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Abstract

This paper presents a summary of the DFGC 2021 com-
petition'. DeepFake technology is developing fast, and re-
alistic face-swaps are increasingly deceiving and hard to
detect. At the same time, DeepFake detection methods are
also improving. There is a two-party game between Deep-
Fake creators and detectors. This competition provides a
common platform for benchmarking the adversarial game
between current state-of-the-art DeepFake creation and de-
tection methods. In this paper, we present the organization,
results and top solutions of this competition and also share
our insights obtained during this event. We also release the
DFGC-21 testing dataset collected from our participants to
further benefit the research community”.

1. Introduction

DeepFake creation and detection are on-going adversar-
ial games. With DeepFake results becoming more realis-
tic and hard to be distinguished by human eyes, malicious
DeepFake creators may also target on decieving automatic
DeepFake detection models, bringing new challenges for
current detection methods.

'https://competitions.codalab.org/competitions/
29583

2https://github.com/yuezunli/
celeb-deepfakeforensics
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There has been some related DeepFake detection com-
petitions, but to our knowledge, the creation side and the
detection side have not been organized together in a multi-
phase game environment, where each side is encouraged to
defeat the other side as much as possible. Some related
DeepFake competitions or benchmarks are compared with
the DFGC in Table 1, including FaceForensics++ Bench-
mark [21], DeepFake Detection Challenge (DFDC) [7], and
DeeperForensics Challenge [12].

The FaceForensics++ Benchmark [21] is the first pub-
licly available benchmark for evaluating DeepFake detec-
tion methods. Participants run their detection methods on
its publicly available test set consisting of 1000 images and
submit their prediction results to the evaluation server. This
kind of evaluation is relatively easy to implement, but has
the risk of human labeling as the test data is public.

DFDC [7] is currently the most large-scale DeepFake
competition, which is organized by Facebook with 1 mil-
lion USD awards. It provides a large training dataset with
128,154 consented videos. It has a two-stage evaluation
mechanism, where the Testl data is used for the first stage
public leaderboard, acting as a development dataset, and the
Test2 data is used for the final ranking, with additional or-
ganic data from the web.

DeeperForensics Challenge [12] is also a two-stage com-
petition similar to DFDC. It encourages participants to use
the DeeperForensics dataset [13] for training their models,
but external public datasets are also allowed for training.



Table 1. Recent DeepFake detection competitions and benchmarks.

Events Year | Submission Test Data Fake Methods EvaluaFlon Train Data Adversarial
Metric Game
FaceForensics++ 2019 Result 1000 Images 4 MethOdS.’ Acc Unrestricted No
Benchmark [21] post processing
8 Methods
Testl: 4000 videos . DFDC train set,
DEDC 7] 2020 Code Test2: 10000 videos P 9“ processing, Logloss External public datasets No
additional organic data
DeeperForensics Testl: 1000 videos Unkown wild data, DeeperForensics dataset,
Challenge [12] 2020 Code Test2: 3000 videos post processing Logloss External public datasets No
1000 real images .. Restricted to CelebDF-v2
DFGC 2021 Code N x 1000 fake images Created by participants AUC train set & its derivation Yes
Created Fake Det Code & Created Fake Det Code & Created Fake Det Code &
.. Data Model Data Model Data Model
Participants l l i l } l
1st C LB 1st D LB 2nd C LB 2 D LB 3d CLB ‘ 3d D LB
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Figure 1. The competition consists of 6 alternating DeepFake creation and detection phases that are adversarially evaluated against their
previous ones, where “C” is for creation, “D” is for detection, and “LB” stands for leaderboard.

There were also some competitions that have similar ad-
versarial form with ours. Our competition is partly inspired
by two recent competitions held in China [1, 2], which both
evaluate the fake creation and detection sides against each
other. Differently, the Alibaba Security challenge [1] tar-
gets on the localization of certificate image forgery, and the
GeekPawn DeepFake challenge [2] does not have quantita-
tive metrics for evaluating DeepFake image quality. More
over, our competition has 6 alternating creation and detec-
tion phases, forming a multi-phase dynamic game.

