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Abstract

The field of behavioural biometrics stands as an appeal-
ing alternative to more traditional biometric systems due
to the ease of use from a user perspective and potential
robustness to presentation attacks. This paper focuses its
attention to a specific type of behavioural biometric util-
ising swipe dynamics, also referred to as touch gestures.
In touch gesture authentication, a user swipes across the
touchscreen of a mobile device to perform an authentica-
tion attempt. A key characteristic of touch gesture authenti-
cation and new behavioural biometrics in general is the lack
of available data to train and validate models. From a ma-
chine learning perspective, this presents the classic curse
of dimensionality problem and the methodology presented
here focuses on Bayesian unsupervised models as they are
well suited to such conditions. This paper presents results
from a set of experiments consisting of 38 sessions with la-
belled ‘victim’ as well as blind and over-the-shoulder pre-
sentation attacks. Three models are compared using this
dataset; two single-mode models: a shrunk covariance es-
timate and a Bayesian Gaussian distribution, as well as
a Bayesian non-parametric infinite mixture of Gaussians,
modelled as a Dirichlet Process. Equal error rates (EER)
for the three models are compared and attention is paid to
how these vary across the two single-mode models at differ-
ing numbers of enrolment samples.

1. Introduction
The advent of mobile computing and widespread avail-

ability of mobile devices calls for authentication systems
that can be easily deployed to and used from any mo-
bile device. While traditional biometric modalities such
as facial and fingerprint identification offer high accuracy,
these approaches present other difficulties, from preserving
user privacy to the lack of availability of high quality sen-
sors in common mobile computing devices. Furthermore,
while certain biometric modalities such as facial and voice
recognition can boast high accuracy when evaluated against
random attackers, their performance can drop significantly

when placed against targeted attacks such as simple presen-
tation attacks [13].

Behavioural biometrics offer an elegant alternative to
traditional biometrics, the premise being that certain be-
haviours such as typing or web browsing possess enough
characteristic information about an individual to identify
them. Research in the field has now been active for about
four decades, with modalities such as keystroke dynamics
being investigated as far back as the 1970s [6]. While the
viability of the idea was established, early behavioural bio-
metrics systems often required bespoke infrastructure and
data acquisition, preventing general use.

The behavioural biometrics field is currently undergoing
a second wave of innovation as researchers and practition-
ers realise the potential the current interconnected world
of cyber-physical systems brings. This has brought about
the idea of mobile phone touch-based behavioural biomet-
rics. The concept has been introduced in various differ-
ent flavours, but the underlying idea is to utilise the avail-
able sensor data in modern mobile phones to characterise a
user’s behaviour for the purposes of authentication. Sensor
channels may include touch screen coordinates, pressure,
thumb size and alignment, as well as data from any embed-
ded sensors, if these are available. Many mobile devices
are equipped with sensors that capture acceleration, rate of
rotation, orientation, and magnetometer readings.

1.1. Continuous and non-continuous authentication

The field of touch-based mobile phone biometrics can be
broadly categorised into continuous and non-continuous au-
thentication. Continuous authentication implies that mobile
phone data is gathered and monitored throughout a mobile
browsing session. Arguably, the continuous authentication
problem has received the most attention so far [14, 10, 18].

In the case of non-continuous authentication, be-
havioural touch data is only gathered as a user performs
the authentication attempt. While this approach has been
investigated in [21, 3], both of these studies concern touch-
screen data that is gathered from users in a passive manner
and subsequently used in order to evaluate the accuracies
of different modelling strategies. In [3], touchscreen data
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from users is collected as they fill out a questionnaire on
an Android mobile device. In their experiments, they show
that authentication accuracy can be improved dramatically
if multiple swipe attempts are included in the models and
quote equal error rates (EER) of less than 0.5% in such set-
tings.

A noteworthy point highlighted in these previous stud-
ies is that the accuracy of biometric modalities which in-
corporate swipe dynamics tends to increase as more data is
gathered. Gathering data is easier in a continuous authen-
tication mode compared to the non-continuous case. This
means that it is relatively easier to build a ‘template’ of a
user’s swipe dynamics given a single session. However,
this might result in the user’s template having much higher
variance, thus making it more prone to attacks. The results
from studies published so far must be interpreted with this
in mind. As far as the authors are aware, no study exists that
explicitly incorporates data from over-the-shoulder (OTS)
impostors, where the impostors are assumed to have ob-
served the genuine user’s touchscreen behaviour. The lack
of such studies is partly what motivates the current paper.

