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Abstract

Re-identifying participants in ultra-distance running
competitions can be daunting due to the extensive distances
and constantly changing terrain. To overcome these chal-
lenges, computer vision techniques have been developed to
analyze runners’ faces, numbers on their bibs, and clothing.
However, our study presents a novel gait-based approach
for runners’ re-identification (re-ID) by leveraging various
pre-trained human action recognition (HAR) models and
loss functions. Our results show that this approach pro-
vides promising results for re-identifying runners in ultra-
distance competitions. Furthermore, we investigate the sig-
nificance of distinct human body movements when athletes
are approaching their endurance limits and their potential
impact on re-ID accuracy. Our study examines how the
recognition of a runner’s gait is affected by a competition’s
critical point (CP), defined as a moment of severe fatigue
and the point where the finish line comes into view, just a
few kilometers away from this location. We aim to deter-
mine how this CP can improve the accuracy of athlete re-
ID. Our experimental results demonstrate that gait recogni-
tion can be significantly enhanced (up to a 9% increase in
mAP) as athletes approach this point. This highlights the
potential of utilizing gait recognition in real-world scenar-
ios, such as ultra-distance competitions or long-duration
surveillance tasks.

1. Introduction

Gait refers to the distinctive manner in which an individ-
ual walks or runs and is a complex biometric that involves
space and time. Although gait is not considered highly dis-
tinctive, it can still be sufficiently discriminatory to enable
verification in specific low-security applications. As a be-
havioral biometric, gait may not remain consistent over ex-
tended periods, mainly due to fluctuations in body weight,
major joint or brain injuries, or intoxication.
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Figure 1. Analyzing re-ID during the race course. We collect
footage samples of a runner at each recording point, e.g., the run-
ner enclosed in a green container in the image. Utilizing various
pre-trained encoders (backbones), we extract embeddings of the
runner from the footage. These embeddings are then inputted into
a model predicting the runner’s identity in the next recorded-point
video set.

In the pioneering work conducted by Jain et al. [22],
it was reported that collecting gait data is comparable to
capturing facial images and can serve as a viable biomet-
ric modality. The authors noted that gait-based systems
need extensive video footage of a person walking to cap-
ture multiple movements in each articulate joint, resulting
in a high input requirement and computational cost. How-
ever, appearance-based HAR models have shown remark-
able performance at a reasonable computational cost in re-
cent years.

In a sporting context, athlete re-ID is a crucial compo-
nent, as it enables the tracking and monitoring of athletes
throughout a competition or event [29]. In addition to en-
hancing security and safety, athlete re-ID can provide valu-
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able information for coaches, fans, and media outlets.

One key advantage of athlete re-ID is the ability to track
athlete performance throughout a competition. Using com-
puter vision algorithms to identify individual athletes across
multiple cameras, coaches and trainers can monitor their
athletes’ form, technique, and progress [9]. This infor-
mation can be used to optimize training regimes, improve
performance, and prevent injury. In addition to enhancing
athletic performance, athlete re-ID can improve the fan ex-
perience. By identifying individual athletes, fans can re-
ceive real-time updates on their favorite players, including
statistics, highlights, and interviews [27]. This information
can be delivered through various channels, including mo-
bile apps, social media, and live broadcasts. Furthermore,
athlete re-ID can enable personalized services for fans, such
as seat upgrades, merchandise discounts, and VIP access.

Another advantage of re-ID in this scenario is the ability
to provide valuable insights for media outlets. By identify-
ing individual athletes across multiple events, media outlets
can track trends and patterns in performance and identify
emerging talent [35]. This information can be used to create
compelling stories and analyses for sports fans and inform
betting and fantasy sports decisions. Despite its potential
benefits, re-ID in sports tackles several challenges, includ-
ing technical limitations and ethical considerations [10].
For example, athlete re-ID systems may need help differ-
entiating between athletes with similar physical attributes
or in situations with large crowds or low lighting.

