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Abstract

We assess the vulnerabilities of deep face recognition
systems for images that falsify/spoof multiple identities si-
multaneously. We demonstrate that, by manipulating the
deep feature representation extracted from a face image via
imperceptibly small perturbations added at the pixel level
using our proposed Universal Adversarial Spoofing Exam-
ples (UAXs), one can fool a face verification system into
recognizing that the face image belongs to multiple differ-
ent identities with a high success rate. One characteristic
of the UAXs crafted with our method is that they are uni-
versal (identity-agnostic); they are successful even against
identities not known in advance. For a certain deep neu-
ral network, we show that we are able to spoof almost all
tested identities (99%), including those not known before-
hand (not included in training). Our results indicate that a
multiple-identity attack is a real threat and should be taken
into account when deploying face recognition systems.

1. Introduction

Biometrics authentication is a security measure for
uniquely identifying an individual on the basis of his/her
physical or behavioral traits. Commonly used biometrics
sources include face, fingerprint, and voice. Face recogni-
tion is common due to its high accuracy and seamless user
interaction.

Advances in deep neural networks (DNNs) have greatly
improved the performance of face recognition [26} 24} [18]].
For these and other reasons, face recognition is being used
real-life applications, ranging from immigration inspection
to smartphone authentication.

As with other forms of biometrics authentication, face
authentication is susceptible to spoofing attacks, a type of
attack in which an adversary attempts to bypass authenti-
cation by appearing to be genuine. There are mainly two
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approaches to bypassing authentication via spoofing. First,
the adversary may carry out spoofing during authentication,
e.g., present an image that looks genuine during authenti-
cation in real-time. Second, the adversary may register ad-
versarial images in the system’s database, i.e., data poison-
ing, to confound the system during authentication occurring
sometime later. We mainly focus on the latter approach in
this study.

Consider the following scenario in which an adversary
registers/enrolls a slightly modified image of a genuine in-
dividual, the real identity of whom is denoted as A, to the
authentication system. During authentication, the system
compares the enrolled image with a user-input image. We
consider an attack to be successful only when the system
is able to authenticate A (no reasonable suspicion arises) as
well as another individual B, where B # A (spoofing is
successful). This allows B to be authenticated even though
B is not enrolled, compromising the authentication system.

A more agnostic form of spoofing, where the modified
image matches with more than two individuals, is also pos-
sible. An adversary equipped with such an image can po-
tentially break into multiple distinct authentication systems
without needing knowledge about the specific identities reg-
istered to the authentication systems.

This led us to investigate universal spoofing attacks
against face recognition. Particularly, we consider an ad-
versary that registers an adversarial example (AX), an input
image with a small amount of noise added, to an authentica-
tion system. Such an image with inconceivably small noise
is preferred from the adversary’s perspective, as it helps
hide the adversary’s trace without raising human suspicion.
We call such images that spoof multiple identities univer-
sal adversarial spoofing examples (UAXSs), to differenti-
ate them from conventional AXs with which the only aim is
to to cause misidentification. The UAX matches with faces
images of different genders, races, illumination, poses, and
expressions.

The highlights of our contribution in this work are as
follows:

» Using adversarial perturbations, we propose a UAX-



crafting method for enabling universal multiple-
identity spoofing attacks on face recognition systems.

* Experimental results on multiple datasets and models
indicate that our method is effective not only on tar-
geted/known identities, but also generalizable to un-
known identities. In particular, the UAXs crafted with
our method have a 99% spoofing success rate (for both
known and unknown identities we have tested them
with) against the VGG2 feature extractor.

These vulnerabilities severely undermine the authenti-
cation capability of current face recognition systems and
should be treated as a legitimate threat when deploying such
systems in an industrial setting.

The rest of the paper is organized as follows. We first
provide preliminaries and background relevant to our work
in Section [2| In section |3} we present the proposed method
of crafting UAXs. We discuss the extensive experimental
evaluations we considered in Section E} Finally, we con-
clude the paper in Section[5]

2. Background

Face recognition. Broadly speaking, the task of face
recognition is divided into two categories. The first cate-
gory is face identification, or closed-set face recognition,
where the task is to execute a multi-class classification of
faces belonging to a set of pre-determined identities. |

The second category is face verification. During au-
thentication, the face recognition system compares the user-
input image with images enrolled in the system’s database
and determines whether they belong to the same identity.
The focus of our study was on face verification.

