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Abstract

Existing thermal-to-visible face verification approaches
expect the thermal and visible face images to be of simi-
lar resolution. This is unlikely in real-world long-range
surveillance systems since humans are distant from the cam-
eras. To address this issue, we introduce the task of thermal-
to-visible face verification from low-resolution thermal im-
ages. Furthermore, we propose Axial-Generative Adver-
sarial Network (Axial-GAN) to synthesize high-resolution
visible images for matching. In the proposed approach
we augment the GAN framework with axial-attention lay-
ers which leverage the recent advances in transformers for
modelling long-range dependencies. We demonstrate the
effectiveness of the proposed method by evaluating on two
different thermal-visible face datasets. When compared to
related state-of-the-art works, our results show significant
improvements in both image quality and face verification
performance, and are also much more efficient.

1. Introduction

In practical scenarios such as low-light or night-time
conditions, one has to use thermal cameras for surveillance
in order to detect and recognize faces. The acquired ther-
mal images of faces in such scenarios have to be matched
with existing biometric datasets that contain visible face im-
ages. Significant progress has been made by several works
[5-7, 10, 11, 14, 40] to address the thermal-to-visible cross-
spectrum face recognition problem. But existing works ex-
pect the thermal and visible face images to be of similar
resolution. This is unlikely in real-world surveillance sys-
tems as humans are further away from cameras, thereby the
region occupied by a face is much less when compared to an
image in the visible face dataset. We illustrate the described
issue in Figure 1. To address this, we introduce the task of

978-1-6654-3780-6/21/$31.00 ©2021 IEEE

Low-resolution
thermal face
image

Figure 1. A typical thermal image [1]. Note that the captured im-
ages are of very low-resolution. In order to perform cross-modal
face recognition, one needs to synthesize a high-resolution visible
face image from a low-resolution thermal face image.

matching low-resolution (LR) thermal face images against
high-resolution (HR) visible face images.

The large domain discrepancy between the thermal and
visible images and the low resolution of the thermal im-
ages makes the introduced task quite challenging. To tackle
it, we propose a hybrid network that augments an image-
conditional generative adversarial network (GAN) [8] with
axial-attention [31] layers. The generator synthesizes face
images in the visible domain, which are then matched
against a gallery of visible images using an off-the-shelf
face matching algorithm. Using self-attention-based mod-
els [25, 30, 31] allows capturing the structural patterns of
the face effectively, which is essential for tasks such as face
verification. However, stand-alone self-attention models re-
quire large-scale datasets for training. Therefore, we de-
velop a hybrid network that makes use of both convolutions
and self-attention layers to efficiently capture the local and
global information, respectively. Additionally, augmenting
our network with self-attention avoids the use of several
stacked convolutional layers for modelling global depen-
dencies. This makes our network extremely parameter ef-
ficient without any reduction in performance. Although Di
et al. [5] proposed a similar hybrid network, it doesn’t uti-
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Figure 2. (a) The residual axial-attention block used in Axial-GAN. (b) Axial-attention layer, which is the basic building block of both
height and width multi-head attention modules in the axial-attention block.

lize positional information and multi-head design that are
essential for capturing spatial structures and a mixture of
features, which we incorporate into our network. To the
best of our knowledge, this is one of the first works to pro-
pose a transformer-based GAN for face translation and face
hallucination.

We evaluate our approach on the ARL-VTF dataset [24]
and the polarimetric thermal face recognition dataset [0].
We compare the performance of our approach with state-of-
the-art methods in thermal-to-visible synthesis and also face
hallucination. Our results show significant performance im-
provements in both image quality and face verification. Fur-
thermore, an ablation study is conducted to demonstrate
the effectiveness of axial-attention. Code is available at
https://github.com/sam575/axial-gan.

2. Related Work
2.1. Thermal-to-visible face recognition

Several approaches have been proposed to address
thermal-to-visible cross-spectrum face recognition, which
can be mainly divided into two categories: feature-based
and synthesis-based. Feature-based methods seek to find
a common latent subspace where corresponding face im-
ages in each spectrum are closer in terms of some dis-
tance metric. Initial works used kernel prototype similar-
ities [19], partial least squares [4, 13] and coupled neural
networks [26] on hand-crafted features such as SIFT and
HOG. Whereas, recent works leverage deep networks to ex-
tract domain-invariant features [7, 10, 11, 14] or disentan-
gled features [35].