Additionally, human gait is considered a distinctive and
hard-to-replicate characteristic, in other words, a crucial
biometric feature for identification purposes [28]. There-
fore, gait recognition has been identified as an essential
technology for diverse applications in high-security envi-
ronments, as well as public areas like airports, stations, and
banks [20]. In this study, we aim to advance the field by
conducting runner re-ID in a real-world ultra-distance com-
petition setting. We seek to address the following inquiries:
To what extent can the embeddings of appearance-based
HAR models be applied to a sports re-ID context? Can gait
offer valuable re-ID perspectives? How does physical ex-
haustion impact athletes’ gait for re-ID objectives? In this
regard, we have analyzed eleven HAR pre-trained models
(backbones) in a dataset collected to evaluate runner re-ID
methods in real-world scenarios (see Figure 1). The ob-
tained outcomes are significant (up to 63.3% of mAP) and
have led to insightful observations. The models based on
HAR, which generate embeddings from a reduced number
of frames (such as Slow channel and I3D models), outper-
form the models that do not. Furthermore, identifying ath-
letes is enhanced by 6% to 9% when considering the impact
of reaching the CP.

2. Related Work
Compared to other biometric traits, gait possesses unique

advantages. Its most notable feature is its non-intrusiveness,
meaning it can be captured from a distance without the sub-
ject’s consent, unlike other biometrics such as fingerprints,
face, hand geometry, iris, voice, and signature, which re-
quire physical contact or proximity to the recording probe
[17, 22, 23]. Additionally, gait is more challenging to con-
ceal, steal, or forge. It may change over time due to fac-
tors such as fluctuations in body weight, or major injuries
to joints or the brain. Hence, gait recognition holds tremen-
dous promise in the domains of crime investigation, social
security, and access control. As a visual identification task,
the primary objective of gait recognition is to acquire dis-
tinct and unchanging features from the constantly changing
attributes of the human body shape over time. Nonethe-
less, in real-world scenarios, variations like carrying bags,
wearing coats, and camera viewpoints can cause substantial
changes in gait appearance, making gait recognition a chal-
lenging task [11]. Furthermore, our analysis suggests that
reaching the CP can potentially lead to distortions in human
gait, which may impact the performance of re-ID systems.
As a result, we aim to investigate how CP affects human
gait and its implications for re-ID.

According to Teepe et al., two main categories of spa-
tial feature extraction methods exist: appearance-based and
model-based [34]. Appearance-based methods extract a
binary human silhouette image from the original image,
usually obtained through background subtraction for static
scenes but more challenging for dynamic settings. Ap-
proaches using the whole shape as input are prevalent,
but current methods focus on specific body parts. On the
other hand, model-based methods consider the body’s phys-
ical structure, extracting features from model data, often
containing handcrafted velocity, angle, and other measure-
ments [33, 37]. Similarly, the classification of HAR models
can be categorized based on the representation of the human
pose, which is crucial for evaluating the performed action.
In their work, Lei et al. have identified three primary pose
representations for action quality assessment [26]. How-
ever, the challenge lies in identifying robust features from
pose sequences and establishing a method to measure pose
feature similarity [39]. On the other hand, skeleton-based
representations encode the relationship between joints and
body parts [16]. Nevertheless, the estimated skeleton data
can be noisy in realistic scenarios, mainly due to occlusions
or changing lighting conditions [4], such as those encoun-
tered in an ultra-distance race under wild conditions.

Ultra-distance races use Radio Frequency Identification
(RFID) tags worn by runners on their shoes, wristbands, or
bibs to track their progress with readers placed throughout
the course [8]. Despite these measures, some runners still
cheat by taking shortcuts [36]. Therefore, re-ID is a primary
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Figure 2. Gait features extraction overview. The process comprises two main components: the footage pre-processing and regression
blocks. Initially, the tracker assists in isolating the runner’s activity from the background in the first stage. Next, the footage is divided
into n small clips through down-sampling, and then a pre-trained human-action model processes these clips to extract features. These
features are synthesized using an average pooling method, producing a final tensor for input to the classifier.

concern in the research surrounding this sport. Mathemat-
ical models have been proposed [18], as well as invasive
RFID-like devices [21], and non-invasive models based on
the runner’s appearance [25], bib number [3, 19], or their
arm-swing pattern [7].