State-of-the-art face recognition systems use DNNs to
extract a low-dimensional feature representation from a face
image for face verification [[13} 28} 5]]. The similarity of two
images can then be quantified by measuring the distance be-
tween their feature representations. Euclidean distance and
cosine distance are common similarity metrics (the smaller
the distance is, the more similar the images are). The sys-
tem subsequently determines if the two images belong to
the same individual on the basis of a pre-determined deci-
sion threshold.

The DNN architectures used to train face recognition
feature extractors are typically those that work well in the
image recognition domain. The VGG [22] and Inception
[10] networks are common DNN architectures.

We now describe the training process of feature extrac-
tors. One common approach is training a DNN to execute

Face recognition systems should reject unknown identities not belong-
ing to the pre-determined set of identities. The open-set face recognition
protocol, which was designed to achieve this, has also been investigated

[8].

classification on a pre-determined set of identities. The out-
put of the penultimate layer is then treated as the feature to
be used for face verification.

Another approach involves training the feature extractor
directly via metric learning [20]]. This approach involves
constructing a triplet of two matching face images and a
non-matching face image, but suffers from scalability is-
sues, i.e., the number of triplet combinations increases ex-
ponentially with the number of training data points. We
used feature extractors implementing the former approach
in this study.

It is worthwhile to note that recent releases of large an-
notated databases have also helped advance the field of
face recognition. Widely used databases include CASIA-
WebFace [29], VGGFace2 [3]], MSIM [9], and LFW [L1].
The CASIA-WebFace dataset contains 0.49M images from
10,575 celebrities. The VGGFace?2 is a large-scale dataset
with large variations in pose, age, illumination, ethnic-
ity, and profession. A total of 3.31M images from 9131
celebrities can be found in this dataset. The MS-CeleblM
dataset (MS1M) is another large-scale dataset with about
10k celebrities with 10M images. A refined version of this
dataset (MS1MV?2) containing less noise and with 3.8M im-
ages of 85,164 celebrities is also available [S]]. The Labeled
Face in the Wild dataset (LFW) is a smaller dataset (13k
images from 1,680 people) that is typically used for valida-
tion.

Adversarial examples. The phenomenon in which a small
crafted perturbation (noise) added to an input may lead to
misclassification by the DNN was first discussed in [25].
Subsequently, various methods of crafting adversarial per-
turbations have been proposed, including those involving
gradient updates [7, 12} [14]. For example, a “fast” one-step
gradient update along the direction of the sign of gradient
(FGSM) was carried out [7]. Iterative methods with higher
probability of fooling DNNs have been proposed in [12]].
The Carlini-Wagner attack relies on optimization problem
solving [4], which has been empirically shown to be ex-
tremely successful at attacking DNNs with minimal pertur-
bation.

While the aforementioned methods focus on causing
misclassification, Rozsa et al. [19] crafted AXs that align
the internal layer representation with the target representa-
tion, which can be adapted to generate AXs to manipulate
the feature representation of face images when one consid-
ers attacks on face verification.

We also notice that the study of “universal” adversar-
ial perturbation is available in the literature [16], where
the aim of such an attack is to create a single perturba-
tion to mis-classify various images (e.g., images from class
A mis-classified as class B). The attacks crafted with our
method are different in the sense that, when the perturba-
tion is added to a face image, they are able to match many



classes (e.g., class A mis-classified not only as class B, but
also class C, class D etc.). Since previous works focused on
classification problems, it is not obvious that such universal
behavior exists in face verification (where the task is calcu-
lating how similar two feature vectors are), which is rather
different from classification (where the task is calculating
how likely an image belongs to a certain class).

Attacks on face recognition. Security issues of face recog-
nition have attracted much attention. For example, Sharif et
al. [21]] showed that it is possible to fool face recognition
systems deployed in the physical world by adding perturba-
tions in the eyeglass region. In [6], a method of attacking
face recognition in a black-box fashion has been proposed.
Attacking face recognition using generative adversarial net-
works (GANSs) has been studied as well [23]].

It should be noted that most studies on attacks on face
recognition focus on tricking the authentication system into
misidentifying an individual, orthogonal to our adversarial
purposes of spoofing multiple identities.

Finding a generic sample that is similar to many of
the enrolled templates is known as a wolf attack in bio-
metrics [27]. [] Previous works have focused on finger-
vein-, fingerprint- and voice-based authentication systems
[27, 12, [15]).