1.2. Swipe dynamics as a means of authentication

The appeal of behavioural biometrics as authenticators
is their ease of use, particularly in the case of touch screen
swipe dynamics, which translates to low user friction while
remaining strong against different types of attacks.

In this paper, the key problem under consideration is that
of utilising swipe dynamics as a means of non-continuous
authentication. The subsequent investigation identifies
techniques that are able to instantly assess whether a touch-
screen swipe pattern belongs to the individual in question,
minimising risk of an impostor accessing the system at any
point. A simple authenticator that requires few samples of
behaviour before a user can be enrolled into the system is
generally desirable. An example of how such an authen-
ticator would look in practice from a user’s perspective is
shown in Section 3.1. The non-continuous authentication
problem has not been systematically studied to the authors’
knowledge.

1.3. Contributions of this paper

Bayesian novelty detection is introduced as a means of
enabling swipe dynamics authentication. The Bayesian ap-
proach alleviates several inherent problems of the data, par-
ticularly high dimensionality and low sample sizes. The
ability to set prior beliefs on model parameters allows accu-
rate predictions to be made for what would otherwise be an
ill-posed problem. Additionally, the use of Bayesian non-
parametrics makes it possible to infer multiple distributions
from the data when they exist, in a manner that naturally
avoids overfitting the probability distribution of the data.

Results are presented on a new experimental dataset col-

lected in a non-continuous context which contains negative
samples from both blind and over-the-shoulder impostors
for a simple swipe task. To the authors’ knowledge model
performance has not been evaluated against active over-the-
shoulder impostors elsewhere in the field for such a task.

2. Modelling Swipe Dynamics
Machine learning models have become a strong focus of

recent research efforts in biometric authentication, and be-
havioural biometrics is no exception. One important point
that distinguishes behavioural modalities from others is the
lack of availability of public data, which significantly af-
fects the appropriate choice of statistical and machine learn-
ing models that are most suitable for the task. Modalities
such as facial and voice verification enjoy the availability
of many public datasets which can be used to develop and
evaluate modelling strategies [5, 16, 8].

While several public datasets concerning continuous
swipe authentication exist [12, 7, 2], this data cannot readily
be used for developing non-continuous models as it is pas-
sively collected while users interact with the device, rather
than through a controlled authentication task. Other studies
have published datasets that include touchscreen data from
non-continuous authentication for complex tasks, such as
drag-and-drop [1] or drawing digits [20]. Neither of these
datasets contain samples from active impostors.

The general lack of available data for simple swipe bio-
metrics, combined with the fast evolution of the data acqui-
sition quality of mobile computing devices makes novelty
detection [17], an unsupervised method, a suitable mod-
elling strategy for mobile phone touch-based authentication.
Supervised models are difficult to utilise in a real-world en-
vironment as negatively labelled samples are not available
in sufficient quantities per-user. For this reason, most of the
previous work has focused on the use of novelty detection
as a general strategy. However, a common factor amongst
recent research is a ‘scatter-gun’ approach to simply report-
ing EERs for well-known novelty detection methods [17],
including One-Class Support Vector Machines, neural net-
works, K-Nearest-Neighbours and Gaussian mixture mod-
els [4].

In this study, focus is given to a class of novelty detection
methods that model the probability distribution of the be-
havioural features. A nuanced discussion is contributed to
how these models solve certain practical challenges; namely
that of training with few samples without overfitting as well
as the ability to capture multiple behaviours exhibited by a
single user in the case of the mixture model. These argu-
ments are presented in Section 2.3.

2.1. Features from swipe gestures

Arguably, the feature space derived from swipe data is as
important as the modelling strategy. A useful feature space
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is one that is consistent for a given user and discriminating
of impostor behaviour. It is not known a-priori which fea-
tures are consistent for any given user. The strategy adopted
by previous studies has been to use a range of summarising
features from each swipe gesture. It is common to compute
features such as horizontal and vertical coordinates, veloc-
ity, angles, first and second order moments, and start and
end points.