This study advances the field of athlete re-ID by incor-
porating HAR models on sequences of runners. Lately, the
analysis of body movements has also been utilized to de-
termine additional human indicators, specifically for recog-
nizing emotions. Ahmed et al. presented a two-layer fea-
ture selection framework for emotion classification that ac-
curately recognizes five basic emotions (happiness, sadness,
fear, anger, and neutral) using a comprehensive list of body
movement features [1].

3. Method

This section comprises three main subsections: pre-
processing, pre-trained encoders (backbones), and classifier
and loss functions. In the pre-processing step, we apply
a context constraint to improve focus on the athlete in the
input video frames. This helps to remove irrelevant back-
ground information and reduce noise in the feature repre-
sentation. The pre-trained encoders (backbones) extract gait
embeddings from the pre-processed frames. This subsec-
tion describes the pre-trained HAR models considered in
our experiments, including their architecture and input re-
quirements. The classifier and losses subsection describes
the re-ID model used to match athlete identities across dif-
ferent video frames. We use a triplet loss, which aims to
minimize the distance between embeddings of the same
identity and maximize the distance between embeddings of
different identities. This loss is known to be effective in
training re-ID models with appearance-based features. We
also consider a quadruplet loss, which extends the triplet
loss by considering the hardest negative example.

3.1. Pre-processing

We have developed a modular multi-stage pipeline to ex-
tract gait embeddings, as shown in Figure 2. To improve the
quality of the embeddings, it is necessary to provide clean
footage input to the action recognition networks [15]. This
means removing elements such as other athletes, race staff,
and moving vehicles from the scene, which are irrelevant to
the gait analysis. Therefore, the initial block pre-processes
the raw input data to focus on the runner of interest. We
used ByteTrack [40], a multi-object tracking network, to
track the runner in each footage. Then, we applied context-
constrained pre-processing to generate the scenario for our
experiments. To obtain the context-constrained footage for
a runner i at a given time t ∈ [0, T ] and in a recording
point, RP ∈ [0, P ], we used the runner’s bounding box
area BBi(t, RP ) and the average number of frames τ(RP )
needed to generate clean footage where the runner appears
with a still background. The new pre-processed footage
F ′
i [RP ] is obtained as follows:

F ′
i [RP ] = BBi(t, RP ) ∪ τ(RP ) (1)

As depicted in Figure 2, the given input footage, consist-
ing of n frames, undergoes downsampling and is divided
into n video clips (v1, ..., vn), each containing q consecu-
tive frames that capture an activity snapshot (refer to Fig-
ure 2). These video clips are passed through a pre-trained
encoder for HAR, resulting in a p-dimensional feature vec-
tor. These models have been pre-trained on the Kinetics
dataset [24], which includes 400 action categories. After
obtaining the feature vectors for all n video clips, an aver-
age pooling layer ensures that all clips contribute equally.
Finally, the extracted features are fed into triplet, or quadru-
plet network, to obtain the embedding.



3.2. Pre-trained encoders

In this section, we will provide a summary of the charac-
teristics of the eleven human-action recognition backbones
that were considered.

C2D. The Convolutional 2D (C2D) model processes 2D
spatial images, each representing a video clip frame [32].
It uses a convolutional neural network (CNN) architecture
similar to image classification. Typically, the C2D model
comprises several convolutional layers followed by pooling
layers that extract increasingly complex features from the
input frames. The convolutional layers apply learned filters
to the input frames, producing feature maps that capture
spatial information. The pooling layers then downsample
the feature maps, reducing the spatial resolution while re-
taining the most salient features. The resulting feature maps
are then flattened into a feature vector.

I3D. The Inflated 3D ConvNet (I3D) model operates on
short clips of video frames represented as 3D spatiotempo-
ral volumes [5]. It employs a two-stream approach, where
one stream processes RGB images and the other processes
optical flow images, capturing appearance and motion cues.
The RGB stream is initialized with weights pre-trained on
large-scale image classification datasets such as ImageNet,
while the flow stream is randomly initialized and fine-tuned
along with the RGB stream. The output of the last layer
of the I3D model is a feature vector that summarizes the
appearance and motion information of the input video clip.