In summary, current DeepFake detection methods are
usually evaluated on several established datasets, e.g. [21,
17, 13], but they are not fully tested under intentional at-
tacks from the DeepFake creation side. For the other side,
novel DeepFake creation methods are developing fast, but
they only focus on visual quality while their undetectability
to detection methods are not tested. Hence, we propose the
DFGC to provide a common platform for benchmarking the
adversarial game between current state-of-the-art DeepFake
creation and detection methods.

2. The DFGC
2.1. Overall Design

From the DeepFake detection perspective, unknown fake
methods and adversarial measures may increase detection
difficulty. From the DeepFake creation perspective, partic-

ipants need to create face-swap results that can most de-
ceive unknown detection models and be of high quality
in the same time. A multi-phase game gives participants
the chance to test their strategies and inferring the counter-
party’s strategies. These requires our competition to be very
different from existing competitions or benchmarks in com-
petition form and protocols.

The overall workflow is shown in Fig. 1. The compe-
tition is composed of 6 interleaved phases for DeepFake
creation and DeepFake detection. Each phase lasts for one
week. During each creation phase (C-phase), participants
can submit their created DeepFake datasets following some
protocols in 2.2, and then obtain the creation evaluation re-
sults. During each detection phase (D-phase), participants
can submit their detection codes (and models), and then ob-
tain the detection evaluation results. Each phase has its own
real-time leaderboard (LB), which shows only one score
(typically the best performing score) from each team.

To form an adversarial game, the detection methods sub-
mitted in a D-phase are evaluated against all created Deep-
Fake datasets that are submitted to its previous C-phase
leaderboard. The creation datasets submitted in a C-phase
are evaluated against all DeepFake detection methods sub-
mitted to its previous D-phase leaderboard. Note the cre-
ated datasets are also evaluated by some image quality met-
rics, which will be detailed in 2.3. The organizers update
the evaluation codes and datasets/models when switching



phases as shown in Fig. 1 to induce the multi-phase dy-
namic game, where each party is evaluated against an up-
dated and more challenging counter-party.

The competition is hosted on the Codalab platform,
which is a popular open-source platform for hosting aca-
demic competitions. The organizers setup the evaluation
codes, reference datasets, and a backend GPU worker, and
the Codalab platform automatically handles the process-
ing of registration, submission and leaderboard etc. The
organizers also update the evaluation codes and reference
datasets/models at the switching of different phases as men-
tioned above.

2.2. Datasets

For a controllable evaluation and a common basis for
model training, we require both creation and detection
tracks to base on a constrained dataset, for which we choose
the Celeb-DF v2 dataset [17]. This dataset is composed
of 590 real videos and 5,639 high-quality fake videos that
are created by a modified AutoEncoder based DeepFake
method. The Celeb-DF dataset is split into a test set of
518 videos and a train set composed of the rest videos.
Since current state-of-the-art DeepFake detection methods
are mostly frame-based or integration of frame-based meth-
ods [7, 12], and also considering evaluation efficiency, our
evaluations are conducted on video frames instead of video
clips.

For the creation track, we specify 1000 face-swap im-
ages to be created and submitted by participants. These im-
ages are specified from the Celeb-DF test set fake videos.
They are named as “idT_idS_vidIdx _frameldx.png”, which
means the frameldx-th frame of a target person’s video
idT_vidldx.mp4 needs to be swapped to the source per-
son idS’s face. The created face-swap image has the
same image size and background as the target image
“1dT_vidldx _frameldx.png” while the facial ID is swapped
to idS. Following this protocol, a dataset can be directly ex-
tracted from the test set of Celeb-DF, and submitted as a
baseline dataset for evaluation. Creation track participants
are encouraged to submit newly-created face-swap results,
and they can also add post-processing and adversarial noise
to make their datasets more challenging to the detection
track.