The feature vectors used in this study were derived from
the raw touch screen coordinates and pointer size measure-
ment. The feature vectors were assembled using the hori-
zontal and vertical coordinates together with pointwise ve-
locity, acceleration, angle, and angular acceleration. These
coordinates were resampled, using techniques borrowed
from functional data analysis, to a fixed-length vector rep-
resenting the swipe position, velocities and accelerations on
an even time grid representing one swipe ‘cycle’. The touch
pointer size was also resampled accordingly and used as
an additional feature. An illustrative example of raw swipe
data is shown in the following section.

2.2. Enrollment and user behaviour drift

When users have not authenticated enough times for a
model to be trained on their behaviour they are considered
to be in the ‘enrolment’ phase. A behavioural authentica-
tor should be able to begin making predictions with as few
samples as possible, ideally in the range of one to five. This
low threshold facilitates ease-of-use and protects user ac-
counts from unauthorised access as quickly as possible. Af-
ter the enrolment threshold has been passed the user will
have a valid trained model and predictions can be made.
Outside of laboratory conditions a behavioural model can
be retrained at regular intervals using newer data as users
continue to authenticate. Frequent retraining combats ‘be-
havioural drift’ as users become more familiar with the sys-
tem. While these two notions of continuous learning and
behavioural drift each merit a nuanced discussion, this is
left outside of the scope of the current paper.

Over time, a significant portion of users tend to de-
velop multiple well-defined behaviours. These behaviours
are usually maintained simultaneously and can have explicit
meanings such as a user swiping with two different hands,
or simply be subtle unconscious changes in swiping pat-
terns. This motivates the need to model them explicitly. As
an illustrative example, Figure 1 shows the distribution of
the number of behaviours observed from a sample of touch
gesture behavioural biometrics users, in which it is evident
that the majority exhibit more than one behaviour.

Figure 2 shows examples of users who exhibit single
and multiple behaviours. The lines in these plots denote
the paths of swipe gestures, with the marker indicating the
end point of the gesture. A single behaviour is defined by
a unified grouping of gestures which have similar direc-
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Figure 1. Approximate Distribution of User Behaviours
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Figure 2. Touch Screen Gesture Behaviours

tion and shape, as can be seen in Figure 2a. Multiple be-
haviours occur when two or more single behaviour groups
are present for a single user. These groups can overlap, as
seen in Figure 2b, where the lower-left cluster consists of
two behaviour groups with opposing directions.

2.3. Bayesian novelty detection

Novelty detection is an unsupervised method that deals
with the problem of determining whether a new observa-
tion belongs to the class of previously observed data. Given
the small number of observations typically found in non-
continuous swipe dynamics authentication, coupled with
the inherent high dimensionality of time-series data, the
problem is classically ill-posed. With few training samples
the ability to train models directly from the available be-
haviour of a single user is greatly diminished. The use of
classical machine learning models in this instance will typi-
cally result in inaccurate predictions due to the ill-posed na-
ture of the problem and lack of variance in the single-class
training data.

This motivates the use of Bayesian models where infor-

© Callsign Inc. 2020. All Rights Reserved.

3



mation from priors can be incorporated into the model. This
has the effect of increasing the total amount of information
available to the model and allows more accurate predictions
to be made. Such priors can be derived from a reasonable
default or the general population of users, if available. Tak-
ing a Bayesian approach also yields a probabilistic estimate
of model parameters, therefore alleviating overfitting.

The central approach taken to modelling presented here
is based around fitting probability distributions to the given
training data. Scoring of subsequent samples is done via the
model likelihood, where the decision boundary is calibrated
based on the likelihood of the training samples.

Three models are presented, representing an evolution
of complexity in modelling approach. The first model is
a non-Bayesian multivariate Gaussian distribution with a
regularised covariance matrix. The second and third mod-
els are both Bayesian; a multivariate Gaussian distribution
with priors derived from the user population and an infinite
Gaussian mixture with a Dirichlet process prior on the com-
ponents [19]. The relative performance of these models in
the swipe dynamics task is presented in Section 4.