Synthesis-based methods have the advantage that they
can leverage the recent advances in visible spectrum face
recognition for matching the synthesized visible face im-
ages. Consequently, Riggan et al. [27] used features from
both global and local regions, and developed a region-
specific cross-spectrum mapping for estimating visible im-
ages. Zhang et al. [39, 40] and Di et al. [5, 6] leverage
GANSs to enhance the perceptual quality of the synthesized

images.
2.2. Face Hallucination

Face hallucination is a domain-specific image super-
resolution problem aimed at enhancing the resolution of a
LR face image to generate the corresponding HR face image
[16]. Consequently, most of the works exploit face-specific
information such as attributes, landmarks, parsing maps,
and identity for effective reconstruction of HR face images
[2, 3, 41]. This additional information is obtained either
by human labelling or by using existing pre-trained models.
Furthermore, to generate realistic faces many works tend to
employ GANSs [2, 3, 36, 37].

2.3. Transformers

Transformers, introduced by [30] leverage multi-head
self-attention layers to compute pairwise correspondence
between tokens to learn highly expressive features across
long sequences. Recently, self-attention has been applied
to many computer vision tasks such as classification, de-
tection and segmentation [25, 29, 31, 33]. In contrast to
non-local block models [5, 33, 38], transformer-based mod-
els [25, 29, 31] use relative positional encodings and multi-
head design, which is essential as they capture spatial struc-
tures in an image and a mixture of affinities, respectively.

3. Proposed Method

In this section, we discuss the details of the proposed
Axial-GAN for thermal-to-visible synthesis from LR ther-
mal images. In particular, we first give an overview of axial-
attention [ 12, 3 1], then discuss the proposed axial-attention-
based generator and discriminator networks and finally ad-
dress the objective functions and implementation details.

3.1. Axial-attention overview

Axial-attention [12, 31] factorizes 2D self-attention into
two steps that apply 1D self-attention in height-axis and
width-axis sequentially. Each step computes pairwise
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Figure 3. The proposed generator (a) and discriminator (b) augmented with axial-attention layers.

affinities, thereby learning a rich set of associative features
across that particular axis. Combining them sequentially
allows in capturing the full global information. The fac-
torization helps in reducing the computational complexity
and allows to capture long-range dependencies on larger re-
gions, which is infeasible for 2D self-attention. Addition-
ally, Wang et al. [31] incorporates relative positional bias
[28] in key, query and value as illustrated in Figure 2 (b),
thereby effectively associating information with positional
awareness. Formally, the position-sensitive axial-attention
layer along the width-axis is as follows:
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where y;; denotes the value at position (i, ) in the out-
put feature map. Here, ¢, k, v denote query, key and value,
respectively, which are computed from input feature map.
r9, 7% r? denote the relative positional encoding for query,
key and value, respectively. In our work, we adopt the axial-
attention blocks as illustrated in Figure 2 (a), which com-
prises of the multi-head position-sensitive axial-attention
layers, to augment the GAN.

3.2. Generator

The generator, given a LR thermal image as input, syn-
thesizes a HR visible image. Inspired by the works in
super-resolution [34], a progressive upsampling framework
is used in the proposed generator as shown in Figure 3
(a). This framework is efficient when compared to the pre-
upsampling framework and also avoids the noise amplifi-
cation caused by an upsampled input image. Initially, we
use only convolutional layers to learn local features such as
edges, which are difficult to model by content-based mecha-
nisms such as self-attention. In the later stages, we augment
the network with axial-attention blocks to model the global
context. Additionally, in order to improve the stability of
training, we use spectral normalization [21] for all convo-
lutional layers except for those in the axial-attention block
and the final output layer. Specifically, our generator archi-
tecture consists of the following components:

C64 - C128 - C256 - C512 - D256 - A256 - C256 - D128 -
A128 - C128 - D64 - R64 - F

where Ck, Dk, Ak and Rk denote 3 x 3 Convolution-
BatchNorm-ReL.U layer, 3 x 3 Deconvolution-BatchNorm-
ReLU layer, axial-attention block and residual block [9],
respectively, with k filters. F' denotes a 1 x 1 convolutional
layer with Tanh as activation function, which produces a
three channel output.