I3D NLN. The Non-local Network (I3D NLN) is a mod-
ified version of the I3D model that integrates non-local op-
erations for better video spatiotemporal dependency model-
ing [38]. Like I3D, I3D NLN operates on 3D spatiotem-
poral volumes and adopts a two-stream architecture with
RGB and optical flow streams. However, instead of the In-
ception module, I3D NLN uses non-local blocks that can
learn long-range dependencies between any two positions
in the input feature maps. The non-local block computes
a weighted sum of input features from all positions based
on the similarity between every other position in the fea-
ture maps. This allows I3D NLN to capture global context
information, leading to improved modeling of temporal dy-
namics.

Slow is a HAR model that uses a two-stream architecture
to capture short-term and long-term temporal dynamics in
videos [14]. The slow pathway processes high-resolution
frames at a lower frame rate. Slow is similar to the C2D
model and includes a temporal-downsampling layer to cap-
ture longer-term temporal dynamics.

SlowFast includes a slow pathway that processes high-
resolution frames at a slower frame rate, capturing spatial
information and long-term temporal structure [13]. The fast
pathway processes low-resolution frames at a faster frame
rate, capturing fine-grained motion information and short-
term temporal structure. The slow pathway involves a deep

3D CNN that processes each frame in a video sequence with
a temporal stride of 16 frames. The fast pathway consists
of a shallower 3D CNN that processes every other frame
with a temporal stride of 2 frames. To produce the final
video-level representation, the outputs of the two pathways
are combined through a fusion module that uses a weighted
sum of the features.

X3D. The Xception3D (X3D) is a 3D CNN that pro-
cesses data in both spatial and temporal dimensions [12].
It comprises a series of 3D convolutional blocks contain-
ing 3D convolutions, temporal and spatial convolutions, and
nonlinear activations. These blocks are arranged hierarchi-
cally, with increased feature map size and decreased spatial
resolution. X3D delivers four different model sizes: X3D-
XS, X3D-S, X3D-M, and X3D-L. Each of these models has
a different number of parameters and computational cost.
The X3D-XS model is the smallest and fastest, whereas the
X3D-L model is the largest.

3.3. Loss functions

The gait embeddings undergo processing by a small neu-
ral network that consists of two 512 dense layers separated
by a batch normalization layer. The resulting new embed-
dings are designed to discriminate between identities and
are forced to exist on a d-dimensional hypersphere via L2
normalization of the final output. The distance between
gait embeddings is computed using the L2 distance function
adopted by Schroff et al. [31], which calculates the squared
difference between feature vectors (p and q) and sums them
up. This distance measure is used to compute the loss func-
tion, which depends on the distances between embeddings
of multiple input samples, depending on the chosen loss
function. We have evaluated two loss functions: triplet loss
and quadruplet loss.

Triplet loss compares three samples: an anchor sample,
a positive sample (with the same identity as the anchor),
and a negative sample (with a different identity from the
anchor) [31]. The triplet loss function can be defined as
follows:

Ltriplet(D1, D2) =max(D2
1 −D2

2 +m1, 0) (2)

where D1 and D2 are the distances < anchor−positive >
and < anchor−negative >, respectively. The margin pa-
rameter is denoted as m1. The goal is to minimize the dis-
tance between the anchor and positive samples while max-
imizing the distance between the anchor and negative sam-
ples.