2.3.1 Shrunk Covariance

The shrunk covariance model is the simplest of the three
presented in this paper. It models the probability distribu-
tion of the data, p(x; θ) as a multivariate Gaussian, x ∼
N (µ,Σ), which is parametrised by its mean and covariance
θ = (µ,Σ).

When the number of samples is large relative to the num-
ber of features, the maximum likelihood estimate (MLE)
provides a good representation of the underlying data co-
variance structure. However, when the number of samples
is comparatively small against the number of dimensions,
the covariance MLE is a poor estimate of the true underly-
ing data covariance. Maximum likelihood estimation of Σ
in this setting is well known to be unstable and leads to sin-
gularities when inverting it to arrive at the precision. One
way in which this instability manifests itself is by adding
extra variance.

A common solution to alleviate this is to shrink the esti-
mated covariance matrix towards the diagonal,

Σshrunk(α) = αΣ̂ + (1− α)diag(Σ̂) (1)

where α is a hyperparameter that controls the strength of
the covariance shrinkage. The shrunk estimate of Equation
(1) thereby reduces the overall variance of the covariance
estimate. This is a form of regularisation in covariance esit-
mation. Selecting an appropriate value for α can be be done
via cross-validation.

Prediction in the model is carried out by evaluating the
model log-likelihood of the Gaussian distribution with pa-
rameters (µ,Σshrunk), where µ is the maximum likelihood

estimate of the mean, of a test sample x∗. Alternatively,
one could use the squared Mahalanobis distance of the test
sample under the shrunk covariance estimate.

2.3.2 Bayesian Multivariate Gaussian

The shrunk covariance estimator can be considered a special
case of estimation of the full posterior probability distribu-
tion of µ and Σ, given dataD. This can be carried out using
Bayesian inference, which leads to the Bayesian multivari-
ate Gaussian model. Instead of using maximum likelihood
estimates for the mean and covariance, Bayesian priors are
constructed for these parameters. The priors can be defined
by specifying a suitable belief on the parameter values (for
example, position variance to be 15% of screen size) in ab-
sence of any reliable observations, or alternatively it can be
based on a sample of the user population.

For a single user, the sample distribution is assumed
to be multivariate normal with conjugate (normal-inverse-
Wishart) priors on the mean and covariance:

p(Σ) = InvWish(Ψ0, ν0) (2)

p(µ|Σ) = N (µ0, k
−1
0 Σ) (3)

p(X|µ,Σ) = N (µ,Σ) (4)

As the normal-inverse-Wishart prior on (µ,Σ) is conju-
gate for a multivariate Gaussian likelihood, the posterior is
of the same family, that is,

p(Σ|D) = InvWish(ΨN , νN ) (5)

p(µ|Σ,D) = N (µN , k
−1
N Σ) (6)

where D denotes training data. The formulas determining
the posterior parameters are closed-form and can be found
in [15].

Prediction of a test sample x∗ is carried out using the
model posterior predictive distribution, which has a closed-
form analytic solution,

p(x∗|D) = tvN−d+1(µN ,
kN + 1

kN (νN − d+ 1)
ΨN ) (7)

Inferring the mean is relatively straightforward; one op-
tion is to let k0 → 0, which loosely corresponds to an un-
informative prior for µ. Inference about the covariance is
more challenging, given the comparatively high number of
features in relation to training samples, which can be on the
order of 5-10 times. A simple approach is to utilise the un-
biased estimate of the pooled (over the profiles) covariance
Σ̂pooled in the construction of the prior,

Ψ0 = (ν0 − d− 1)Σ̂pooled (8)

This prior has the effect of shrinking the posterior dis-
tribution towards the pooled covariance estimate, where the
degrees of freedom controls the level of shrinkage.
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In the results presented in this paper, a shrunk estimate
of the pooled covariance was used:

Σ̂shrunk pooled(α) = αΣ̂pooled + (1− α)diag(Σ̂pooled) (9)

where α determined by cross validation, using the
log-likelihood of the normal distribution evaluated at
(x̄p, Σ̂shrunk pooled(α)) for profile p as a scoring criterion.

