]); (iv) implicit 3D
features, where pixel-wise differences in pictures taken with
and without a flash are calculated and divided by the pixel
intensity of the picture without the flash on a pixel-by-pixel
basis [18]. We compare these algorithms with ours in Re-
sults section.

2.2. Countermeasures to 3D mask attacks

The recent 3D reconstruction and printing technologies
have given malicious users the ability to produce realistic
spoofing masks [14]. One example countermeasure against
such a 3D attack is multispectral imaging. Steiner et al.
[24] have reported the effectiveness of short-wave infrared
(SWIR) imaging for detecting masks. Another approach
is remote photoplethysmography (rPPG), which calculates
pulse rhythms from periodic changes in face color [13].

In this paper, however, we do not consider 3D attacks
because they are less likely due to the high cost of producing

3D masks. Our work focuses on preventing photo attacks
and replay attacks.

2.3. End-to-end deep neural networks

The advent of deep learning has allowed researchers to
construct an end-to-end classifier without having to design
an explicit descriptor. Research on face PAD is no excep-
tion; that is, deep neural network-based countermeasures
have been found for not only photo attacks but also replay
and 3D mask attacks [19, 20, 31]. The Experiment section
compares our algorithm’s performance with that of a deep
neural network-based, end-to-end classifier.

3. Proposed algorithm
We propose a PAD algorithm that uses both specular

and diffuse reflection of flash light. The iris regions and
the facial surface are used to compute the Speculum De-
scriptor, Dspec, and the Diffusion Descriptor, Ddiff , respec-
tively. The two descriptors are vectorized and concatenated
to build the SpecDiff descriptor, which can be classified
as a live or spoof face by using a standard classifier such as
SVM or a neural network.

The procedure is as follows. During and after the flash il-
lumination, two RGB, three-channel photos are taken: P (f)

with a flash, and P (b) under background light. Since not
all front cameras of smartphones are equipped with a flash
LED, all display pixels are simultaneously excited with the
highest luminance intensity to simulate light from a flash.
The flash duration is as short as 200 milliseconds such that
it does not harm the user experience.

Before Dspec and Ddiff are calculated, the following
common preprocessing functions are applied to both P (f)

and P (b):

• Function Rotation: make the facial image upright.

• Function GrayScale: transfer RGB images into
grayscale images.

• Function FaceDetection: detect face location
(Facecen) from each image.

• Function FeatExtraction: extract locations of facial
feature points (Faceloc) from each face.

• Function FaceCrop: crop the region of interest.

• Function GaussF ilter: apply Gaussian filter to in-
crease position invariance.

• Function Resize: resize the region of interest.

For face detection and facial feature extraction, the LBP-
AdaBoost algorithm [28] and the supervised descent
method [30] are used in combination. Note that because
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Figure 3. Specular reflections from iris regions. (a) Region of in-
terest (ROI). A square ROI whose edge is one-third of the horizon-
tal eye length (“len” in the panel) is used to crop the iris region.
(b) Live iris pictures taken with (i(f)) or without (i(b)) a flash. (c)
Spoof iris pictures taken with (i(f)) or without (i(b)) a flash. Top
row: a print attack with a picture taken without a flash (P (b)).
Bottom row: a print attack with a picture taken with a flash (P (f)).

Gaussian filtration is applied after cropping the region of in-
terest, it does not take significant calculation time compared
with the other processings. For the details of cropping, fil-
tering, and resizing, see sections 3.1 and 3.2.

The positions of the faces detected in the two photos may
potentially be different. However, because the flash dura-
tion is as short as 200 ms, the positional difference does not
cause a major problem with face alignment.