Contrary to triplet loss, quadruplet loss compares four
samples: an anchor, a positive, and two negatives [6]. The
goal is to minimize the distance between the anchor and
positive samples while maximizing the distance between
the anchor and the two negative samples. This additional
negative sample helps to increase the separation between



different identities, leading to improved performance on
tasks such as person re-ID. The quadruplet loss function can
be defined as follows:

Lquadruplet(D1, D2, D3) =max(D2
1 −D2

2 +m1, 0)

+ max(D2
1 −D2

3 +m2, 0)
(3)

where D1, D2, and D3 correspond to the distances
< anchor − positive >, < anchor − negative 1 >, and
< negative 1− negative 2 >, respectively. The margin
parameters are denoted as m1 and m2. Accordingly, sim-
ilar objects are closer together while dissimilar objects are
pushed away from each other. Adding an additional nega-
tive sample distance (D3) to the loss function in equation 3
can aid the network in learning a more generalized rule for
similarity. Overall, the quadruplet loss is a more complex
and computationally intensive approach than the triplet loss,
but it can provide better performance in some cases. In the
presented experiments, we also explore using the quadru-
plet loss architecture to update the network parameters.

4. Experiments
4.1. Dataset

In our study, we partially used the dataset introduced by
Penate et al. [29]. This dataset was collected during the
Transgrancanaria (TGC) 2020 ultra-distance running com-
petition, which included up to six different distances for par-
ticipants to complete. However, our annotations only cover
participants in the TGC Classic race, where runners must
complete a 128-kilometer course in under 30 hours. The
original dataset includes annotations for almost 600 partici-
pants at six RPs. Our experiments focused on the final three
RPs, denoted as RP1, RP2, and RP3, respectively. These
RPs yielded data from beyond kilometer 84, enabling us to
assess how well our models performed in the latter part of
the race.

Consequently, our study concentrated on two significant
race stages, namely RP1 → RP2 and RP2 → RP3.
These stages represent the first and second RPs and the sec-
ond and third RPs, respectively, and are crucial for under-
standing the runners’ fatigue and their ability to improve
their running style under the pressure of visualizing the fin-
ish line at RP3. The stage RP1 → RP2 covers 25km and
the stage RP2 → RP3 covers 15km. Due to the variabil-
ity in participants’ performance, the gap between the first
and last runners widened along the course, and the num-
ber of participants decreased. Out of the initial dataset of
almost 600 participants, we selected 214 participants who
appeared in both RP1 → RP2 and RP2 → RP3. Among
them, 129 participants covered the RP1 → RP2 stage, and
111 covered the RP2 → RP3 stage. Participants who only
appeared at one RP for each stage were considered negative

samples during training. For each participant, we fed seven-
second clips at 25 frames per second from each recording
point into the footage pre-processing block, as described
in Section 3.2, using the same frames per second recom-
mended by Carreira and Zisserman [5].

4.2. Experimental Setup

This section describes the evaluation protocol used for
re-ID tasks in our study. We aim to evaluate the perfor-
mance of various re-ID models on a large-scale dataset. To
this end, we used two evaluation metrics.

Mean Average Precision (mAP) is a widely used evalu-
ation metric for re-ID tasks. It measures the average preci-
sion across all possible rankings of the images. mAP is cal-
culated by computing the average precision (AP) for each
class and then taking the mean of these APs over all classes.
AP is defined as the area under the precision-recall curve
(PR curve) for a given query image.

The CMC curve is another evaluation metric used in re-
ID tasks. It measures the percentage of correct matches at
each retrieved image rank. The CMC curve is obtained by
computing the percentage of correct matches for each rank
and plotting the results on a graph. A robust re-ID model
should have a high CMC curve, indicating that the correct
match will likely be found among the top-ranked images.

To ensure the validity of our results, we employed
10-fold cross-validation. This approach divides the dataset
into ten folds, each containing an equal number of samples.
In each fold, one subset of the data is used as the test set,
and the remaining nine subsets are used as the training set.
This process is repeated ten times, each subset serving as
the test set once. The performance metrics (mAP and CMC
curve) are averaged across all the folds to obtain the final
evaluation scores.

The 10-fold cross-validation scheme, while being con-
strained due to the limited number of test samples per fold
caused by the nature of the dataset, still proves to be a valu-
able evaluation protocol for our re-ID model. With race
stages containing 111 and 129 positive pairs, only 11 to 12
test samples are available per fold for each stage. However,
the 10-fold cross-validation approach enables us to evaluate
the model’s performance on diverse subsets of the dataset,
ensuring that the evaluation results are unbiased towards
any subset. The mAP and CMC curves provide crucial in-
sights into the model’s strengths and weaknesses.