For the detection track, participants are restricted to train
their model only on the Celeb-DF train set and no external
dataset is allowed. It is also permitted to augment the train
set with re-created or post-processed data as long as they are
created using the data resources of Celeb-DF train set. This
rule is to maintain a common data basis for model training.
Submitted detection methods (models) are evaluated on a
1000 real image set from Celeb-DF test set and all N x 1000
testing fake images submitted to the previous C-phase LB,
where N is the number of submissions.

2.3. Evaluation Metrics

The evaluation of detection submissions is straightforward. We
use the mean AUROC value to measure the overall performance
to discriminate real and fake samples. The detection score Sp is

calculated as:
Nc

Sp = ZAURoci /Ne 1)
=1
where N¢ is the number of submissions on the previous C-phase
LB, and AUROC; is the AUROC value calculated on the ith sub-
mitted fake dataset versus the real dataset, both of which have 1000
images.

The evaluation for the creation phase has more aspects to be
considered. In the context of our competition, a good DeepFake
dataset should be a valid face-swap result, of high quality, and also
deceiving to detection methods. To quantify these characteristics,
we designed the following creation score, that is the sum of an
ID-similarity score, an image-level similarity SSIM score, a noise
score, and an anti-detection score:

N N
So =Y SSIM(I{**, I}*") /N + > Noise(I/**)/N
i=1 i=1
N . Np
+ Y cos (fla, £17)/N +2 x > (1 — AUROC;)/Np
=1

=1

(@3]

where [ Zf ak Tt are respectively a fake image and its correspond-
ing target image, NV is the number of submitted fake images (i.e.
1000), cos(, ) is the cosine similarity, f; is the ID feature of the
image I** extracted by a face recognition network [5], £ is
the average ID feature of the corresponding face swap source per-
son, SSIM(, ) calculates image similarity, Noise() penalizes noisy
images using a noise level estimation method [6]°, AUROC; is the
AUROC value of running the ith detection method on this fake
dataset versus the real set, and there are Np of these detection
methods submitted to the previous D-phase LB.

The final ranking for the detection track is determined by the fi-
nal D-phase LB. Whereas the final ranking for the creation track is
determined by rescoring against the final D-phase detection meth-
ods. This setup is to simulate real-world situations where creation
typically comes first and detection comes later. Moreover, the or-
ganizers check top detection solutions for reproducibility and va-
lidity after the competition ends to ensure their abidance to the
rules.

2.4. Statistics and Results

In total, more than 180 individuals applied to the competition
in its duration of six weeks, and the statistics of each phase are
listed in Table 2* . As can be seen the degree of participation
increased over time, indicated by the increasing numbers of sub-
missions in total and on the LB. Each participant can make up to
10 submissions per day to fully test their ideas. For this competi-
tion, the detection track attracted more attention than the creation
track, probably because creating high-quality DeepFake dataset is
more time-consuming and complicated.

3The noise score is added at the beginning of the second C-phase.
“4Listed C1 scores have been rescored by adding the noise score.



Table 2. Statistics of each phase. Note each team can only submit
up to one submission result to be shown on LB.

Cl1 D1 Cc2 D2 C3 D3
#submission total 19 208 | 100 | 361 397 1050
#submission on LB 4 15 10 27 21 28
best score 2.83
on LB 1.56 | 0.98 | 2.58 | 0.85 2.42 (final) 0.94
median score 2.37
on LB 1.55 | 0.85 | 2.39 | 0.68 2.15 (final) 0.60

Although the C-phase best scores are not directly comparable
given they are evaluated against different sets of detection
methods, these scores monotonously increased. The two scores
in the C3-phase are respectively the C3-LB score (evaluated
against the 2nd D-phase models) and the final rescored score
(evaluated against the 3rd D-phase models). By observing
submitted DeepFake datasets during the competition and querying
the participants about their used creations methods, we obtain the
following observations:

* A large portion of submitted DeepFake data adds adversarial
noise to deceive detection methods.