[1] and [17] investigated multiple-identity attacks and
have adversarial purposes similar to the present work. To
carry out multiple-identity attack, [1] used face morphing
methods and searched in a gallery for natural faces that
match with two identities. However, they considered nei-
ther adversarial perturbations nor dictionary attacks, where
a single face can match with more than two identities, which
constitute the core part of the present work, were considered
in [1]]. [17] considers Master Faces, multi-identity spoof-
ing images crafted using GANs. This is different from our
method of crafting images using adversarial perturbations,
which is a stealthier form of attack. Our study is more ex-
tensive in the sense that we demonstrated the effectiveness
of our attack by performing evaluation on multiple DNNSs,
in contrast with [17], who conducted an evaluation only on
a single DNN.

3. Proposed Method

Our aim is to craft a UAX that can spoof as many identi-
ties as possible. We craft the UAX by adding perturbations
to a “seed” genuine image, r4. Given a training dataset,
Arain, our crafting strategy is as follows. We add pertur-
bations to x 4 such that its similarities with all images from
Agrain are maximized. We further prepare a separate dataset
containing a disjoint population of individuals, Ay, to test
the spoofing capability of UAXs with unseen identities.

It is also known as dictionary attack in computer security.

3.1. Formulating Universal Adversarial Spoofing
Examples

Let us provide a more precise formulation of our pro-
posed method. Let ¢(-) denote the DNN feature extractor.
The feature representation extracted from the image of indi-
vidual A, x4, and individual B, 2, are ¢(z4) and ¢(xp),
respectively. Without loss of generality, we consider adding
a small perturbation, v, to x 4 so that the UAX may be writ-
ten as

2=z +1. (1)

The corresponding feature representation ¢(z’) is required
to have a large enough similarity score with B for successful
spoofing.

Requiring v to be small can be formulated as ||v||, < &,
where ¢ is a parameter controlling the size of the perturba-
tion, and p refers to the /, norm with p € [1, c0) (we focus
on p = oo for the rest of this paper).

3.2. Algorithm

The goal with proposed method is to craft a UAX (z')
that spoofs as many images in Ay, ., as possible. To achieve
this, our algorithm iteratively searches for 2’ that minimizes

fl@'sa?) = ||p(a’) — o(a7) ], )

by searching for Av and aggregating it to the current value
of v at each iteration, where 27 € A¢pain.

The proposed method requires updating the gradient in a
mini-batch fashion. We first initialize

v+ 0,
z —x A+
At each iteration ¢, we then perform the following steps:

* Mini-batch sampling. Sample a mini-batch of size n
from A¢rain, 1€, Sforen < {28 : B € Atrain -

¢ Loss evaluation and optimization. Minimize

, 1
/. Q1 —
F(‘r 7Sbatch) = E E
IBES{)atch

lp(2") = ¢(zB)l, (3)

under the constraint
v, <&

The iteration may be terminated after a certain pre-
determined number of iterations. In this work, we test with
500 and 5,000 iterations.

Optimization details. Before solving Eq. [3} we normalize
the range of x to [0, 1] . The following change from z to w
is then made:

T = %(tanh (w)+1). 4)



Table 1: Details of feature extractors used in this work.
Name of the feature extractor, training method (loss func-
tion used), DNN architecture and dataset used for training

are shown. See text for links to open-source codes.

[ Model name | Training method |

Architecture

[ Training dataset |

VGG Softmax VGG16 VGGFace
VGG2 Softmax Resnet50 VGGFace2
SphereFace SphereFace [13] 36-layer CNN CASIA-WebFace

InsightFace ArcFace [3] SE-Inception50 MSIMV2 [5]

Table 2: Datasets and number of instances used for training
and testing UAXs.

’Dataset name\ Train \ Test ‘

VGGFace2 10,000 | 5,000
LFW 3,438 | 1,549

We solve for w using the stochastic gradient descent (SGD)
method. Finally, we clip the perturbation (v < P(v;p,§))
using the following projection operator:

P(v;p,§) = argmin [[p — vy st ||pll, <& (5)
p

4. Evaluation

In this Section, we describe the experimental evaluation
of the proposed method. Two attack scenarios are consid-
ered:

» White-box attacks. The attacker crafts UAXs using the
victim’s feature extractor.

* Black-box attacks. The attacker crafts UAXSs using fea-
ture extractors different from the one he or she is tar-
geting.