In summary, we used mAP and CMC curves as evalu-
ation metrics for re-ID tasks and employed 10-fold cross-
validation to ensure the validity of our results. These met-
rics provide a comprehensive evaluation of the performance
of the re-ID models on a large-scale dataset.



Table 1. Mean average precision achieved by each considered backbone. The table is organized regarding backbones and losses when
the latter is investigated. The second column shows the number of frames the backbone requires to make a prediction. Moreover, two
competition stages are analyzed using scheme A→B, where A stands as the RP considered for the probe and B as the gallery. The average
columns show the mean mAP for each backbone, whereas the last row shows the mean mAP at each stage.

Backbone #Frames Triplet loss mAP Quadruplet loss mAP
RP1→RP2↑ RP2→RP3↑ Average↑ RP1→RP2↑ RP2→RP3↑ Average↑

C2D [32] 8 45.9% 64.7% 55.3% 47.6% 56.0% 51.8%
I3D [5] 8 56.5% 68.2% 62.4% 56.5% 67.2% 61.9%
I3D NLN [38] 8 56.8% 62.0% 59.4% 52.6% 61.4% 57.0%
Slow4x16 [14] 4 60.1% 66.6% 63.3% 54.6% 62.3% 58.5%
Slow8x8 [14] 8 55.7% 63.1% 59.4% 53.2% 61.6% 57.4%
SlowFast4x16 [13] 32 59.6% 62.2% 60.9% 53.0% 64.3% 58.6%
SlowFast8x8 [13] 32 54.2% 61.6% 57.9% 46.0% 59.6% 52.8%
X3D XS [12] 4 51.5% 51.8% 51.6% 50.1% 55.0% 52.6%
X3D S [12] 4 52.0% 51.9% 52.0% 49.9% 53.8% 51.9%
X3D M [12] 13 49.5% 51.8% 51.8% 48.1% 57.8% 52.9%
X3D L [12] 16 43.1% 51.6% 47.4% 43.8% 52.9% 48.3%

RPs Average 53.2% 59.6% - 50.5% 59.3% -

4.3. Experimental Evaluation

Table 1 presents the performance of several backbone
models on two different loss functions, namely triplet loss
and quadruplet loss, as measured by mAP. The table con-
sists of 12 rows of the HAR models (see Section 3.2),
where each row provides the mAP values for both triplet
and quadruplet losses. The first column denotes the back-
bone models, and the second column shows the number of
frames used by the model to generate the gait embeddings
(see Section 3.1). The subsequent columns display the mAP
values for each model and loss function for two different
race stages, RP1 → RP2 and RP2 → RP3, as well as
the average mAP across these reference stages.

The results show that Slow 4x16 is the best model for
triplets, achieving the highest mAP value of 63.3% across
both reference points, a significant improvement compared
to other models. On the other hand, I3D is the best model
for quadruplets, with a mean mAP of 61.9%, which is con-
siderably better than other models. Specifically, I3D out-
performs all other models, including I3D NLN, an I3D vari-
ant designed to address the covariance shift problem in the
batch normalization layer. These results suggest that Slow
4x16 and I3D are well-suited for triplet and quadruplet loss
functions and can perform better than other models.

The presented table reveals that the number of frames
incorporated in the HAR model does not significantly af-
fect the model’s performance. This is evidenced by the
SlowFast 8x8 model, which uses more frames and performs
worse than the SlowFast 4x16 model for both loss func-
tions. On the other hand, models with fewer frames, such as
X3D XS and X3D S, exhibit lower performance compared
to models with more frames, including X3D M and X3D
L. Thus, it appears that the model’s architecture, rather than

the amount of input information, is more relevant to perfor-
mance outcomes.