* At the final C-phase, nearly all submitted DeepFake datasets
are created by some new methods different from the baseline
Celeb-DF method.

* At the final C-phase, a large portion of submitted datasets
combine new creation methods and adversarial attack meth-
ods.

Since the baseline Celeb-DF fake images have relatively lower ID
score, some new creation methods are used by participants to in-
crease the ID score, and they may also be more effective in deceiv-
ing detection models.

Observing the median scores in the three D-phases
monotonously decreased, we can say that the submitted
DeepFake datasets became more challenging during three C-
phases for most detection track participants. However, D-phase
best scores showed quite high performances, even when faced
with various new DeepFake creation methods and adversarial
attacks. Learning from top-3 detection solutions, they have the
following characteristics worth-noting:

* All top-3 detection methods use extensive data augmentation
and re-creation to simulate various unknown DeepFake cre-
ation methods.

* Two out of three methods use adversarial examples to aug-
ment their training set to better detect adversarial attacked
samples.

Note these augmentations and re-creations are conducted on the
Celeb-DF train set, and no external dataset is used, which is in
compliance with the competition rules.

3. Top Solutions

The final results and scores of each team can be found on the
competition website>. In the following, we only introduce top-3
solutions in each track.

Shttps://competitions.codalab.org/competitions/
29583#1learn_the_details-final-results

3.1. Creation Track 1st

Members: Changtao Miao, Changlei Lu, Shan He, Xiaoyan
Wu, Wanyi Zhuang

We choose Faceshifter [4] as the method to generate fake im-
ages. Based on the faceshifter model, we mainly adopt three strate-
gies to improve the score. One is that we fine-tune the faceshifter
model, and the other is to add adversarial noise to the forged im-
age. Finally, in order to reduce the fraud area and noise level in the
final forged image, we also designed a post-processing method.
Pair-Specific Fine-tuning. The faceswap operation involves
two characters, the source and the target. In order to get bet-
ter faceswap effect, we train an exclusive model for each pair
(I Dsource, IDtarget). Specifically, for each pair, we choose the
videos corresponding to I Dsource, and the videos corresponding
t0 I Dtarget from CelebDF dataset to build a sub-dataset, and then
use this subdataset to fine-tune the faceshifter pre-trained model.
The fake images generated by the fine-tuned model are clearer, and
the id information is processed better, and the score in the game
has been improved a lot, especially the anti-detection score.
Adding Adversarial Noise. Based on the setting of the game, we
also add adversarial noise to the fake images to improve the anti-
detection ability. We first train a detector D using the CelebDF
dataset and the fake images generated by Faceshifter, where the
backbone network is EfficientNet-B7. After that, we adopt the
FGSM method [9], and use the detector D to add noise to the re-
quired 1000 images.
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Figure 2. Creation track 1st solution’s post-processing of filtering
and blending.

Post-Processing. In order to improve the noise score and SSIM
score, we design this post-processing scheme. We first use a bi-
lateral filter to filter the adversarial samples to improve the noise
score in the game, and only fuse the face region in the fake image
into the target image to get the final fake image. Fig.2 shows the
corresponding post-processing flow.

3.2. Creation Track 2nd

Members: Junrui Huang, Yutong Yao, Boyuan Liu, Hefei Ling

Main algorithm. We use a pre-trained FaceShifter [14] model
as the teacher model to guide the learning of a student FaceShifter
model, and use an adversarial training method to improve the de-
ceiving ability of the student model results. The whole framework
is shown in Figure 3. First, we apply Lo loss to force the output
of the student model to resemble the pre-trained teacher model.
To better counter the detection track models, the student model
is also adversarially trained against a discriminator that is trained



on both generated samples and Celeb-DF fake samples. The total
generator loss is:

Le = Lpcr(D(Y'),0) + L2 (Y',Y) 3)

where the label O in the BCE loss represents real label, meaning
student generation result D(Y”) needs to deceive the discrimina-
tor. Gleq is the pre-trained teacher FaceShifter model and kept
fixed during training.