3.3. Discriminator

We use a patch-based discriminator [15] augmented with
axial-attention layers as shown in Figure 3 (b), which is
trained alternatively with the generator. The input to the
discriminator is the concatenation of up-sampled thermal
image and either real or fake visible image. Similar to the
generator, spectral normalization is used for improving the
training stability. The discriminator consists of the follow-
ing components:

C64 - C128 - A128 - C256 - A256 - C512-F

where C'k and Ak denote a 4 x 4 Convolution-LeakyReLU
layer and axial-attention block, respectively, with £ filters.
F denotes a 1 x 1 convolutional layer, which produces a
single channel output.

3.4. Objective function

The training dataset is given as a set of pairs {(z;, y;)},
where z; is a LR thermal image and y; is the correspond-
ing HR visible image. We minimize the hinge version of
adversarial loss [20] for training the generator G and dis-
criminator D:

Lp = —E, 4[min(0,—1 4 D(z,y))]
— E;[min(0, =1 — D(z, G(x)))] @)

Lg=- EI[ (l’, G(:L’))]

The overall loss function for the generator is defined as fol-
lows:

L=Lg+AgLy +ApLp+ AparLrag, 3

where L is the adversarial loss for generator in Eq. 2, Ly
is the Huber loss in Eq. 4, Lp is the perceptual loss in Eq.
5, Ly is the discriminator-based feature matching loss in
Eq. 6. A, Ap, A are the weights for Huber loss, per-
ceptual loss and discriminator-based feature matching loss,
respectively.



We use Huber loss between the target visible image and
the synthesized visible image:
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To generate visually pleasing results, perceptual loss [ 17]

is minimized, which is computed using features extracted

from an off-the-shelf pre-trained VGG-19 network. The

features from the initial layers help in generating high-

frequency details, whereas the deeper layers help in enhanc-

ing the discriminative details. The perceptual loss is for-

mally stated below in which F; denotes the i-th layer of the
VGG-19 network:

Ly = Euy[IIFi(y) — Fi(G(2))[1]. )

Additionally, discriminator-based feature matching loss
[32] is used to improve the training stability of GAN. Here,
the ¢-th layer of discriminator D is denoted as D;:

Lrm = Eoy[|Di(z,y) — Diz, G(z) 1] (©)
3.5. Implementation

The entire network is trained on a single Nvidia 12 GB
GPU. We choose Ay = 100 for the Huber loss, A\p = 10
for the perceptual loss and Ap s = 10 for the discriminator-
based feature matching loss. Adam [18] is used as the op-
timization algorithm with a learning rate of 0.0002 and the
batch size is set to 32. The second convolutional layer at
each scale in VGG-19 is used for the perceptual loss. The
output features after each scale in the discriminator are used
for the discriminator-based feature matching loss.

The input to the generator is a 16 X 16 thermal image
downsampled from the HR thermal image. The generator
synthesizes the corresponding 128 x 128 visible face im-
age. Downsampling or upsampling is performed using the
MATLAB bicubic kernel function. Moreover, the training
dataset is augmented with random horizontal flips.

4. Experimental Results

We evaluate the performance of our method using image
quality and face verification metrics. The quality of the syn-
thesized visible images is evaluated using the peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) in-
dex [42]. The face verification performance is evaluated
using the area under the curve (AUC) of receiver operating
characteristic (ROC) and equal error rate (EER). Face verifi-
cation scores are computed using cosine similarity between
features extracted from ‘maxp-5_3’ layer of a pre-trained
VGG-Face model [23]. The image quality metrics are eval-
uated on all images in the test set, whereas the face verifica-
tion performance is evaluated on the protocols as described
in each of the dataset section.

4.1. Datasets and Protocols

We use the ARL-VTF dataset [24] and the polarimetric
thermal face recognition dataset [6] for evaluating our
method. We use only the baseline and expression images
and ignore the pose images from these datasets in our
evaluation, as it is extremely challenging to synthesize
images from off-pose low-resolution images.

ARL-VTF dataset. This is the largest dataset of paired
conventional thermal and visible images, containing over
500,000 images from 395 subjects. The cropped face
images are obtained using the provided bounding box
annotations. The development and test split consist of 295
and 100 subjects, respectively. For evaluating our method
we follow the provided protocols, which prescribe different
combinations of the gallery (G_-VB0-, G_ZVB0+) and probe
sets (P_TBO-, P_TEO-, P_.TB0+). Here, “G” and “P” denote
the gallery and probe sets, respectively. Visible and thermal
spectrum data are represented as “V” and “T”, respectively.
“B” and “E” denote the baseline and expression sequences,
respectively. “0” represents the images of subjects who
do not possess glasses, while “-” and “+” represent the
images of subjects who have their glasses removed or worn,
respectively. For example, G_VBO- is the set of visible
images in the gallery where no subjects are wearing glasses.