Intuitively, the advantage of this approach is that when
the number of samples is small, this method allows us to
borrow strength from other profiles in inferring the covari-
ance, and converges on the profile’s true covariance as the
number of samples increases.

2.3.3 Infinite Gaussian Mixture

The infinite Gaussian mixture is a Bayesian nonparamet-
ric model, meaning that the parameter space has infinite di-
mensions, which allows the parameter space to grow as the
parameter space is explored and more data is observed. In
practice this means that the model is very expressive, as it
allows the size of the parameter space to match the amount
of observed data. The idea behind this model in the context
of swipe dynamics is to explicitly model for multiple dis-
tributions as opposed to the previous models which assume
a single Gaussian. This is intended to cater for situations
where the user has developed multiple behaviours. It is also
a more flexible approach than using a traditional Gaussian
mixture, as the number of components can be inferred from
the data in a principled manner. The topology of the in-
put feature space is assumed to be such that the behaviour
groups are isolated.

The number of mixture components is chosen via the
Chinese Restaurant Process [9], which iteratively assigns
training samples to components based on each sample’s
likelihood of belonging to a particular component. Ad-
ditional components are generated when the likelihood of
a sample belonging to a hypothetical new component is
higher than that of any existing ones.

The key equations for this model are Equations (10) and
(11). These equations determine the likelihood of a sam-
ple belonging to a particular component or being assigned
to a new component, respectively. All training samples are
assigned to a single component initially and are reassigned
to the component with the greatest likelihood as the algo-
rithm progresses. After a suitable number of sampling iter-
ations the component assignments for each sample will have
converged. After convergence, a decision boundary for this
model can be constructed equivalently to the models above.

p(ci|c−i, µk, τk, α) ∝
n−i,k

n− 1 + α
N

(
x̃i;

x̄knkτk + µ0τ0
nkτk + τ0

,
1

nkτk + τ0
+ σ2

y

)
(10)

p(ci 6= ck,∀j 6= i|c−i, µ0, τ0, α) ∝
α

n− 1 + α
N (x̃i;µ0, σ

2
0 + σ2

x)
(11)

The hyperparameters for the model are α, µ0, σ2
0 , and

σ2
y . These are the α parameter of the Dirichlet distribu-

tion, prior component mean, prior component variance, and
a prior on noise in the data, respectively. Note that µ0 ∈ RN

and σ2
0 , σ

2
y ∈ RN×N . As can be seen from the equations

above, the parameter α controls the model’s overall propen-
sity to generate new clusters. The choice of the noise prior,
σ2
y , also influences cluster generation, with more assumed

noise leading to fewer clusters. The prior distributions on
the component means and covariances are constructed iden-
tically to those in Section 2.3.2, as each component is a mul-
tivariate Gaussian. The components all share identical prior
distributions.

The remaining parameters in Equations (10) and (11) are
component assignments ci, the number of samples assigned
to a component ni, component precisions τk, and the total
number of training samples n. A negative subscript indi-
cates all components excluding the one indicated. The over-
all structure of this model was derived from [11], additional
detail can be found there.

3. Experiments

One of the key motivations behind this study is the eval-
uation of swipe authenticators under realistic attack scenar-
ios. The two attack scenarios of interest are blind attacks,
where the attacker is assumed to never have observed a vic-
tim’s behaviour and over-the-shoulder (OTS) attacks, im-
plying that the attacker has been allowed to observe the
victim’s behaviour by looking over their shoulder. Eval-
uating model performance for a swipe authenticator un-
der these scenarios required gathering of fresh experimental
data, given the lack of suitable public benchmarks that con-
sider this problem specifically. The experimental setup and
data collection used for the results presented in this paper is
described in this section.

3.1. Data acquisition and authentication prompt

Swipe data was collected through a specially designed
mobile phone application. The application collects touch
screen and embedded sensor data, though only the touch
data was used in this study.

The application prompts users to authenticate for a se-
cure session by using a swipe gesture to slide a dialog off
the screen. The user interaction with the mobile device is
therefore relatively constrained, as users are encouraged by
the interface to swipe the dialog horizontally and must use
gestures of a minimum length to remove it. Additionally,
the application is designed such that the screen orientation
is forced to portrait mode. These constraints facilitate more
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accurate authentication as users must interact with the ap-
plication in a controlled manner, even outside of laboratory
conditions. A depiction1 of the authentication prompt dia-
log can be found in Figure 3. The user has begun swiping
the dialog to the right in this figure.