For the adversarial training, the discriminator learns to classify
samples X;cq; and Xyqke in the Celeb-DF training dataset, and
also student face swapping results Y. The loss for the discrimi-
nator is defined in Eqn. 4:

Lp :LBCE(D(Y,), 1)+
Lece(D(Xfake),1) + Lecr(D(Xreat),0)

where the label O represents real and 1 represents fake. The student
model G, learns to hide those forgery clues, thus resulting in
better anti-detection ability than the teacher Gieq.
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Figure 3. Creation track 2nd solution’s pipeline.
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Figure 4. Creation track 2nd solution’s different face masks that
are later manually picked for best blending quality.

Quality tuning. To obtain better quality during face-swap cre-
ation, we pay more attention to source image selection and re-
sult blending. We tend to select source faces which have similar
poses as target faces to generate the face-swap results. This can
minimize artifacts and face distortions caused by pose mismatch.
For result blending, we propose three types of face masks and se-
lect the best blending result for each specific sample. Considered
masks are shown in Figure 4. The first is a universal face mask that
includes the central area of frontal face. The second is the mask
that fits the edge of the face contour generated by face segmenta-
tion algorithm®. The third is the face-parsing mask without fore-
head region in order to avoid potential occlusions such as bangs
and hats.

Shttps://github.com/zllrunning/face-parsing.PyTorch

3.3. Creation Track 3rd

Members: Guosheng Zhang, Zhiliang Xu

In this solution, we focus on creating face-swaps that can suc-
cessfully attack deepfake detectors. To improve the attack ability
of crafted examples, we propose a new adversarial training method
against multiple discriminators with different network architec-
tures. With adversarial training, the adversarial noises are added
to face region to interfere with the deepfake detection models.
Main algorithm. The proposed adversarial training framework is
illustrated Fig. 5. It consists of a deepfake generator and an ad-
versarial noise generator followed by multiple forensic classifiers
{C4,C4,...,Cn} and GAN discriminators {Di, D2, ..., Dn},
where n = 5. We reproduce AEI-Net from the FaceShifter [14]
method and use it as a baseline deepfake generator, and then we
utilize an AutoEncoder network E to generate adversarial noise in
an adversarial training manner. To ensure that adversarial noise
is capable of attacking robust forensic classifiers, we first train
multiple forensic classifiers {C1, C, ..., C } with different struc-
tures on newly generated Celeb-DF training data using FaceShifter
[14], FaceController [26], FaceSwap [3], FirstOrderMotion [22]
and FSGAN [20], apart from its original training data.

Then we load the pretrained C; and initialize D; with the same
parameters as C; to begin adversarial training. The difference be-
tween C; and D; is that C; is kept fixed while D; is adversarially
updated during training.
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Figure 5. Creation track 3rd solution.

As show in Fig. 5, We add adversarial noise to the original
generated image Y, to generate the adversarial example Y, =
E(Y,) ® mask + Y, which aim to deceive D; and the pretrained
C; . We formulate the adversarial loss as follows:

mEin Lado = ZlogDi (Ya) + logCi(Ya) 5)

=1

Note we have omitted the summation over all data samples in Eqn.
5, 6 and 7 for simplicity. Adversarial loss is to force the generated
image be predicted as a real sample by D; and C;. Meanwhile, we
train the GAN discriminators D to distinguish the evolving fake
images from the real ones and the loss function is:

n}i)n Lgis = ZzizllogDi(X) +log(1l — D;(Ya)) 6)
A regularization loss is added to constrain the magnitude of noises:
min Lyeg = | B(Y:)] ™

3.4. Detection Track 1st
Members: Han Chen, Baoying Chen, Yanjie Hu, Shenghai Luo



Figure 6 illustrates the proposed overall framework. First, a
face detector MTCNN [28] is used to crop the face images from
each video frame (enlarged the face region by a factor of 1.3).
Then, EfficientNet-B3 [24] as the backbone for forgery detection.
Finally, the probability of real face is obtained. And this team’s
innovative solutions and training details are given as follows.