4.1. Experimental Setup

Network settings. To test the validity of our approach,
we conducted an empirical evaluation by using a variety of
open-source feature extractors as the target of our attack,
namely VGG| VGG2|} SphereFace| and InsightFace|

These feature extractors use well-known backbone ar-
chitectures (convolutional neural networks (CNNs) and
Resnets) and have been trained to classify a pre-determined
set of identities in a supervised manner. Details of the net-
work settings of the feature extractors, including training
method, architecture and dataset used for training are sum-
marized in Table[Tl

Datasets. Four datasets were constructed from VGGFace2
and LFW datasets to craft (train) and evaluate (test) UAXSs

https://github.com/yzhang559/vgg-face
https://github.com/rcmalli/keras-vggface
https://github.com/clcarwin/sphereface_pytorch
https://github.com/TreB 1eN/InsightFace_Pytorch

(two each for training and testing). From VGGFace2
(LFW) dataset, we selected 10 (5) images to be the “seeds”
that will be added with perturbations to craft UAXs.

The VGGFace2 train (test) dataset used for evaluation
was constructed by sampling 2000 (1000) identities and 5
images from each identity from the train (test) subset of
VGGFace2.

To evaluate with LFW dataset, we selected all images
from the recommended train and test pairs [11] to construct
the train (3,438 images) and test (1,549 images) dataset re-
spectively.

Note that the train and test datasets were mutually exclu-
sive (no over-lapping identities). The details of the datasets
are summarized in Table

For image pre-processing, we employed the multitask
convolutional neural network (MTCNN) to detect and crop
face images to 112 x 112 pixels [30].

Evaluation metrics. Before deployment, practitioners of
the face recognition systems need to determine a decision
threshold on the similarity score to verify whether two face
images belong to the same identity. In this study, we used
the equal error rate (EER) as the decision threshold. This
measurement is also known as the imposter attack presenta-
tion match rate IAPMR).

The discriminative power of a feature extractor is mea-
sured using the false matching rate (FMR) (the smaller an
FMR is, the better a feature extractor is). Conversely, the
FMR is also used as a metric to quantify the attack success
rate (the higher an FMR is, the higher attack success rate a
UAX has).

4.2. White-box attacks

For our first evaluation, we assumed that the adversary
has full knowledge of the victim’s feature extractor, such
that a white-box attack is viable, where the adversary crafts
the UAXs using the victim’s feature extractor. We fixed the
perturbation size to £ = 10/255, or € = 10.

By crafting the UAXs on the basis of the discussion in
Section[3] we show how the FMRs change from non-UAXs
(zero-effort imposters) to UAXs. Tables 3] list the results
for the four targeted feature extractors. Note that the FMRs
are shown as the average among the 10 (5) UAXs we crafted
on the basis of the VGGFace2 (LFW) dataset.

The UAXSs consistently outperformed the non-UAXs by
a significant margin at spoofing. The VGG2 feature extrac-
tor was the most vulnerable; 99% of the images in the train
and test datasets were successfully spoofed since the UAXs
were crafted with 5,000 iterations. Even against the state-
of-the-art feature extractor, InsightFace, the UAXs were rel-
atively successful, being able to spoof as much as around 20
% of the dataset (for both train and test datasets).

Figure [I] gives another view of UAXSs, where the score
distributions of genuine faces, zero-effort imposter faces,



Table 3: Average FMRs for “seed” images (*-*-b) and
UAXs (*-*-a, in bold text), when measured with instances
of train (*-train-*) and test (*-test-*) datasets, constructed
from VGGFace2 (VGG-*-*) and LFW (LFW-*-%). The

VGG feature extractor was used in this configuration.

Table 6: SphereFace feature extractor was used in this con-

figuration. See title of Table E]for details.

Dataset e = 10, 500 iteration e = 10, 5, 000 iteration
VGG-train-b 0.094 £+ 0.033 0.094 4+ 0.033
VGG-train-a 0.15 + 0.071 0.32 +£0.11
VGG-test-b 0.098 + 0.033 0.098 + 0.033
VGG-test-a 0.15 £+ 0.061 0.32 +£0.11
LFW-train-b 0.061 £+ 0.018 0.061 4+ 0.018
LFW-train-a 0.15 £+ 0.032 0.34 + 0.078
LFW-test-b 0.063 £+ 0.018 0.063 + 0.018
LFW-test-a 0.15 + 0.031 0.34 + 0.083

Table 4: VGG2 feature extractor was used in this configu-

ration. See title of Table E] for details.