The experiments were carried out using a range of mid-
to high-end Android devices with a mix of device brands
and models. Therefore the majority of the sessions were
each carried out with a different device type which intro-
duces some variance in the quality of the data. Most of
the devices had a sample rate between 60-200Hz, with one
outlying device sampling at approximately 500Hz. The ap-
plication was designed to collect touch screen data at the
highest possible sampling rate for each device.

3.2. Experimental procedure

The experiments described in this paper were conducted
over three separate days (Oct 23rd, Oct 30th and Nov 20th

2019). On each day, a cohort of subjects was assembled
and split into groups of three, where each member of the
group assumed the roles of either victim, blind attacker, or
OTS attacker. There was no special selection process for the
subjects, they were gathered from volunteers in an office
environment. No demographic data was collected for the
subjects, however their age range varied from early twenties
to early sixties.

Each data collection session followed the following se-
quence:

1. Victim performs N authentication attempts.

2. Blind attacker performs N authentication attempts.

3. Victim performs N authentication attempts, where the
OTS attacker gets to observe the victim’s swipe be-
haviour.

4. OTS attacker performs N authentication attempts.
where the value of N = 10 was used for the Oct 23 and
Nov 20 sessions, and N = 20 for the Oct 30 session. In
total, 38 sessions were recorded.

Each subject was given a basic explanation of the au-
thentication process and given the opportunity to perform a
small number of trial swipe attempts before any data was
gathered. Subjects were free to sit or stand, most chose to
stand. Data on subject position was not recorded.

4. Results
4.1. Experiment Evaluation

In all cases the models were trained on the first 10 gen-
uine samples (sorted chronologically) for each user. A num-
ber of the profiles in the dataset only contain 20 samples

1N.B. ‘Southfields Bank’ is fictional and the corresponding branding
was created for the demo application to give users context.

Figure 3. Authentication Prompt

Model Blind EER OTS EER
Mean Median Mean Median

Shrunk Covariance 5.07 0.00 16.06 9.55
Bayesian Gaussian 4.54 0.00 16.10 5.96

Infinite Mixture 4.99 0.00 15.70 9.27

Table 1. Results

total for the genuine user so the training sample size was re-
stricted to keep the evaluation balanced. The models were
evaluated on the remainder of the genuine samples not used
for training and all of the samples for the given impostor.

The metric used for evaluation is the Equal Error Rate
(EER). The EER is evaluated on a per-user basis as this
provides insight into the way the errors distribute across the
population of users in the study. Calculating the EER on a
global basis can hide poor performance for users which are
difficult to classify. The statistics presented in Table 1 are
the means and medians of these user EER distributions.

Of the 38 profiles in the dataset, 6 failed to enroll due to
lack of sufficient genuine samples. A number of the swipe
gesture samples for these profiles were rejected due to in-
sufficient data quality. The results presented later in this
section therefore only concern the 32 remaining profiles.

4.2. Experiment Results

The experimental results are shown in Table 1. Accom-
panying plots of the score distributions with the mean and
median overlaid are shown in Figure 4.

The Bayesian Gaussian model performed the best in the
blind impostor case, with a mean EER of 4.54%. All of the
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Figure 4. Equal-Error Rate Distributions

models performed quite well in this scenario, however, as
each model classified the majority of the samples correctly.
This can be seen from the left-hand column of Figure 4.
It was expected that the models would perform well in the
blind impostor scenario, as it is unlikely that an uninformed
attacker would be able to accurately replicate the the gen-
uine user’s swipe gesture.

The error rates for the OTS impostor experiments are
somewhat higher than those of the blind impostors, this
is again expected due to the attacker now having informa-
tion about the genuine user’s gestures. The models still re-
main quite discriminative, however, with the infinite mix-
ture model having the best overall mean EER of 15.70%.
The Bayesian Gaussian model has arguably the best dis-
tribution of scores in this scenario, with a median EER of
5.96%. A larger-scale experiment would be required to
definitively establish which of these models is the overall
best-performing.