Extended ARL multi-modal polarimetric thermal face
recognition dataset. This dataset contains a total of 5419
polarimetric thermal and visible image pairs correspond-
ing to 121 subjects. A polarimetric thermal image con-
sists of three Stokes images as its three channels: SO,
S1, and S2, where SO represents the conventional inten-
sity thermal image, S1 represents the horizontal and verti-
cal polarization-state information and S2 represents the di-
agonal polarization-state information. We follow the pre-
processing steps outlined in [6] for obtaining the cropped
face images. The subjects are randomly divided into train,
validation, and test sets containing 71, 25, and 25 subjects
respectively. Reported results are evaluated over three ran-
dom splits. For evaluating thermal-to-visible face verifica-
tion, the gallery set is formed using a random baseline vis-
ible image from each subject in the test set. The remaining
disjoint polarimetric thermal images form the probe set.

4.2, Results and Comparisons

We compare the performance of our method with
pix2pix [15], Di et al. [5] and HiFaceGAN [36]. Di et al. [5]
uses a self-attention [33] based CycleGAN [43] (SAGAN)
for thermal-to-visible synthesis. We use our implementa-
tion for comparison and ignore the cyclic-consistency part
i.e., we do not train the GAN for visible-to-thermal synthe-
sis for a fair comparison. HiFaceGAN is a recent work in
face hallucination that uses content-adaptive convolutions
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Figure 4. Synthesized visible images from different methods on the ARL-VTF dataset

P_TBO- P_TEO- P_TBO+
Gallery Method
AUC (%) EER (%) AUC (%) EER (%) AUC (%) EER (%)
pix2pix 91 17.77 88.94 19.37 80.06 28.13
SAGAN 92.29 15.3 90.78 17 79.18 28.38
HiFaceGAN 91.29 17.13 89.42 18.49 82.82 26.21
G_VBO0- Axial-GAN (Ours) 944 12.38 92.71 14.86 84.62 24.67
Ours w\o axial-attention 90.89 17.75 88.87 19.64 80.07 27.69
Ours w self-attention 92.72 14.62 90.52 17.29 82.15 26.44
Ours w HR Thermal 99.05 4.98 98.07 7.1 91.45 17.85
pix2pix 86.32 22.43 83.7 24.58 91.15 17.89
SAGAN 87.8 22.27 85.85 23.93 87.37 21.44
HiFaceGAN 86.12 23.7 84.24 25.01 91.03 16.61
G_VBO+ Axial-GAN (Ours) 89.71 19.75 88.01 21.58 93.62 14.05
Ours w\o axial-attention 86.73 22.43 84.37 243 89.96 17.63
Ours w self-attention 87.89 22.59 85.96 23.75 91.48 16.5
Ours w HR Thermal 96.53 10.21 94.72 13.75 98.53 6.67

Table 1. Face verification results corresponding to the ARL-VTF Dataset

Method PSNR _ SSIM Resolution Method AUC EER PSNR SSIM

— pix2pix 90.66 17.66 1675 0.55

pix2pix 16.243 0549 SAGAN 9226 1572 1766 0.60

SAGAN 1767 061 24 x 24 .
. HiFaceGAN 9132 17.09 1821  0.63
HiFaceGAN 17.764  0.62 Ours (Axia-GAN) 95.52 11.44 18.56 0.63
Ours (Axial-GAN)  18.173  0.607 . : . .

N pix2pix 7555 31.81 1585 0.54

Ours w/o axial-attention 17.067 0.577 SAGAN 7262 3381 1630 053

Ours w self-attention 17.736  0.591 8x 8

Ours w HR thermal 18267  0.643 HiFaceGAN 75.71 31.61 1636  0.57

Ours (Axial-GAN) 78.79 2839 16.57 0.55

Table 2. 1 lit It ARL-VTF dataset
able <. Tmage qualty resulls on atase Table 3. Comparison of results for different resolutions on ARL-VTF dataset
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Figure 7. Synthesized visible images from different methods on the ARL polarimetric thermal face dataset

to extract features for semantic guidance [22] during replen-
ishment. The competing methods use bicubic upsampled
thermal images as input. Additionally, we compare with
Axial-GAN that runs on HR thermal images to show the
limitations of thermal-to-visible synthesis.