3.1. Dspec: specular-reflection-based descriptor

Unlike a printed photo or image shown on a display,
the human iris shows specular reflection (due to its curved,
glass beads-like structure) when light is flashed in front of
it. Thus, if P (f) is from a live face, a white spot reflecting
the flash appears, whereas in the case of a live P (b), a white
spot does not appear (Fig.3b). On the other hand, if P (f) and
P (b) are from a spoof face, a white spot appears in neither
of them, but if a flashed face is used as the spoof face, it ap-
pears in both of them (Fig.3c). To utilize this difference as
Dspec, the iris regions are extracted from the cropped face
according to Faceloc. The iris regions are defined as two
square boxes centered on each eye, having an edge length
that is one-third of the horizontal length of the eye (Fig.3a).
A Gaussian kernel with a two-pixel standard deviation is
applied to each of the regions and then they are resized to
40 × 40 pixels. Hereafter, the extracted and resized iris re-
gions from both eyes are denoted as i(f) ∈ R40×40×2 and
i(b) ∈ R40×40×2. Pixel intensities at the vertical location
h, horizontal location w, and eye position s are denoted
as i(f)h,w,s and i(b)

h,w,s. An intermediate descriptor S is calcu-

lated by pixel-wise subtraction of i(b)
h,w,s from i

(f)
h,w,s, which

is then normalized by the sum of the luminance magnitudes,
i
(f)
h,w,s + i

(b)
h,w,s, as follows:

Sh,w,s =


0 if i(f)h,w,s = i

(b)
h,w,s = 0

i
(f)
h,w,s − i

(b)
h,w,s

i
(f)
h,w,s + i

(b)
h,w,s

otherwise.
(1)

Because i(f)h,w,s and i(b)
h,w,s are greater than or equal to zero,

Sh,w,s ∈ [−1, 1].
One potential weakness of Dspec is its sensitivity to

change in the position of the reflected-light spot. Depend-
ing on the relative position of the subject’s face and direc-
tion of the flash, the position of the white-reflection spot
inside the iris region changes. Although Gaussian filtering
increases positional invariance, the variance of the spot po-
sition is much larger than the Gaussian-kernel width. Thus,
to further increase positional invariance, the elements of the
vectorized descriptor that are originated from each eye are
sorted in ascending order to obtain Dspec ∈ R3200 as fol-
lows:

S = vectorize(S)
Dspec = sort(S)

(2)

3.2. Ddiff: diffuse-reflection-based descriptor

Although it has been confirmed that Dspec by itself can
detect spoofing attacks, it has several pitfalls. Firstly, if a
live subject is wearing glasses, the lens surface reflects the
flash. The false-negative rate is increased when glasses-
originated specular light contaminates the iris-originated
specular light. Secondly, if a photo printed on a glossy pa-
per is bent and used for an attack, there is a slight chance
that the flash will reflect at the iris region of the printed
photo, leading to increased false-negative rate. To compen-
sate for this risk, we propose another liveness descriptor
based on facial diffuse reflection, called the Diffusion De-
scriptor or Ddiff . Ddiff represents the surface structure of a
face: live faces have the 3D structures, whereas spoof faces
have 2D flat surfaces. An intermediate descriptor S is cal-
culated from the pixel intensities in the face region (in a
similar manner to equation 1) as follows:

Sh,w =


0 if I(f)

h,w = I
(b)
h,w = 0

I
(f)
h,w − I

(b)
h,w

I
(f)
h,w + I

(b)
h,w

otherwise
(3)

where I(f) ∈ R100×100 and I(b) ∈ R100×100 are face
regions in photos P (f) and P (b), cropped with rectangles
circumscribing all Faceloc, filtered with a Gaussian
kernel with a five-pixel standard deviation, and resized to
100 × 100 pixels. Here, Sh,w ∈ [−1, 1] because I(f)

h,w and

I
(b)
h,w are greater than or equal to zero. Unlike the case of
Dspec, the intermediate descriptor S is vectorized without
sorting to preserve the spatial integrity of the face region:

Ddiff = vectorize(S). (4)

In light of the Lambertian model, we can understand why
does Ddiff represent the 3D structure of a face. Moreover,
the Lambertian model explains an additional advantage of



Ddiff : color invariance (also see [18]). This can be seen
as follows: assuming that the entire face is a Lambertian
surface (i.e., a uniform diffuser), the surface-luminance in-
tensity depends on the radiant intensity per unit area in the
direction of observation. Thus, the pixel intensity Ih,w at
the vertical position h and horizontal position w can be de-
scribed as:

Ih,w = LKh,w cos θh,w (5)

where L, Kh,w, and θh,w denote the light-source intensity,
surface reflectance coefficient, and angle of incidence, re-
spectively. As equation 5 indicates, the luminance intensity
Ih,w depends on the 3D structure of the facial surface that
determines θh,w. Additionally, Ih,w depends on the surface
reflectance Kh,w. This means that differences in color of
the surface (e.g., light skin vs. dark skin) affect the observed
luminance intensity even under the same light intensity, L.
The design of equation 3 solves color-dependency problem
by canceling out the surface reflectanceKh,w. Under the as-
sumption of a Lambertian surface, the terms I(f)

h,w and I(b)
h,w

are expressed as:

I
(f)
h,w = L(f)Kh,w cos θh,w + L(f)Kh,w

I
(b)
h,w = L(b)Kh,w

(6)

where L(f) and L(b) are the intensities of the flash light
and background light (ambient light), respectively. Since
ambient light coming from all directions is integrated, the
background-light term does not depend on the incident an-
gle of the light. Substituting I(f)

h,w and I(b)
h,w into equation 3

yields the intermediate descriptor S:

Sh,w =


0 if I(f)

h,w = I
(b)
h,w = 0

L(f) cos θh,w

L(f) cos θh,w + 2L(b)
otherwise.

(7)
Equation 7 depends on θ and represents the 3D structure of
the facial surface. Yet equation 7 is independent of the sur-
face reflectance K, thereby avoiding the skin-color prob-
lem. Thus, although Lambertian reflections from the fa-
cial surface can be modeled as a function of the surface re-
flectance and surface 3D structure, equation 3 cancels K in
order to confer color invariance as an additional advantage
to Ddiff .

3.3. SpecDiff descriptor

The two descriptors are concatenated into the SpecDiff
descriptor:

SpecDiff = concatenate(Dspec,Ddiff) (8)

6ch. image

7x7 conv, 64, /2

3x3 conv, 128

3x3 conv, 128

global ave. pool

FC 2

3ch. image
w/o flash

3ch. image
w/ flash

descriptor calculation

SVM (linear or RBF)

(b)(a) Hand-creafted
features

End-to-end
(ResNet4)

Figure 4. Classifiers. (a) SVM classifier applied to the calculated
descriptors, Dspec, Ddiff , and SpecDiff . (b) ResNet4, an end-
to-end classifier taking I ′(f) and I ′(b) as a six-channel tensor.

The SpecDiff descriptor attains higher classification ac-
curacy compared with either Dspec or Ddiff alone. As
both Dspec and Ddiff are normalized in the range [−1, 1],
SpecDiff also has a bounded descriptor magnitude that
helps model training and classification. The experiments
described below, however, test not only SpecDiff ; the ab-
lation studies test Dspec and Ddiff by themselves.

4. Experiments

4.1. Databases

As of late-2019, there is no publicly available facial-
image database of images taken with and without a flash.
Therefore, we collected 1176 and 1660 photos of live and
spoof faces of 20 subjects, respectively. The images are
taken under two lighting conditions (bright office area or
dark corridor area), two facial-accessory conditions (glasses
or nothing), and three facial expressions (smile, mouth
opened, or no expression). Each condition has 4 or 5 re-
peats with varying backgrounds. Thus, for the live faces,
one subject has approximately 60 repeats. Spoof faces in-
clude flat-papers, bent-papers, and displays. For the flat-
paper conditions, one subject has the same number of re-
peats as the live faces. For the bent-paper conditions, one
subject has approximately 12 repeats, including 4 bend di-
rections (horizontal, vertical, and two diagonal directions)
and at least one lighting condition (bright office area), two
facial-accessory conditions (glasses or nothing), and two fa-
cial expressions (two of the three expressions as above). For
the display conditions, one subject has approximately 10 re-
peats, including at least one lighting condition (bright office
area), two facial-accessory conditions (glasses or nothing),
three facial expressions (smile, mouth opened, or no expres-
sion). Thus, for the spoof faces, one subject has at least 82
repeats in total.