These results show that it is generally difficult to pre-
cisely replicate another user’s behaviour even with knowl-
edge of the required gestures. There is an approximate 10%
increase in EERs between the blind and OTS impostor ses-
sions. Considering the large feature space it is unsurpris-
ing that an attacker has difficulty replicating the correct be-

(a) Good Behaviour Separability (b) Bad Behaviour Separability

Figure 5. Illustration of victim (green), blind (black) and OTS (red)
swipes using a t-SNE projection into a 2-dimensional space.
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Figure 6. Infinite Mixture Component Usage Distribution

haviour across all the features. Figure 5 shows two sam-
ple profiles with the features projected into a 2-dimensional
space, one with easily separable behaviour and the other
without. The example with good separability had low EERs
across all the experiments; this is relatively easy to see as
the impostor samples are well-separated from the genuine
samples. The other example was the worst performing pro-
file in the dataset, equally the reason for this is readily ap-
parent as all of the distributions are overlapping. Note that
some information is lost when the features are projected into
2-dimensional space, these plots are merely for illustration
of the problem.

4.3. Multiple Behaviours

The infinite mixture model has the inherent capability
to learn multiple distributions from the data. Though the
training sample sizes used in the experiments are somewhat
small for explicit development of multiple behaviours, the
mixture model learned multiple distributions for the profiles
regardless. Figure 6 shows the distribution of the number
of mixture components learned per profile. The somewhat
large number of distributions is possibly due to the spheri-
cal priors used for the component covariances which have
encouraged the model to learn feature correlations via the
components. This does not appear to have unduly affected
the model performance, though the phenomenon bears fur-
ther research.

4.4. Low-Sample Learning

In Figure 7, learning curves for the shrunk covariance
and Bayesian Gaussian models are shown, from 2 to 10
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Figure 7. Learning Curves; Shrunk Covariance and Bayesian
Gaussian Models

training samples. These plots show the key advantage of us-
ing a Bayesian model when few training samples are avail-
able. The Bayesian model shows significantly lower EERs
than the shrunk covariance model when only 2-5 training
samples are available. The effect is more pronounced in
the blind impostor scenario as the data is generally easier to
learn, as established above. To a somewhat lesser degree,
the benefit is still observed in the OTS impostor scenario.

From these results it is apparent that a Bayesian approach
is highly effective for the swipe dynamics problem as it
enables accurate predictions in high-dimensional data with
only a few training samples.

5. Conclusion and Future Work
This paper has introduced and motivated an unsuper-

vised Bayesian approach to non-continuous swipe dynam-
ics, a type of behavioural biometric. Specifically, some of
the key problems facing this type of authentication, particu-
larly around accurate data collection and quality, have been
discussed. The lack of large scale datasets in this domain
has driven recent research efforts to the use of unsupervised
learning models.

Three different types of probabilistic models were in-
troduced: a Gaussian shrunk covariance, a Bayesian mul-
tivariate Gaussian, and an infinite Gaussian mixture. Two
different attacker scenarios are presented, those of a blind
and and over-the-shoulder impostor. The three models are
compared across the different attack scenarios, with the
Bayesian Gaussian model showing the best performance
with a mean EER of 4.54% for the blind impostor scenario
and the infinite mixture model for the OTS impostor with a
mean EER of 15.70%. Recursive training results are shown
for the Bayesian Gaussian and shrunk covariance models,

where the Bayesian model converges to the final error rate
with approximately 30% of the training samples required
by the shrunk covariance in some cases. This indicates the
strength of the Bayesian approach in general.

There are two key areas of research that bear further
investigation. First, the use of hierarchical priors for the
Bayesian models presented in this paper. The priors used
here are constructed relatively naively and it is likely that
the model performance could be improved, for example,
through incorporating information from a population of
similar users or mobile devices. Secondly, modelling mul-
tiple behaviours has only been investigated briefly in this
paper and more in-depth research is warranted. Specifi-
cally, curating a dataset with explicit labelled single- and
multiple-behaviour profiles and comparing the modelling
approaches presented here with others is a logical next step.
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