0: Real

1: Fake

2: Adversarially
attacked fake data

Prediction

(b) Classifier

(a) Face Extraction (c) Output

Figure 6. Detection track 1st solution’s framework.
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Figure 7. Detection track 1st solution’s self-supervised forgery
data generation.

Self-Supervised. As the Face X-ray [15] said, in addition to
detecting manipulation artifacts, blending artifacts can also be de-
tected. So a similar method is employed to generate more forged
face images. But the difference is that a Deepfake image is used
as the foreground image, and the real image is used as the back-
ground image. The reasons are as follows: one is the face region of
Deepfake image contains manipulation artifacts, which is very im-
portant for detection; and the other is that the number of Deepfake
images in Celeb-DF [17] is much larger than that of real images.
Making full use of Deepfake images can synthesize more forged
face images. Figure 7 illustrated the generated forged face images.
Adversarially attacked fake data. Since the testing dataset con-
tains a large number of adversarially attacked fake data, the team
use some existing adversarial example algorithms to generate a
part of adversarially attacked fake data for training. First of all, this
team train lots of baseline model, e.g. VGG16 [23] and ResNet18
[10]. Then the adversarial example algorithms employed include
PGD [19] and MI-FGSM [8]. In the end, due to the particularity
of face images, we use two methods of to add noise, one is to add
adversarial noise to the entire face image, and the other is to add
adversarial noise only to the face region.

Multi-class Learning. In order to make the network learn more
distinguishing features, a multi-class learning method with three
output neurons is employed. The po (x) denotes the probability
of real face, p1 () denotes the probability of fake face and p» (x)
denotes the probability of adversarially attacked fake data. And
the final probability of a fake face during the testing is calculated
by 1 —po (x) or 37, pi ().

Implementation Details. This team employs a classifier based
on EfficientNet-B3 with three class cross-entropy loss. The label
smoothing technique is used to prevent the model from predicting
the labels too confidently during training to improve generaliza-
tion ability. A smoothing factor of 0.05 is used. Up-sampling

technique is employed to balance the real and fake samples, and
75% of the fake samples were adversarially attacked fake data.
This team use SGD optimizer with initial learning rate of 0.001
and momentum of 0.9. The images are resized to 300 x 300, the
batch size is set as 8, the total training epoch is 85, and the learn-
ing rate is reduced by 10% every 2 epochs. The following data
augmentations are applied during training: Gaussian noise, Gaus-
sian blur, Horizontal flip and Self-supervised data augmentation
mentioned above.

3.5. Detection Track 2nd

Members: Junrui Huang, Yutong Yao, Boyuan Liu, Hefei Ling
As shown in Figure 8, the detection method includes four
stages: preprocessing, online fake sample generation, data aug-
mentation, and a CNN based classifier.
Preprocessing. we sample 50 frames evenly from each video.

Fake Sample Generation

l . Fake . Fake . Fake

Unchanged FaceShifter Face Warping Face X-ray
Artifact
~ /
S /
~ s 7
N
Fake .‘ =10
Sample ) Backbone = Fake
Generation Augmentation Fake
Face lmages and Restcual Predictions

Extraction

Figure 8. Detection track 2nd solution’s pipeline.

Faces are detected by MTCNN [28]. We use a conservative crop
(enlarged by a factor of 1.3) around the detected faces. Cropped
faces are resized to 224 x 224 and saved as PNG format.