To test the generalizability of the proposed method, a
cross-database validation is conducted using presentation
attacks contained in the three public databases, NUAA,



Replay-Attack, and SiW (test subset), which consist of 15
IDs / 7509 pictures, 50 IDs / 1000 videos, and 75 IDs / 1462
videos, respectively, simulating photo and display attacks.
For each photo and video, we take images with and without
a flash to create test databases. These public databases are
used exclusively for testing models. For both in-house and
public databases, the device used for the data collection is
an iPhone7 (A1779), and the display-attack devices are an
iPad Pro (A1584) and ASUS ZenFone Go (ZB551KL).

4.2. Models

The classification performances of the proposed descrip-
tors are evaluated using SVM, either with a linear or radial
basis function (RBF) kernel (Fig.4a). Libsvm package is
used for the SVM training [4]. Dspec,Ddiff , and SpecDiff
are compared with four previously reported flash-based de-
scriptors: SD FIC (R, [3]), LBP FI (R10000, [3]), Rela-
tiveRef (R10000, [26]), and Implicit3D (R10000, [18]).

ResNet4 (Fig.4b) and ResNet18 [9] are constructed as
end-to-end deep neural networks. They take as input a six-
channel image that is constructed with two three-channel
images I ′(f) and I ′(b) concatenated along the channel axis.
I ′(f) and I ′(b) are facial images with and without a flash,
undergone the same preprocessing steps as the proposed al-
gorithm, except GrayScale and GaussFilter functions. The
resulting input image size is [244 × 244 × 6]. the last two
layers, global average pooling and FC layer of ResNet4 and
ResNet18, classify a 128-channel tensor into one of the two
alternative classes. We do not consider neural networks
that are deeper or more complex than ResNet18, because
ResNet18 shows significantly worse results compared with
that of ResNet4 (See Results section).

4.3. Evaluation metrics

Following ISO/IEC 30107-3 metrics, we calculated at-
tack presentation classification error rate (APCER), bona
fide presentation classification error rate (BPCER), and av-
erage classification error rate (ACER).

One problem in evaluation is that we cannot access to the
live subjects appear in the public databases. Thus, we can
only evaluate APCER using spoof subjects either printed
on papers or projected on screens. In order to obtain met-
rics equivalent to BPCER and ACER, we isolated a part of
the live faces of in-house database from the training dataset
and used them as a substitute for live faces of the pub-
lic databases. Although the live faces from the in-house
database are not exactly same as that of public databases,
simulated BPCER and ACER serve as conservative mea-
sures of the true BPCER and ACER, because our in-house
database contains a variety of conditions such as lighting,
facial accessory, and expression. This heterogeneity leads
to a broad, heavy-tailed distribution of live face scores from
the in-house database. Hereafter we mention these simu-
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Figure 5. Two-way ANOVA comparing SpecDiff and ResNet4.
(s)BPCER and (s)ACER indicate that sBPCER and sACER are
used for evaluating public databases, while genuine BPCER and
ACER are used for evaluating the in-house database. Resulting
p-values show statistical significance in APCER and (s)ACER.

lated metrics as simulated BPCER (sBPCER) and simulated
ACER (sACER).

4.4. Speed test on actual mobile devices

To compare the execution speeds of our proposed algo-
rithm and ResNet4 under real-world scenarios, we built a
custom-made iOS application for PAD on Xcode 10.2.1 /
MacBook Pro, written in Swift, C, and C]. For Gaussian fil-
tration, an OpenCV [2] built-in function is used. The app is
then installed on an iPhone7 (A1779), iPhone XR (A2106),
and iPad Pro (A1876) for the speed evaluation. Execution
speed is measured during the preprocessing step and the de-
scriptor calculation/classification step.

5. Results

5.1. Classification performance

A leave-one-ID-out cross-validation is conducted on the
in-house database. At each validation cycle, all data from
one subject out of 20 IDs are separated as a test dataset. The
remaining data from 19 IDs are used to train the models and
to determine thresholds. The results are summarized in Ta-
ble1, with the best model highlighted in bold. The average
Dspec and Ddiff calculated using the in-house database are
shown in Fig.2a and b, respectively.