Finally, the last row of the table presents the average
mAP for each model and loss function across both refer-
ence stages. The mAP values of the athlete re-ID system
indicate that the system performed better in the second stage
(RP2 to RP3) compared to the first stage (RP1 to RP2) for
both triplet and quadruplet loss. When considering triplet
loss, the mAP average was 53.2% for the first stage and
59.6% for the second stage. Similarly, the mAP average
was 50.5% for the first stage and 59.3% for the second stage
when considering quadruplet loss. These results suggest
that the system can identify athletes with better accuracy
as they progress through the race. Studies have previously
demonstrated that fatigue can significantly impact a run-
ner’s gait, resulting in a hunched posture, shorter strides,
and decreased speed [2, 30]. Additionally, fatigue can com-
promise a runner’s coordination and balance, leading to an
increased risk of falls or stumbles. However, these studies
were conducted under controlled conditions with fresh sub-
jects or limited duration. In contrast, our study examines
runners who have already completed 84 kilometers in un-
controlled competition conditions. While fatigue may con-
tribute to changes in gait, runners may also alter their foot
strike pattern and increase their cadence as they near the
finish line to maintain speed and finish strong, which could
impact re-ID accuracy. It is also worth noting that all mod-
els agree that the second stage provides better accuracy than
the first. This consistency across different models suggests
that the improved accuracy in the second stage is not sim-
ply due to chance or noise in the data. Instead, it provides
further evidence that reaching the CP plays a role in the ac-
curacy of the HAR-based re-ID system.
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Figure 3. The CMC curves of the best-performing models are
presented for different RP configurations when triplet loss
is used. SL4X16 and SLFS4X16 correspond to Slow4X16 and
SlowFast4x16, respectively, as listed in Table 1.

The consistency between the mAP values and the CMC
curves for triplets and quadruplets is notable in Figures 3
and 4. The rank-1 accuracy in both curves for the top-
performing models is higher in the second stage than in
the first stage, corroborating the CP effect on athlete re-ID.
For instance, the best-performing models in terms of mAP,
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(b) Quadruplets - CMC considering RP2 as probe and RP3 as gallery.
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Figure 4. The CMC curves of the best-performing models are
presented for different RP configurations when quadruplet
loss is used. SL4X16 and SLFS4X16 correspond to Slow4X16
and SlowFast4x16, respectively, as listed in Table 1.

which uses the triplet loss, achieve a rank-1 accuracy of
52.5% in the second stage (see Figure 3b), while the rank-1
accuracy for the first stage is 43.4% (see Figure 3a). Sim-
ilarly, the best-performing models for the quadruplet loss
shows an increase in rank-1 accuracy from 38.2% in the first
stage to 52.9% in the second stage (see Figures 4a and 4b).



These results indicate that the performance of the models
is consistent with the expected effect of CP on athlete re-
ID. The CMC curves also reveal that the models based on
the quadruplet loss have lower accuracy than those based on
the triplet loss. This finding is consistent with the mAP re-
sults in Table 1, which showed a lower performance for the
models using the quadruplet loss. Nonetheless, the accu-
racy of the models based on the quadruplet loss increases in
the second stage, indicating that the CP effect is also present
in these models. Overall, the consistency between the mAP
values and the CMC curves demonstrates the reliability of
the experimental setup and confirms the impact of athlete
CP on re-ID performance.

5. Conclusion
This study explored HAR models in athlete re-ID and

showed promising results. Using HAR models allows for
extracting robust features from pose sequences and can han-
dle noisy skeleton data in realistic scenes. The triplet and
quadruplet loss functions were evaluated, and it was found
that the second stage of the race provides better accuracy
than the first stage, likely due to athletes reaching the CP.
The consistency between the mAP and CMC curves across
the three top HAR models highlights the reliability of these
findings.

Furthermore, the study provides insight into choosing an
appropriate loss function when using HAR for athlete re-ID.
While both the triplet and quadruplet loss functions were
practical, the triplet loss function provided slightly better
results overall. However, it should be noted that using a
more complex loss function requires more computational
resources, so the choice of loss function should be balanced
with practical considerations. Overall, the findings of this
study inform the development of more robust and accurate
athlete re-ID systems, with potential applications in sports
events and security settings.
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