Table 1 shows the thermal-to-visible verification perfor-
mance of different methods on the ARL-VTF dataset. Com-
pared to the other state-of-the-art methods, our method per-
forms better with higher AUC scores and lower EER scores
across all protocols. We also show the ROC curve for
G_VBO- vs. P_-TBO- protocol in Figure 5. Additionally, Ta-
ble 2 shows the image quality results, where our method
outperforms the other methods based on PSNR but is com-
parable to HiFaceGAN based on SSIM. Similar results can
also be observed in Figure 4, which shows the synthesized
visible images for all methods. SAGAN has many arti-
facts in the synthesized images but the identity information
is well retained. HiFaceGAN synthesizes images that are

smoother but the identity information is lost in this process.
Our method comparatively synthesizes more realistic faces
with well-defined face contours while preserving identity
information. Furthermore, we conduct an additional study
which shows the quantitative comparisons for different res-
olutions of input thermal image (see Table 3). Here, we
report the average AUC and EER scores across all proto-
cols. We obtain results that are consistent with the results
for 16 x 16 resolution.

For the extended ARL multi-modal polarimetric face
recognition dataset, the quantitative results are shown in
Table 4 and the ROC curve for one of the splits is shown
in Figure 6. When compared to the ARL-VTF dataset,
the performance of all methods decrease for this dataset.
This is mainly because of its dataset size, which is 100
times lesser than that of ARL-VTF. Additionally, there is
a lot of variation in illumination which can be seen in the
visible images of Figure 7. As a consequence, there is a



Method AUC (%) EER (%) PSNR SSIM Parameters
pix2pix 81.573 +£3.298 2593 +2.733 16.488 +£0.197 0.513 +0.021 41.8 M
SAGAN 84.377 £ 6.393 23.557 £6.699 17.329 £0.28 0.565 4+ 0.016 7.9M
HiFaceGAN 84.067 + 6.801 22.947 + 6.538 17.456+0.176 0.583 + 0.009 799 M
Ours (Axial-GAN)  85.557 +5.307  22.347 + 5.7 17.739 + 0.165 0.582 + 0.012 4.1 M
Ours w HR Thermal  91.227 +4.17 15.53 +5.176 17.58 4+ 0.05 0.588 4+ 0.008 6.1 M

Table 4. Results for face verification and image quality on extended ARL multi-modal face recognition dataset

significant impact on the PSNR metric as thermal images
fail to capture such variations. Our method performs better
than the competing methods but the improvements are less
when compared to the ARL-VTF dataset. HiFaceGAN
performs relatively well when compared to its performance
on the ARL-VTF dataset. This can potentially be attributed
to the larger dataset size required by the attention-based
models for observing reasonable performance boosts. Table
4 also shows the parameters in the generator for each of
the methods. Our method has approximately 10x, 2Xx,
and 20x lesser parameters than pix2pix, SAGAN, and
HiFaceGAN, respectively. Furthermore, Figure 7 shows
the qualitative comparisons of the competing methods. The
qualitative observations for this dataset are consistent with
that of the ARL-VTF dataset.

Ablation study. In Table 1 and 2 we also show the ef-
fectiveness of axial-attention. When we remove the axial-
attention blocks from our method, we observe a signifi-
cant decrease in performance. This shows the importance
of capturing global information using self-attention-based
models. Additionally, we also replace the axial-attention
blocks with self-attention layers [5, 33] in our method. As
expected, this performs similarly to SAGAN and falls short
when compared to our method. This shows that the po-
sitional information and multi-head design are essential in
improving the performance of self-attention-based models.

5. Conclusion

We introduced the task of thermal-to-visible face veri-
fication from low-resolution thermal images to deal with
lower resolution faces in surveillance systems. To address
this task, we proposed Axial-GAN in which we augment
the GAN framework with axial-attention layers. Axial-
attention effectively captures long-range dependencies with
high efficiency. Our quantitative and qualitative results on
multiple thermal-visible face datasets show improvements
when compared to previous related works. In future work,
we would like to investigate the challenging task of face
verification using off-pose LR thermal faces.
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