To evaluate classification performances on the public
databases, we conduct 10-fold cross-validation. At each
validation, model training and threshold determination are
conducted with randomly selected 90% of the in-house
database, while live faces of the remaining 10% together
with spoof faces from the public databases are used to
compute sBPCER and APCER. The results of the NUAA,
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Figure 6. Mean ROC curves of the cross-validation experiments. Note that only [0%, 10%] range is shown out of [0%, 100%]. (a) 10-fold
cross-validation on the NUAA database. (b) 10-fold cross-validation on the Replay-Attack database. (c) 10-fold cross-validation on the
SiW database.
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Computing time (ms)

Figure 7. Summary of execution speeds. The proposed SpecDiff
descriptor classified with the SVM-RBF kernel is compared with
ResNet4. Execution speeds on iPhone7, iPhone XR, and iPad Pro
are measured.

Replay-Attack, and SiW databases are summarized in Table
2, 3, and 4. Fig.6 shows the mean ROC curves of the top
five models.

Among all the descriptors-classifiers combination, the
proposed SpecDiff descriptor with RBF kernel-SVM
achieves the highest classification accuracy on average,
on both the in-house database and on the three public
databases. Moreover, its accuracy is statistically signif-
icantly better than ResNet4, the end-to-end deep-neural-
network classifier. We conduct two-way ANOVA with the
two factors, model and database, to test if APCER, BPCER,
and ACER are significantly different. Model factor contains
two members, SpecDiff and ResNet4, and database factor
contains four members, in-house, NUAA, ReplayAttack,
and SiW. The resulting p-values of APCER and ACER are

less than 0.001, indicating that SpecDiff descriptor with
SVM achieves significantly better accuracy than ResNet4
(Fig.5). Following Tukey-Kramer multi-comparison test
show that SpecDiff achieves significantly smaller APCER
and ACER than ResNet4 on each database (p < 0.001).

We observe statistically significant increase in APCER,
ACER and sACER using ResNet18, compared with the
shallower network, ResNet4 (p < 0.05). This is potentially
due to the lack of a large database: generally speaking, a
deeper neural network can benefit from its higher complex-
ity and nonlinearity to achieve a better performance, but
with our small in-house database, a simpler classifier with
properly designed feature performs better while a complex
classifier with a large number of parameters suffers from
overfitting.

To test vulnerability to the two presentation attack instru-
ments, photo and display, the SpecDiff descriptor with
the RBF-kernel SVM is tested separately against photo
and replay attacks by using the in-house, Replay-Attack,
and SiW database. Leave-one-ID-out-cross-validation is
performed on the in-house database. For the two public
databases, SVM is trained using an entire in-house database
and tested with the public database. As summarized in ta-
ble 5, APCER of the proposed model on display attacks of
public databases is comparable to its performance on photo
attacks, although on the in-house database video APCER is
slightly worse (one-way ANOVA, p < 0.05).

To test vulnerability to the lighting conditions, we con-
ducted Leave-one-ID-out-cross-validation on the in-house
database, tested separately on the data taken in a bright of-
fice area, and in a dark corridor area. The result summarized
in table 6 shows that variation in lighting conditions do not
significantly alter the classification performances (one-way
ANOVA, p > 0.05).



5.2. Execution speed on mobile devices

The results of the speed evaluation of the proposed al-
gorithm and deep neural network classifier on the iPhone7,
iPhone XR and iPad Pro are summarized in Fig.7. On all
devices, the proposed algorithm is approximately six-times
faster in terms of the descriptor calculation/classification
time than ResNet4.

Table 1. In-house database cross-validation errors (%).
Descriptor Classifier APCER BPCER ACER

SD FIC [3] SVM
linear 26.15 47.36 36.76
RBF 24.85 48.43 36.64

LBP FI [3] SVM linear 4.09 12.81 8.45
RBF 1.73 10.53 6.13

Relative- SVM linear 2.11 80.31 41.21
Ref [26] RBF 1.72 28.02 14.87

Implicit3D [18] SVM
linear 21.48 24.36 22.92
RBF 1.10 2.17 1.63

Dspec
SVM

linear 1.15 2.94 2.04
[PROPOSED] RBF 0.74 2.44 1.59

Ddiff SVM linear 1.67 2.89 2.28
[PROPOSED] RBF 0.67 1.81 1.24
SpecDiff

[PROPOSED]
SVM linear 0.62 1.30 0.96

RBF 0.36 0.79 0.58

ResNet4 1.49 1.88 1.69
ResNet18 9.72 2.25 5.98

Table 2. NUAA cross-database validation errors (%).
Descriptor Classifier APCER sBPCER sACER