Online fake sample generation. Since the training data is limited,
we adopt three online fake sample generation methods to augment
the training data, which are FaceShifter, Face Warping Artifacts,
and Face X-ray. For the input real images, we use the three meth-
ods to generate fake samples, yet we keep the ratio of positive and
fake samples to approximately 1:1.

o FaceShifter: The team uses FaceShifter [14] pre-trained model
for inference, for each input target image, we randomly pick a
source image from the dataset to generate fake samples.

o Face Warping Artifacts: Inspired by Face Warping Artifacts
[16], the team simulates traditional face swapping, in which noise
pattern differs between human face and background, by applying
variable noises inside a general mask of face regions.

e Face X-ray: The team refers to Face X-ray [15] and applies warp
affine transformation from source face to target, followed by color
transferring to achieve face-swapping.

Augmentation. The team applies multiple traditional data aug-
mentation methods including affine transformation, image com-
pression, Gaussian blur, etc.. Besides, we use the solution from
DFGC’ and randomly erase facial features from faces to improve
generalization performance.

Thttps://github.com/selimsef/dfdc_deepfake_challenge



CNN-based classifier. we use Efficientnet-b0O [24] as the back-
bone model, and input images are resized to 224x224. Public pre-
trained model® is used instead of random init. Instead of direct
RGB image input, we extract the edge of input faces to obtain
high-frequency features.

Implementation Details. In the training process, the batch size
is set to 64. The learning rate is set to 0.0005 using Adam opti-
mizer and then decayed 0.1 at 5000 iterations. Training stops at
6000 iterations to avoid over-fitting. For high-frequency noise ex-
traction, we calculate the gray-scale image of the RGB input and
apply convolution with edge detection kernel [—1, 1].

3.6. Detection Track 3rd

Members: Changtao Miao, Changlei Lu, Shan He, Xiaoyan
Wu, Wanyi Zhuang
Dataset. For data preprocessing, we first extract all frames
from each video using OpenCV. Then we apply the face detec-
tor MTCNN [28] to detect the face region of each frame and ex-
pand the region by 1.3 times to crop the image. In addition, we
randomly sample the original real images in the Celeb-DF [18]
dataset to use FaceShifier [14], FSGAN [20] and First Order Mo-
tion [22] to extend the corresponding fake images. In general, the
real samples are real images in the Celeb-DF [18], and the fake
samples include the fake images in Celeb-DF [18], and the fake
images generated by FaceShifier [14], FSGAN [20] and First Or-
der Motion [22]. Meanwhile, we also use the FSGM [9] to gen-
erate adversarial samples of the part of training data, in order to
increase the model’s adversarial robustness.
Implementation Details. We employ EfficientNetV2 [25] pre-
trained on ImageNet as the backbone network. And we ap-
ply the image-level data augmentation based on Albumentations
[4], including: GaussianNoise, GaussianBlur, HueSaturationVa-
lue, IAAAdditiveGaussianNoise, IAASharpen, ISONoise, Ran-
domBrightness, RandomBrightnessContrast. Besides, we also try
other data augmentation, such as: Augmix [11] and Cutmix [27],
however, the online test performance is not satisfactory, so we do
not use it in the final submission model. The images input size
is 224 x224 or 288 x288, since we ensembled two models. The
batch size is 128, and total training epoch is 4. In the training
phase, we adopt the Adam optimizer with a learning rate of 0.0001
and weight decay of 0.001 and use a StepLR learning rate sched-
uler. And we balance the positive and negative samples through
the down-sampling technique.

4. Further Analysis

We also conduct experiments to see whether high accuracy de-
tection models on DFGC-test data generalize to other datasets, and
whether high accuracy detection models trained on other datasets
generalize to DFGC-test set. Here DFGC-test are the submitted
datasets from the final C-phase.

For the first analysis, we run the final D-phase models of DFGC
on the test sets of DFDC [7] and FaceForensics++ [21] datasets.
Results are shown in Table 3. The first column shows best detec-
tion AUC from final phase DFGC models. The second column
shows the correlation coefficient between AUCs of DFGC mod-
els tested on DFGC-test and DFDC-test/FF++ test respectively.