Dataset e = 10, 500 iteration e = 10, 5, 000 iteration
VGG-train-b 0.056 + 0.030 0.056 + 0.030
VGG-train-a 0.69 +0.18 0.99 + 0.0017
VGG-test-b 0.060 + 0.029 0.060 + 0.029
VGG-test-a 0.70 £ 0.17 0.99 + 0.0018
LFW-train-b 0.068 + 0.023 0.068 + 0.023
LFW-train-a 0.76 + 0.047 0.99 + 0.0063
LFW-test-b 0.066 + 0.027 0.066 + 0.027
LFW-test-a 0.77 + 0.049 0.99 + 0.0054

Table 5: Insightface feature extractor was used in this con-

figuration. See title of Table E]for details.

Dataset e = 10, 500 iteration e = 10, 5, 000 iteration
VGG-train-b 0.075 £ 0.013 0.075 + 0.013
VGG-train-a 0.19 £+ 0.025 0.25 + 0.012
VGG-test-b 0.075 £ 0.011 0.075 + 0.011
VGG-test-a 0.18 +£ 0.019 0.23 + 0.014
LFW-train-b 0.056 £+ 0.011 0.056 + 0.011
LFW-train-a 0.20 + 0.013 0.24 4+ 0.00051
LFW-test-b 0.057 + 0.0040 0.057 £ 0.0040
LFW-test-a 0.20 £ 0.014 0.25 £+ 0.0017

Dataset e = 10, 500 iteration e = 10, 5, 000 iteration
VGG-train-b 0.11 £ 0.034 0.11 £ 0.034
VGG-train-a 0.60 + 0.040 0.63 + 0.0032
VGG-test-b 0.11 £+ 0.028 0.11 £ 0.028
VGG-test-a 0.62 + 0.040 0.66 + 0.0022
LFW-train-b 0.067 £ 0.038 0.067 + 0.038
LFW-train-a 0.56 + 0.0011 0.57 £+ 0.00024
LFW-test-b 0.067 £ 0.038 0.067 + 0.038
LFW-test-a 0.57 + 0.0024 0.58 4+ 0.000072
10 Zero-effort imposter faces Zero-effort imposter faces
UAX 10 UAX

Genuine faces Genuine faces
- EER - EER

Numbers (normalized)
Numbers (normalized)

(a) Train (b) Test

Figure 1: Euclidean distance distributions of LFW face
images with respect to train and test datasets. Distance
distributions of same-identity face images (genuine faces),
different-identity face images (zero-effort imposter faces),
and UAXSs without adversarial perturbations (UAXs).

=
ogface

vguface2

attacked model

insightface  sphereface

wvgglace  \goface2  sphereface insightface
surmogate model

insightface  sphereface

wggface  \gofaceZ  sphereface insightface
surmogate model

and UAXs are shown. Zero-effort imposter faces consisted
of “seed” images and different identities as we use in white-
box evaluation. Genuine faces were constructed by sam-
pling pairs of face images from the same identity.

Although the adversarial perturbation was quite small,
each sample could spoof over 99% of the different identi-
ties.

Observations. The feature vector of our face recognition
module is of 512 dimensions, and the hypersphere is the-
oretically large enough to hold large-scale identities with
a small misidentifying probability if the feature vectors of
each identity are distributed uniformly (see, e.g., [S]). Our
results indicate otherwise. It seems that the feature vec-
tors of different identities are more “concentrated” than ex-
pected. We hope this observation spurs further theoretical
investigation and analysis in the future.

(a) Train

(b) Test

Figure 2: Adversarial transferability among VGG, VGG?2,
InsightFace, SphereFace models. We tested FMRs on
UAXs with 5,000 iterations, € is 10.

4.3. Black-box attacks

For the second evaluation, we transferred the UAXs gen-
erated from each feature extractor to the other ones and
measured the FMRs for all combinations of different fea-
ture extractors. Figure 2]shows the heat maps of adversarial
transferability in the train and test datasets. The UAXs gen-
erally did not transfer well to the other feature extractors. In
the best case, 10% of the UAXSs crafted by attacking the In-
sightFace model were transferable to the SphereFace model.



5. Discussion and conclusion

We conducted the first analysis of multiple-identity at-
tacks on face verification using adversarial perturbations.
We showed, particularly in a white-box attack scenario, that
an adversary can significantly enhance the spoofing capabil-
ity of face images using our proposed method. Even with-
out the knowledge of the identities registered to a certain
face recognition system, an adversary can use the universal
spoofing capability of the image to break into the authenti-
cation process with a markedly improved success rate.

Our crafted UAXs do not transfer well, as shown in Sec-
tion4.3] Some direct methods resolving this include train-
ing our UAXs with many different architectures to increase
transferability, which is left for future work. Other fu-
ture research directions include developing defenses against
UAXs.
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