SD FIC [3] SVM
linear 18.58 56.90 37.34
RBF 27.21 50.66 38.94

LBP FI [3] SVM linear 40.14 7.73 23.94
RBF 21.55 16.49 19.02

Relative- SVM linear 23.12 2.85 12.98
Ref [26] RBF 10.30 3.59 6.95

Implicit3D [18] SVM
linear 0.62 3.24 1.93
RBF 0.42 2.06 1.24

Dspec
SVM

linear 1.00 2.26 1.63
[PROPOSED] RBF 1.61 2.03 1.82

Ddiff SVM linear 0.84 2.05 1.45
[PROPOSED] RBF 1.12 3.07 2.10
SpecDiff

[PROPOSED]
SVM linear 0.052 0.91 0.48

RBF 0.021 0.83 0.43

ResNet4 6.50 1.39 3.94
ResNet18 55.61 9.07 32.34

6. Conclusion
By using specular and diffusion reflection from a sub-

ject’s face, the proposed algorithm based on the SpecDiff
descriptor achieved the best PAD accuracy among other
flash-based algorithms at execution speed approximately
six-times faster than that of a deep neural network. The
algorithm requires only one visible-light camera and a flash
light. A small database containing ≈ 1K image pairs per
class with binary labels is sufficient to train a classifier us-

Table 3. Replay Attack cross-database validation errors (%).
Descriptor Classifier APCER sBPCER sACER

SD FIC [3] SVM
linear 40.62 58.15 49.38
RBF 33.22 49.98 41.60

LBP FI [3] SVM linear 35.79 6.02 20.90
RBF 2.11 22.07 12.09

Relative- SVM linear 27.74 2.12 14.93
Ref [26] RBF 6.57 3.98 5.27

Implicit3D [18] SVM
linear 6.86 2.17 4.51
RBF 2.24 2.06 2.15

Dspec
SVM

linear 5.24 3.62 4.43
[PROPOSED] RBF 1.95 2.35 2.15

Ddiff SVM linear 9.56 2.61 6.08
[PROPOSED] RBF 3.51 1.28 2.39
SpecDiff

[PROPOSED]
SVM linear 2.73 0.95 1.84

RBF 0.25 0.98 0.62

ResNet4 2.71 1.28 1.99
ResNet18 35.32 0.97 18.14

Table 4. SiW cross-database validation errors (%).
Descriptor Classifier APCER sBPCER sACER

SD FIC [3] SVM
linear 51.53 58.10 54.81
RBF 44.87 47.76 46.32

LBP FI [3] SVM linear 14.98 5.43 10.21
RBF 3.36 21.95 12.66

Relative- SVM linear 57.6 5.08 31.36
Ref [26] RBF 25.68 3.98 14.83

Implicit3D [18] SVM
linear 9.40 3.01 6.21
RBF 36.16 0.62 18.39

Dspec
SVM

linear 16.66 2.76 9.70
[PROPOSED] RBF 5.79 2.66 4.23

Ddiff SVM linear 5.79 1.84 3.82
[PROPOSED] RBF 3.61 2.71 3.16
SpecDiff

[PROPOSED]
SVM linear 2.86 0.91 1.88

RBF 0.93 0.79 0.86

ResNet4 3.83 0.52 2.17
ResNet18 21.74 0.18 10.96

Table 5. Evaluation on spoofing subcategories by using
SpecDiff descriptor with SVM-RBF kernel classifier.

Database photo APCER video APCER

in-house mean 0.19 2.72
Replay 0.34 0.00

SiW 0.00 0.00

Table 6. Evaluation on different lighting conditions by using the
in-house database and SpecDiff descriptor with SVM-RBF ker-
nel classifier.

Lighting APCER BPCER ACER

Bright 0.27 0.94 0.61
Dark 0.0087 0.28 0.15

ing the SpecDiff descriptor, enabling the easy and wide
application of the PAD algorithm. Experiments conducted
on the algorithm operating on actual devices confirms that
it has a practical level of performance on mobile devices
without the need for computationally expensive processing
units.
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