Shttps://github.com/lukemelas/EfficientNet-PyTorch

As can be seen, DFGC models still perform poorly on unseen
datasets, and there is little correlation between detection perfor-
mances on DFGC-test and those on unseen datasets.

For the second analysis, we run DFDC competition top-2 mod-
els on several different test sets, as shown in Table 4. DFDC-test
and DFDC-wild are respectively the DFDC created test set that is
similar to DFDC-train and the DFDC collected organic data. The
DFDC top-2 models perform good on DFDC-test and Celeb-DF
test sets, but are poor on in-the-wild data and even poorer on the
DFGC-test data. Even though the DFDC models are trained on
the largest DeepFake datasets to date, they are still vulnerable to
unseen and adversarially attacked data.

We will release a majority part of the DFGC-test dataset as
an extension of the Celeb-DF dataset at https://github.
com/yuezunli/celeb-deepfakeforensics. We col-
lected consents from 17 out of the 21 DeepFake datasets submitted
to the final C-phase leaderboard. As discussed, these datasets in-
clude adversarial attacks, new fake methods and post-processings,
and they pose a challenge to state-of-the-art detection models.
This dataset can be used as a held-out testing set for evaluating
the generalization ability and robustness of newly proposed detec-
tion methods.

Table 3. DFGC models tested on two different datasets.
Best DFGC Result | Correlation

DFDC-test 0.682 0.065
FF++-test 0.732 0.189

Table 4. DFDC top-2 models tested on different datasets. Metrics
are AUROCs.

DFDC-test | DFDC-wild | Celeb-DF | DFGC-test
DFDC-1st 0.984 0.717 0.904 0.682
DFDC-2nd 0.985 0.724 0.950 0.696

The above results show that current DeepFake detection meth-
ods still struggle on generalizing to unseen datasets. Adversarial
attacks also pose a serious problem to untargeted detection models.
However, observing from the game procedure of this competition,
relatively good detection performance can still be achieved when
the counterpart information can be inferred or probed through
multiple tries. This implies the importance of acquiring side-
information in the DeepFake game, which can lead to more effec-
tive strategies than blindly designing more complicated models.

5. Conclusion and Future Work

In this paper, we introduce the organization of the DeepFake
Game Competition, or DFGC, its overall design, protocols, evalu-
ations and results. Top-3 solutions in both creation and detection
tracks are also introduced. This competition is an initial attempt to
evaluate DeepFake creation and detection in an adversarial and dy-
namic environment, which may mimic real-world challenges. We
also release the DFGC-2021 dataset to the research community
that can be used for testing new detection methods.

Throughout the three adversarial phases, the creation side im-
proves in defeating the overall detection side, as discussed in Table
2. This proves adversarial attacks and unseen DeepFake meth-
ods pose serious challenges to detection models. However, there



are still some top detection solutions that can achieve quite high
performance. The major trick that take effects may be the data
augmentation in training with newly-created fake data and adver-
sarially attacked data. This implies the importance of acquiring
side-information and actively matching the training data distribu-
tion to that of the potential testing data. The cross-dataset analyses
in Section 4 shows low correlations between performances on the
DFGC dataset and other datasets, which implies our competition
dataset has very different distribution from existing datasets.

There are also some limitations in this competition that we plan
to improve in future work. First of all, we only let participants
submit their created fake data, while the real data is not diverse
enough. Secondly, submitted DeepFake datasets are also some-
what limited in diversity, concentrating on a small number of open-
source DeepFake methods and heavily using adversarial attacks.
Thirdly, training and testing data is not large. In future competi-
tions, we may consider using or creating a much larger dataset and
consider video inputs. Competition rules will be more carefully
designed to encourage more diverse and high quality dataset sub-
mission. In summary, there are still many problems to be solved
in the area of DeepFake detection and its evaluation, and we look
forward to witness its progress together with the whole community
in future competitions.
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